CN106188829A - A kind of polypropylene antistatic thin film of carbon nano-tube modification - Google Patents

A kind of polypropylene antistatic thin film of carbon nano-tube modification Download PDF

Info

Publication number
CN106188829A
CN106188829A CN201610528349.1A CN201610528349A CN106188829A CN 106188829 A CN106188829 A CN 106188829A CN 201610528349 A CN201610528349 A CN 201610528349A CN 106188829 A CN106188829 A CN 106188829A
Authority
CN
China
Prior art keywords
thin film
carbon nano
tube modification
dispersant
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610528349.1A
Other languages
Chinese (zh)
Inventor
甄万清
王鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Gaozhenggao Polymer Material Co Ltd
Original Assignee
Jiaxing Gaozhenggao Polymer Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Gaozhenggao Polymer Material Co Ltd filed Critical Jiaxing Gaozhenggao Polymer Material Co Ltd
Priority to CN201610528349.1A priority Critical patent/CN106188829A/en
Publication of CN106188829A publication Critical patent/CN106188829A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Abstract

The invention discloses the polypropylene antistatic thin film of a kind of carbon nano-tube modification, the polypropylene antistatic thin film of described carbon nano-tube modification prepares by the following method: CNT is carried out high-speed stirred, dispersant is dissolved in liquid in the carbon nanotube dust being sprayed in stirring by the way of spraying simultaneously, carbon nano tube surface is activated, the Activated Carbon Nanotubes obtained adds to PP material matrix as conductive filler, thus prepare the PP/ carbon nanotube conducting master batch that electric conductivity is good, then by PP/ carbon nanotube conducting master batch and PP matrix resin and thermal oxidation stabilizer, flow ability modifying agent, the auxiliary agents such as antifriction liniment mix, by blowing, curtain coating or stretch processes prepare polypropylene antistatic thin film.Polypropylene antistatic Thin film conductive performance prepared by the present invention is good, and antistatic persistency is strong, and service life is long.

