CN106191480B - 一种NiMnGa多晶合金表面改性的方法 - Google Patents

一种NiMnGa多晶合金表面改性的方法 Download PDF

Info

Publication number
CN106191480B
CN106191480B CN201610522199.3A CN201610522199A CN106191480B CN 106191480 B CN106191480 B CN 106191480B CN 201610522199 A CN201610522199 A CN 201610522199A CN 106191480 B CN106191480 B CN 106191480B
Authority
CN
China
Prior art keywords
nimnga
melting
polycrystalline
polycrystalline alloys
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610522199.3A
Other languages
English (en)
Other versions
CN106191480A (zh
Inventor
董桂馥
李超然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Yushi Technology Co.,Ltd.
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN201610522199.3A priority Critical patent/CN106191480B/zh
Publication of CN106191480A publication Critical patent/CN106191480A/zh
Application granted granted Critical
Publication of CN106191480B publication Critical patent/CN106191480B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及一种NiMnGa多晶合金表面改性的方法。该方法以纯度为99.99%的电解镍、99.95%的电解锰和99.99%的镓为原料,在非自耗真空熔炼炉中熔炼,熔炼后于石英管中进行均匀化热处理,将处理后的合金经激光熔覆方法制备出低摩擦系数NiMnGa多晶合金。本发明制备的NiMnGa多晶合金的摩擦系数在0.26~0.4之间,比现有NiMnGa多晶合金降低了约20%~40%;NiMnGa多晶合金的硬度呈现增大的趋势,比现有的NiMnGa多晶合金增加了10%‑25%。本发明的方法简单,易工业化,制备的NiMnGa多晶合金,组织结构稳定不发生变化。