Description

A kind of polypropylene antistatic thin film of carbon nano-tube modification
One, technical field
The present invention relates to the polypropylene antistatic thin film of a kind of carbon nano-tube modification.
Two, background technology
Polypropylene (PP) is as one of five big general-purpose plastics, its abundant raw material source, low price, easily processed into type, Mechanical property, heat resistance, high comprehensive performance, and nontoxic, be easily recycled, therefore its thin film and film article are in a lot of fields All it is used widely.Because polypropylene molecule is nonpolar, electrical insulating property is the highest, and its surface resistivity is 1016~1017 Ω, specific insulation 1016~1018Ω·cm.So, comparatively speaking, polypropylene is than being easier to produce in macromolecule polymer material Raw static charge accumulation.And once creating accumulation of static electricity, its harm should not be underestimated.This can cause at polypropylene film raw Produce or in the course of processing, because the reasons such as friction make electrostatic on film strip be difficult to be disappeared by conduction, to the production of thin film, add Work, application bring problem.
First Anti-static PP thin film is applied in fields such as powder packaging, packaging for foodstuff, candy wrappings, because quiet The reason that electrodeposition is poly-, can cause the dust in PP thin film son's wife's air or other booties, not only have influence on the attractive in appearance of film surface, And Electrostatic Absorption the most also can occur, impact is normal to be used.In recent years, Anti-static PP thin film and goods you at machine Field such as electricity product, instrument and meter parts, electronic devices and components, large scale integrated circuit, wiring board etc. develops rapidly, demand and making Consumption increases sharply.Therefore, the most more need the eliminostatic on polypropylene film surface by corresponding method, with satisfied production The demand of life.
PP antistatic film mainly includes applying antistatic additive to prepare PP antistatic film, use conductivity type filler to produce PP Antistatic plastic film, employing coating material production PP antistatic film etc..
Wherein, conductivity type filler is used to be possible not only to produce PP antistatic plastic thin film, and due to its antistatic behaviour base In the electric conductivity of filler, persistency is good compared with surfactant type PP antistatic film, and antistatic behaviour is by the shadow of ambient humidity Ring little.
In numerous conductivity type fillers, CNT has good electric conductivity, has again bigger draw ratio simultaneously, because of And it is well suited for making conductive filler, relative to other metallic particles and graphite granule, its little consumption just can form conductive net, And its density is more much smaller than metallic particles, it is difficult to the coagulation because of the effect of gravity.These characteristics utilizing CNT are made Join in plastics for conducting medium, the electric conductivity of plastics can be produced strong impact.At present, CNT is at PP antistatic material Applied research in material mainly by changing structure and the content of CNT, improves CNT dispersibility in PP, And CNT is carried out surface process and equalize electric conductivity and other properties of PP anti-static material.
Three, summary of the invention
The invention provides the polypropylene antistatic thin film of a kind of carbon nano-tube modification, the preprocessed modification of CNT After, add to PP material matrix as conductive filler, thus it is female to prepare the good PP/ carbon nanotube conducting of electric conductivity Grain, then utilizes PP/ carbon nanotube conducting master batch to prepare polypropylene antistatic thin film.
The technical solution used in the present invention is:
A kind of polypropylene antistatic thin film of carbon nano-tube modification, the polypropylene antistatic thin film of described carbon nano-tube modification Prepare by the following method:
(1) dispersant A is dissolved in solvent, obtains dispersant solution, then by dispersant solution by high-pressure spraying method Spray in the CNT of high-speed stirred, after high-speed stirred mixing, prepare Activated Carbon Nanotubes;
(2) Activated Carbon Nanotubes and PP polymeric matrix material A stirring and evenly mixing, then mix with auxiliary agent A, squeezes through twin screw Go out machine to melt extrude pelletize and prepare PP/ carbon nanotube conducting master batch;
Described PP polymeric matrix material A, Activated Carbon Nanotubes, the mass fraction of auxiliary agent A be 70~95 mass parts, 5~ 30 mass parts, 0.1~20 mass parts;It is preferably 70~90 mass parts, 10~30 mass parts, 0.2~20 mass parts;
Described auxiliary agent A is one or more the mixing in dispersant B, coupling agent, antioxidant, lubricant;Preferably Described auxiliary agent A is one or more mixing with dispersant B in coupling agent, antioxidant, lubricant, more preferably auxiliary agent A For one or both in coupling agent, antioxidant and dispersant B, the mixing of lubricant.
Further, in preferred steps (2), the formula of raw material is: PP polymeric matrix material A, Activated Carbon Nanotubes, dispersion Agent B, coupling agent, antioxidant, the mass fraction of lubricant be 70~90 mass parts, 10~30 mass parts, 0.1~10 mass parts, 0.01~5 mass parts, 0.01~2 mass parts, 0.01~10 mass parts, wherein dispersant B, coupling agent, antioxidant, lubricant Total mass fraction is 0.2~20 mass parts.
Further, in preferred steps (2), the formula of raw material is: PP polymeric matrix material A, Activated Carbon Nanotubes, point Powder B, coupling agent, antioxidant, the mass fraction of lubricant be 70~90 mass parts, 10~30 mass parts, 1~8 mass parts, 0.01~3 mass parts, 0.01~2 mass parts, 0.01~3 mass parts.
(3) PP/ carbon nanotube conducting master batch mixes with PP polymeric matrix material B, auxiliary agent B, by blowing, curtain coating or double The polypropylene antistatic thin film of carbon nano-tube modification is prepared to drawing process
Based on described PP polymeric matrix material B, PP/ carbon nanotube conducting master batch and auxiliary agent B, PP/ CNT is led The mass percent of the CNT contained in goddess of lightning's grain is 0.01~10%, and the mass percent of auxiliary agent B is 0.5~15%, Surplus is PP matrix;Described PP matrix includes the PP contained in PP/ carbon nanotube conducting master batch and the PP polymerization being newly added Thing matrix material B.
Further, based on described PP polymeric matrix material B, PP/ carbon nanotube conducting master batch and auxiliary agent B, PP/ carbon is received The mass percent of the CNT contained in mitron conductive agglomerate is 1~10%, the mass percent of auxiliary agent B be 0.5~ 15%, surplus is PP matrix;
Described auxiliary agent B is one or more the mixing in thermal oxidation stabilizer, flow ability modifying agent, antifriction liniment;Excellent Selecting described auxiliary agent B is one or both mixing with flow ability modifying agent in thermal oxidation stabilizer, antifriction liniment.
Further, described auxiliary agent is thermal oxidation stabilizer, flow ability modifying agent, antifriction liniment, the percent mass of described raw material Than being respectively: the CNT 2~8% contained in PP/ carbon nanotube conducting master batch, thermal oxidation stabilizer 0.1~2%, flowing changes Property agent 0.5~10%, antifriction liniment 0.5~3%, surplus is PP.
In described method, dispersant A and dispersant B are for distinguishing the dispersant used in different step, and A, B do not have Chemical sense.
PP polymeric matrix material A and B are for distinguishing the PP polymeric matrix material used in different step, and A, B are not There is chemical sense.
Described dispersant A and dispersant B each stand alone as dodecylbenzene sodium sulfonate, polyvinylpyrrolidone, polyethylene Alcohol, xanthan gum, sodium lauryl sulphate, Triton X-100, sodium carboxymethyl cellulose, Dihexadecylphosphate, Ah Draw primary glue, cetyl trimethylammonium bromide, alkyl phenol ethylene oxide condensation substance emulsifying agent, cetyl trimethyl sodium bromide, One or more mixture in Kynoar.
In described step (1), described solvent is water, DMF, N-Methyl pyrrolidone, n-butyl alcohol, chlorine One or more mixture in imitative, dehydrated alcohol, acetone, petroleum ether, ethyl acetate, butyl acetate;