Description

一种NiMnGa多晶合金表面改性的方法
技术领域
本发明涉及一种NiMnGa多晶合金表面改性的一种新方法。
背景技术
目前研究结果表明,NiMnGa单晶是最有希望获得大磁感生应变的铁磁形状记忆合金,并因其突出的磁致应变性能受到广大科研人员的关注。但NiMnGa单晶材料制备时存在严重偏析,难以获得大尺寸、成分均匀的单晶材料,且重复性和稳定性差,成本高。而最近张学习等人在Ni-Mn-Ga泡沫多晶合金中获得了高达8.7%的磁感生应变,这是目前在Ni-Mn-Ga多晶合金中获得最大的磁感生应变;徐惠彬与Muller教授共同研究了马氏体相变与NiMnGa磁驱动形状记忆合金结构关联性,成功研制出了获得6%以上大磁制应变的NiMnGa磁驱动形状记忆合金。因此,NiMnGa多晶引起了广大科研人员的关注。但是NiMnGa块体材料尚存在强度低、脆性大和恢复力小等缺点,极大限制材料的工程实际应用。
光熔覆技术是20世纪70年代随着大功率激光器的发展而兴起的一种新的表面改性技术。通过激光熔覆不同材料,可以提高材料表面的耐磨、耐腐蚀、耐高温抗氧化等性能。较其他表面工艺,激光熔覆具备诸多优势,如:结合强度高、不易变形、组织致密、适合小区域的改性需求、材料消耗少、适用范围广等优点。
发明内容
为了解决现有的多晶NiMnGa合金的硬度低,脆性大特点,采用激光熔覆的方法来制备多晶NiMnGa合金,来提供一种NiMnGa多晶合金表面改性的一种新方法,该方法得到的NiMnGa多晶合金还具有较低、较稳定的摩擦系数。
本发明的技术方案如下:以纯度为99.99%的电解镍、99.95%的电解锰和99.99%的镓为原料,采用非自耗真空熔炼炉在氩气的保护气氛下制备中熔炼,熔炼后于石英管中进行均匀化热处理,将处理后的合金经激光熔覆方法制备出低摩擦系数NiMnGa多晶合金。在非自耗真空熔炼炉中熔炼前,分别采用机械泵、分子泵抽将非自耗真空熔炉真空度调到5×10-3Pa,再充入高纯氩气到2×10-2Pa,然后开始熔炼。为了确保证所得多晶合金化学成分的均匀稳定性,在熔炼过程中每个样品翻转熔炼多次并加以磁搅拌,然后得到纽扣状铸锭,常温下放置,待其冷却取出。
实验原材料用机械抛光的方法去除表面杂质,用丙酮清洗后沥干并封入真空度为10-1Pa的石英管中,经1173K/24h条件下进行均匀化热处理,以其获得高的有序度。然后通过正交试验的方法制定了激光熔覆工艺。主要是改变通过改变激光器的电流、脉宽和频率三个参数,激光器的电流为110-125mA、脉宽为8-11ms、频率为8-11Hz。最后制备出低摩擦系数NiMnGa多晶合金。
本发明提供的方法制备的NiMnGa多晶合金与现有的多晶NiMnGa合金相比具有以下优点:
1、本发明制备的NiMnGa多晶合金的摩擦系数在0.26~0.4之间,比现有NiMnGa多晶合金降低了约20%~40%;
2、本发明制备的NiMnGa多晶合金的硬度呈现增大的趋势,比现有的NiMnGa多晶合金增加了10%~25%。
3、本发明的方法简单,易工业化,制备的NiMnGa多晶合金,组织结构稳定不发生变化。
附图说明
图1为本发明实施例1、2、3制备的NiMnGa多晶合金的X射线衍射分析图谱;
图2为不同激光熔覆工艺下合金的摩擦磨损性能曲线;其中,a为实施例1的样品,b为实施例2的样品,c为实施例3的样品,d为未经过激光熔覆处理的样品;
图3为本发明实施例1、2、3制备的NiMnGa多晶合金的表面硬度随工艺的变化关系。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。下述实施例中如无特殊说明,所采用的实验方法均为常规方法,所用材料、试剂等均可从化学公司购买。实施例中激光熔覆工艺中激光器型号为:JHM-1GXY-700B多功能激光加工机,购自于武汉楚天工业激光设备有限公司。
实施例1
本实施例的NiMnGa多晶合金样品按如下方法进行制备:利用纯度为99.99%的电解镍,99.95%的电解锰和99.99%的镓为原料,采用非自耗真空熔炼炉在氩气的保护气氛下制备实验所用试样。熔炼前,分别采用机械泵、分子泵抽将非自耗熔炉真空到5×10-3Pa,再充入高纯氩气到2×10-2Pa,然后开始熔炼。熔炼过程中,为了确保证所得试样化学成分的均匀稳定性,每个样品翻转熔炼多次并加以磁搅拌,然后得到纽扣状铸锭,常温下放置,待其冷却取出。实验原材料用机械抛光的方法去除表面杂质,用丙酮清洗后沥干并封入真空度为10-1Pa的石英管中,经1173K/24h条件下进行均匀化热处理,以其获得高的有序度。然后通过正交试验的方法制定了激光熔覆工艺。实施例1主要是改变通过改变激光器的电流对样品进行激光熔覆,电流分别是110mA,115mA,120mA,125mA,脉宽均为8ms,频率均为8Hz,最后制备出低摩擦系数NiMnGa多晶合金。
实施例2:本实施方式与实施例1的区别在于改变激光器参数制备NiMnGa多晶合金:激光器的脉宽分别是8ms,9ms,10ms,11ms;电流均为115mA,频率均为8Hz。
实施例3:本实施方式与实施例1的区别在于改变激光器参数制备NiMnGa多晶合金:激光器的频率8Hz,9Hz,10Hz,11Hz;电流均为115mA,脉宽均为8ms。
将实施例1、2和3制备的NiMnGa多晶合金采用XRD衍射分析,衍射图谱如图1所示。随着激光熔覆工艺的改变,NiMnGa合金的组织结构几乎没有变化,但是改变激光电流时合金表现出择优取向,在(224)晶向表现出很强的强度;而在改变频率时合金中出现部分结构转变,由单斜的7M型马氏体转变成了四方结构的T型马氏体。也就是说随着激光熔覆表面改性的进行,合金的成分略有改变,导致合金的组织结构略有改变,这主要是因为合金中含有一定量的高挥发性元素Mn导致的,Mn元素在高温下部分挥发改变了合金的成分,使合金的结构发生改变。
将实施例1、2和3制备的NiMnGa多晶合金采用万能摩擦磨损试验机上进行摩擦磨损试验分析,结果如2图所示。由图2可以看出,改变激光电流时样品摩擦系数在0.75~0.85之间,在摩擦初始阶段摩擦系数较低,随摩擦时间的增加,摩擦系数逐渐上升。改变激光脉宽时合金表面的摩擦系数在0.26~0.4之间波动。改变激光频率时合金表面的摩擦系数在0.6~0.7之间波动。而未经激光熔覆的合金的摩擦系数在摩擦初始阶段在0.45~0.5之间,此后不断上升。综上所述,激光熔覆处理后的NiMnGa合金表面明显的提高了合金的摩擦磨损性能。且随着激光熔覆工艺的不同得到的熔覆表面平稳的摩擦系数的不同。
将实施例1、2和3制备的NiMnGa多晶合金采用HV200型维度硬度计进行表面硬度分析,结果如图3所示。由图3可知,改变电流激光工艺处理后的样品,改变激光电流时样品的硬度提高了36%;改变脉宽的激光工艺处理后的样品,较基体硬度提高了约16%;而改变频率的激光工艺处理后的样品,较基体硬度差别不大。对激光熔覆后的NiMnGa合金表面的显微硬度分析结果,说明了激光熔覆工艺对NiMnGa合金的表面硬度有了明显提高。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (1)