In described step (1), described CNT, dispersant A, the mass fraction ratio of solvent are 85~95:0.1~5:5 ~10.
Described CNT is one or both the mixture in multi-walled carbon nano-tubes, SWCN, the most Wall carbon nano tube.
Described PP polymeric matrix material A or B each stand alone as particle or pulverulent material, and PP polymer powdery is preferably used Material, mean diameter be 0.5 μm to 5mm, the melt index of preferably PP polymeric matrix material A or B is 2-100g/10min, excellent Select 10-30g/10min, beneficially CNT dispersion in PP matrix.
In described step (2), described coupling agent be in titante coupling agent, silane coupling agent one or both with On mixture;Described titante coupling agent can be isopropyl three (dioctylphyrophosphoric acid acyloxy) titanate esters, isopropyl Three (dioctyl phosphoric acid acyloxy) titanate esters, isopropyl two oleic acid acyloxy (dioctyl phosphoric acid acyloxy) titanate esters, single alcoxyl One or more mixed in base unsaturated fatty acid titanate esters or Di(dioctylpyrophosphato) ethylene titanate Compound;Described silane coupler can use KH550, one or both in KH560, KH570, KH792, DL602, DL171 Above mixture;
Described antioxidant is preferably 1098,168,1010,1076, DLTP, one or more in MB, 164,264 Mixture.
Described lubricant is preferably PE wax, montanin wax, silicone powder, stearic acid, oleic acid, calcium stearate, the double stearic acid of ethylene One or more mixture in amide, erucyl amide.
In described step (2), the processing technique of described double screw extruder is screw speed 100~1000r/min, extrusion Temperature is 180-250 DEG C.
In described step (2), double screw extruder melt extrudes pelletize, and pelletize mode has multiple, and optional water cooling bracing is cut Grain, air-cooled tie rod pelletizing, die face are earnestly, cut under water.The method being well known to those skilled in the art.
In described step (1), described high-pressure spraying method is that dispersant solution passes through the high-pressure spray device shape with spraying Formula sprays into the CNT of high-speed stirred, and described high-pressure spray device can use high-pressure spraying machine, will dispersion by high-pressure hydraulic pump Agent solution becomes spray form to spray in material through high-pressure nozzle.Described high-pressure spraying machine still belongs to the first time for CNT pretreatment. Dispersant solution is atomized by high-pressure spraying method, obtains a large amount of fine droplet after atomization, significantly increases solution and CNT Contact area, beneficially carbon nanotube particulate are coated with by auxiliary agent, strengthen its dispersibility.
In described high-pressure spraying method, spray rate is generally 10~100ml/min;
Atomized particle size is 0.1~1um
In described step (1), the rotating speed of described high-speed stirred is 300~1500 turns/min.
The time of described high-speed stirred mixing is generally 0~1 hour, preferably 5~40 minutes.
In described step (3), thermal oxidation stabilizer is preferably 1098,168,1010,1076, DLTP, in MB, 164,264 One or more mixture.
It is described that to prepare flow ability modifying agent used during thin film be fatty acid, aliphatic amide type and ester lubricant, stone One or more mixing in wax series lubricant agent, metallic soap salt lubricant, low-molecular-weight wax, further, described flowing changes In property agent preferred PE wax, montanin wax, silicone powder, stearic acid, oleic acid, calcium stearate, ethylene bis stearic acid amide, erucyl amide One or more mixture.
Described antifriction liniment is preferably nano inorganic implant or nano plastic micropowder, and described nano inorganic implant is usual For nano-calcium carbonate, nanometer calcium silicates, nano silicon, nanoclay etc..
The present invention carries out high-speed stirred to CNT, to its surface pretreatment, simultaneously by dispersant, surface activity The auxiliary agents such as agent are dissolved in liquid in the carbon nanotube dust being sprayed in stirring by the way of spraying so that CNT table Face activation, simultaneously by the material uniform wet such as dispersant, surfactant, causes to be formed between CNT and repels, and can be same The bulk density of Shi Tigao CNT, to obtain optimal dispersion effect and good processability.
The CNT of this project innovation, after pretreatment modification, adds to PP material matrix as conductive filler In, prepare high efficiency dispersion PP/ carbon nanotube conducting master batch, then according to product properties requirement, by its according to different ratio with The auxiliary agents such as PP matrix resin and thermal oxidation stabilizer, flow ability modifying agent, antifriction liniment mix, by blowing, curtain coating or two-way Drawing process prepares the PP antistatic film of different performance.Compared with traditional PP antistatic film, owing to reaching to lead equally During electrical property, the addition of CNT is well below the addition of other conductive fillers, hence in so that this antistatic film is Maintain original performance of PP matrix resin in big degree, improve antistatic persistency and the service life of thin film.
Polypropylene antistatic thin film prepared by the present invention, outward appearance: uniform color, without stain, corrugationless, surface without projection, Without broken hole, without vestige;Excellent mechanical: hot strength: >=20MPA, elongation at break: >=150%, surface resistivity (Ω): 106~109(content of carbon nanotubes=3wt.%).
Four, detailed description of the invention
With specific embodiment, technical scheme is described further below, but the protection content of the present invention is not It is limited to this.
Embodiment 1~16
According to the form below 1 takes each raw material, is dissolved in solvent by dispersant, obtains dispersant solution, is then led to by dispersant solution Cross high pressure spray process and spray into the CNT (diameter 1~30nm, length 1~100 μm, bulk density 0.02g/mL) of high-speed stirred In, technological parameter is as shown in table 1, after high-speed stirred mixing, prepares Activated Carbon Nanotubes;
Table 1
The performance test results such as table 2 below of the Activated Carbon Nanotubes prepared
Table 2
Described dispersibility experiment detection by the following method: Activated Carbon Nanotubes 10mg embodiment 1~16 prepared is respectively Add 10mL and prepare in the solvent (seeing table 1) used by this Activated Carbon Nanotubes, ultrasonic disperse 30 minutes, obtain suspension, quiet Putting, when occurring substantially being layered, the record time is the holding time, and acquired results refers to table 2.Holding time is the longest, shows that it disperses Property is the best.The most pretreated CNT cannot form stable suspension.
Above-mentioned test result indicate that, after pretreatment, the bulk density of CNT improve about 10 times (untreated The bulk density of CNT is about 0.02g/mL), dispersibility is all significantly increased.
Embodiment 17~32
Activated Carbon Nanotubes prepared by embodiment 1~16 and PP polymer pulverulent material (mean diameter 100 μm~2mm) Stirring and evenly mixing, consumption is shown in Table 3, and then the auxiliary agent with table 4 mixes, and melt extrudes through double screw extruder, stretches, cooling and dicing system Obtain PP/ carbon nanotube conducting master batch;The processing technique of double screw extruder is screw speed 200r/min, and extrusion temperature is 180 ℃。
The content of carbon nanotubes of the PP/ carbon nanotube conducting master batch prepared is as shown in table 5.
The PP/ carbon nanotube conducting master batch of preparation is mixed with PP base material and each analog assistant according to the formula of table 5, through blowing Machine blowing prepares antistatic film, according to " GB/T1410-2006 solid insulating material specific insulation and surface resistivity test Method " surface resistivity of testing film, and detect its physical property, result is as shown in table 6.
Table 3
Table 4
Table 5
Table 6
Embodiment data show, the surface resistivity of antistatic film prepared by conductive agglomerate prepared by the present invention is preferable, In the case of about content of carbon nanotubes 3wt.%, surface resistivity is 106~109About Ω, antistatic property is good.And And excellent mechanical, hot strength: >=20MPA, elongation at break: >=150%.