1.一种NiMnGa多晶合金表面改性的方法,其特征在于,以纯度为99.99%的电解镍、99.95%的电解锰和99.99%的镓为原料,在非自耗真空熔炼炉中熔炼,在非自耗真空熔炼炉中熔炼前,分别采用机械泵、分子泵抽将非自耗真空熔炉真空度调到5×10-3Pa,再充入高纯氩气到2×10-2Pa,然后开始熔炼,在熔炼过程中每个样品翻转熔炼多次并加以磁搅拌,然后得到纽扣状铸锭,常温下放置,待其冷却取出,将熔炼后的NiMnGa多晶合金用机械抛光的方法去除表面杂质,用丙酮清洗后沥干并封入真空度为10-1Pa的石英管中,经1173K/24h条件下进行均匀化热处理,将处理后的合金经激光熔覆方法制备出低摩擦系数NiMnGa多晶合金;所述的激光熔覆方法工艺参数为:激光器的电流为110-125mA、脉宽为8-11ms、频率为8-11Hz。
CN201610522199.3A 2016-07-05 2016-07-05 一种NiMnGa多晶合金表面改性的方法 Active CN106191480B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610522199.3A CN106191480B (zh) 2016-07-05 2016-07-05 一种NiMnGa多晶合金表面改性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610522199.3A CN106191480B (zh) 2016-07-05 2016-07-05 一种NiMnGa多晶合金表面改性的方法

Publications (2)

Publication Number Publication Date
CN106191480A CN106191480A (zh) 2016-12-07
CN106191480B true CN106191480B (zh) 2018-05-04

Family

ID=57465603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610522199.3A Active CN106191480B (zh) 2016-07-05 2016-07-05 一种NiMnGa多晶合金表面改性的方法

Country Status (1)