Claims (10)

1. the polypropylene antistatic thin film of a carbon nano-tube modification, it is characterised in that the polypropylene of described carbon nano-tube modification resists Electrostatic film prepares by the following method:
(1) dispersant A is dissolved in solvent, obtains dispersant solution, then dispersant solution is sprayed into by high-pressure spraying method In the CNT of high-speed stirred, after high-speed stirred mixing, prepare Activated Carbon Nanotubes;
Described CNT, dispersant A, the mass fraction ratio of solvent are 85~95:0.1~5:5~10;
(2) Activated Carbon Nanotubes and PP polymeric matrix material A stirring and evenly mixing, then mix with auxiliary agent A, through double screw extruder Melt extrude pelletize and prepare PP/ carbon nanotube conducting master batch;
Described PP polymeric matrix material A, Activated Carbon Nanotubes, the mass fraction of auxiliary agent A are 70~95 mass parts, 5~30 matter Amount part, 0.1~20 mass parts;
Described auxiliary agent A is one or more the mixing in dispersant B, coupling agent, antioxidant, lubricant;
(3) PP/ carbon nanotube conducting master batch mixes with PP polymeric matrix material B, auxiliary agent B, by blowing, curtain coating or two-way draw Stretching process prepares the polypropylene antistatic thin film of carbon nano-tube modification
Based on described PP polymeric matrix material B, PP/ carbon nanotube conducting master batch and auxiliary agent B, PP/ carbon nanotube conducting is female The mass percent of the CNT contained in Li is 0.01~10%, and the mass percent of auxiliary agent B is 0.5~15%, surplus It is PP matrix;Described PP matrix includes the PP contained in PP/ carbon nanotube conducting master batch and the PP polymer base being newly added Body material B;
Described auxiliary agent B is one or more the mixing in thermal oxidation stabilizer, flow ability modifying agent, antifriction liniment.
2. the polypropylene antistatic thin film of carbon nano-tube modification as claimed in claim 1, it is characterised in that described dispersant A and Dispersant B each stands alone as dodecylbenzene sodium sulfonate, polyvinylpyrrolidone, polyvinyl alcohol, xanthan gum, lauryl sulphate acid Sodium, Triton X-100, sodium carboxymethyl cellulose, Dihexadecylphosphate, arabic gum, cetyl trimethyl bromine Change in ammonium, alkyl phenol ethylene oxide condensation substance emulsifying agent, cetyl trimethyl sodium bromide, Kynoar one or both Above mixture.
3. the polypropylene antistatic thin film of carbon nano-tube modification as claimed in claim 1, it is characterised in that in described step (2) The formula of raw material is: PP polymeric matrix material A, Activated Carbon Nanotubes, dispersant B, coupling agent, antioxidant, the matter of lubricant Amount number be 70~90 mass parts, 10~30 mass parts, 0.1~10 mass parts, 0.01~5 mass parts, 0.01~2 mass parts, 0.01~10 mass parts, wherein dispersant B, coupling agent, antioxidant, total mass fraction of lubricant are 0.2~20 mass parts.
4. the polypropylene antistatic thin film of carbon nano-tube modification as claimed in claim 1, it is characterised in that described step (3) In, described auxiliary agent is thermal oxidation stabilizer, flow ability modifying agent, antifriction liniment, and the mass percent of described raw material is respectively: PP/ carbon The CNT 2~8% contained in nanotube conductive master batch, thermal oxidation stabilizer 0.1~2%, flow ability modifying agent 0.5~10%, Antifriction liniment 0.5~3%, surplus is PP.
5. the polypropylene antistatic thin film of carbon nano-tube modification as claimed in claim 1, it is characterised in that described step (1) In, described solvent is water, DMF, N-Methyl pyrrolidone, n-butyl alcohol, chloroform, dehydrated alcohol, acetone, stone One or more mixture in oil ether, ethyl acetate, butyl acetate.
6. the polypropylene antistatic thin film of carbon nano-tube modification as claimed in claim 1, it is characterised in that described step (2) In, described coupling agent is one or more the mixture in titante coupling agent, silane coupling agent;Described antioxygen Agent is 1098,168,1010,1076, DLTP, one or more mixture in MB, 164,264;Described lubricant is One in PE wax, montanin wax, silicone powder, stearic acid, oleic acid, calcium stearate, ethylene bis stearic acid amide, erucyl amide or two Plant above mixture.
7. the polypropylene antistatic thin film of carbon nano-tube modification as claimed in claim 1, it is characterised in that described step (3) In, described thermal oxidation stabilizer is 1098,168,1010,1076, DLTP, one or more mixing in MB, 164,264 Thing.
8. the polypropylene antistatic thin film of carbon nano-tube modification as claimed in claim 1, it is characterised in that described step (3) In, described flow ability modifying agent is fatty acid, aliphatic amide type and ester lubricant, paraffin class lubricant, metallic soap salt profit One or more mixing in lubrication prescription, low-molecular-weight wax.
9. the polypropylene antistatic thin film of carbon nano-tube modification as claimed in claim 8, it is characterised in that described step (3) In, described flow ability modifying agent be PE wax, montanin wax, silicone powder, stearic acid, oleic acid, calcium stearate, ethylene bis stearic acid amide, One or more mixture in erucyl amide.
10. the polypropylene antistatic thin film of carbon nano-tube modification as claimed in claim 1, it is characterised in that described step (3) In, described antifriction liniment is nano inorganic implant or nano plastic micropowder.
CN201610528349.1A 2016-06-30 2016-06-30 A kind of polypropylene antistatic thin film of carbon nano-tube modification Pending CN106188829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610528349.1A CN106188829A (en) 2016-06-30 2016-06-30 A kind of polypropylene antistatic thin film of carbon nano-tube modification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610528349.1A CN106188829A (en) 2016-06-30 2016-06-30 A kind of polypropylene antistatic thin film of carbon nano-tube modification