Country Link
CN (1) CN106191480B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034910B (zh) * 2017-11-28 2019-05-10 东北大学 一种基于应力场训练提高多晶NiMnGa合金磁感生应变的处理方法
CN109371473A (zh) * 2018-11-20 2019-02-22 北京航空航天大学 一种力热耦合消除NiMnGa单晶中孪晶的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665891A (zh) * 2009-08-07 2012-09-12 创新加工技术有限公司 用于处理包括形状记忆材料在内的材料的方法和系统
CN105312761A (zh) * 2015-06-05 2016-02-10 唐远金 一种柔性搅拌头及其搅拌摩擦焊装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665891A (zh) * 2009-08-07 2012-09-12 创新加工技术有限公司 用于处理包括形状记忆材料在内的材料的方法和系统
CN105312761A (zh) * 2015-06-05 2016-02-10 唐远金 一种柔性搅拌头及其搅拌摩擦焊装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
时效Ni-Mn-Ga-Ti合金的相变和力学行为;董桂馥;《中国博士学位论文全文数据库 工程科技I辑》;20100215(第02期);第19页 *

Also Published As

Publication number Publication date
CN106191480A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
Kuz’Min et al. Towards high-performance permanent magnets without rare earths
Edalati et al. Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion
Sinha et al. Phase transformation of metastable cubic γ-phase in U–Mo alloys
Bell et al. Accommodation of tin in tetragonal ZrO2
CN106191480B (zh) 一种NiMnGa多晶合金表面改性的方法
CN106521244A (zh) 一种稀土改性的高Mo的Ni3Al基单晶高温合金及其制备方法
Tereshina et al. Variation of the intersublattice exchange coupling due to hydrogen absorption in Er2Fe14B: A high-field magnetization study
CN106205992A (zh) 高矫顽力及低剩磁温度敏感性的烧结钕铁硼磁体及制备
Yang et al. Abnormal grain growth in annealing cast Cu–Al–Mn–V alloys and their superelasticity
CN107923000A (zh) 铜合金及其制造方法
Jinlong et al. Corrosion resistance mechanism of the passive films formed on as-cast FeCoCrNiMn high-entropy alloy
Gaudin et al. Structural and magnetocaloric properties of the new ternary silicides Gd6M5/3Si3 with M= Co and Ni
Li et al. Effect of deep cryogenic treatment on the microstructure and mechanical properties of AlCrFe2Ni2 High-entropy alloy
Shajari et al. Effect of solution temperature of rejuvenation heat treatment on the stability of γ′ precipitates in Ni-base superalloy IN738LC during long-term heating
Zeng et al. A study of Re and Al diffusion in Ni
Li et al. Electrochemical and phase analysis of Si (IV) on Fe electrode in molten NaCl-NaF-KCl-SiO2 system
Shi et al. Electrochemical behavior of Dy (III) and Dy-Fe alloys preparation by Co-reduction in molten fluoride salts
Hu et al. Effect of P impurity on NiAlΣ5 grain boundary from first-principles study
Zhang et al. First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Rios et al. Directional solidification, microstructure and properties of the Al3Nb–Nb2Al eutectic
Meng et al. Microstructure and high temperature compressive properties of Nb-based alloys fabricated by plasma arc-induction hybrid melting
Kaštil et al. Effect of hydrostatic and uniaxial pressure on structural and magnetic transitions in TbNiAl
Li et al. Transmission electron microscopy investigation of Zr2 (Fe, Ni) particles incorporated in the oxide film formed on a Zirconium alloy
Uhrig et al. Residual oxygen responsible for universal superconducting phase diagram in annealed FeSe1− xTex
Sadrnezhaad et al. Effect of microstructure on rolling behavior of NiTi memory alloy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Dong Guibi

Inventor after: Li Chaoran

Inventor before: Dong Guibi

Inventor before: Li Haoran

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221018

Address after: No. 8, 3rd Road, Bonded Port Area, Dalian Free Trade Zone, Liaoning 116600

Patentee after: Dalian Yushi Technology Co.,Ltd.

Address before: 116622 No. 10, Xuefu Avenue, Dalian economic and Technological Development Zone, Liaoning

Patentee before: DALIAN University

TR01 Transfer of patent right