Publications (1)

Publication Number Publication Date
CN106188829A true CN106188829A (en) 2016-12-07

Family

ID=57466267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610528349.1A Pending CN106188829A (en) 2016-06-30 2016-06-30 A kind of polypropylene antistatic thin film of carbon nano-tube modification

Country Status (1)

Country Link
CN (1) CN106188829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066455A (en) * 2018-01-23 2019-07-30 合肥杰事杰新材料股份有限公司 A kind of abrasion performance antistatic polypropylene material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230145A (en) * 2003-02-13 2008-07-30 斯蒂茨丁荷兰聚合物学会 Reinforced polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230145A (en) * 2003-02-13 2008-07-30 斯蒂茨丁荷兰聚合物学会 Reinforced polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王琛 主编: "《高分子材料改性技术》", 30 April 2007, 中国纺织出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066455A (en) * 2018-01-23 2019-07-30 合肥杰事杰新材料股份有限公司 A kind of abrasion performance antistatic polypropylene material and preparation method thereof
CN110066455B (en) * 2018-01-23 2022-04-05 合肥杰事杰新材料股份有限公司 Abrasion-resistant antistatic polypropylene material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN106046709A (en) Carbon nanotube modified PET antistatic thin film
CN106084738A (en) A kind of TPU antistatic film of carbon nano-tube modification
CN106084404A (en) The polyethylene antistatic film that a kind of Activated Carbon Nanotubes is modified
CN103992548B (en) Modified low density polyethylene nanocomposite material used for 3D printing, and preparation method thereof
CN106117737A (en) A kind of polyethylene antistatic film of carbon nano-tube modification
CN105504713B (en) A kind of 3D printing is material modified and preparation method thereof with polylactic acid microsphere
CN106046496A (en) Preparation method of activated carbon nanotube modified polyethylene antistatic thin film
CN106832547A (en) Opening slipping agent master batch and preparation method thereof
CN106189178A (en) The preparation method of the TPU antistatic film that a kind of Activated Carbon Nanotubes is modified
WO2009033933A2 (en) Process for the preparation of a conductive polymer composition
CN106046707A (en) PET (polyethylene glycol terephthalate) and carbon nanotube conductive masterbatch
CN106188828A (en) The preparation method of the polypropylene antistatic thin film that a kind of Activated Carbon Nanotubes is modified
CN106167554A (en) A kind of PA/ carbon nanotube conducting master batch
CN106147185A (en) Conductive polycarbonate basal granule material, its preparation method and application containing multidimensional carbon nanomaterial
CN106432899A (en) Activated carbon nanotube modified polypropylene (PP) antistatic film
CN109810448A (en) Conductive resin composition and preparation method thereof
CN106046708A (en) Preparation method of activated carbon nanotube modified PET antistatic thin film
CN106243637A (en) The PET antistatic film that a kind of Activated Carbon Nanotubes is modified
CN106147200A (en) The modified TPU antistatic film of a kind of Activated Carbon Nanotubes
CN106146977A (en) A kind of PE/ carbon nanotube conducting master batch
CN106188827A (en) A kind of PP/ carbon nanotube conducting master batch
CN107446231A (en) A kind of composite polyethylene material being modified jointly by graphene, CNT and fullerene and preparation method thereof
CN106188829A (en) A kind of polypropylene antistatic thin film of carbon nano-tube modification
CN106046752A (en) TPU (thermoplastic polyurethane) and carbon nanotube conductive masterbatch
CN106084680A (en) A kind of preparation method of PET/ carbon nanotube conducting master batch

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207

RJ01 Rejection of invention patent application after publication