CN106188154A - 一种铁杂化材料及其制备方法 - Google Patents

一种铁杂化材料及其制备方法 Download PDF

Info

Publication number
CN106188154A
CN106188154A CN201610595935.8A CN201610595935A CN106188154A CN 106188154 A CN106188154 A CN 106188154A CN 201610595935 A CN201610595935 A CN 201610595935A CN 106188154 A CN106188154 A CN 106188154A
Authority
CN
China
Prior art keywords
ferra
bipyridyl
formed material
dmf
fluorenone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610595935.8A
Other languages
English (en)
Other versions
CN106188154B (zh
Inventor
殷艺暄
李星
赵亚云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Binzhou Kechuang Incubator Co., Ltd
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201610595935.8A priority Critical patent/CN106188154B/zh
Publication of CN106188154A publication Critical patent/CN106188154A/zh
Application granted granted Critical
Publication of CN106188154B publication Critical patent/CN106188154B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • C07F15/025Iron compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2217At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/88Growth and elimination reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4261Heck-type, i.e. RY + C=C, in which R is aryl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4266Sonogashira-type, i.e. RY + HC-CR' triple bonds, in which R=aryl, alkenyl, alkyl and R'=H, alkyl or aryl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Pyridine Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种铁杂化材料及其制备方法,本发明中将一定量的铁盐溶液与芴酮吡啶溶液以及2,2‑联吡啶溶液混合,在一定温度下高压反应,反应结束后冷却至室温,过滤,洗涤,干燥,即获得相应的铁杂化材料,制备过程简单,成本低,适合大量生产;通过控制反应参数,实现对杂化材料形貌的有效调控。制备的铁杂化材料是一种含有铁的功能化材料,性能稳定,可用于催化C‑C键偶联反应,催化效率高,产率可达70%以上。因此该铁杂化材料在催化领域具有广阔的应用前景。

Description

一种铁杂化材料及其制备方法
技术领域
本发明属于有机-无机杂化材料及催化化学领域,具体涉及到一种用于催化碳-碳偶联反应的铁杂化材料及其制备方法。
背景技术
分子中芳基与芳基键的构建是现代有机合成最重要的手段之一。在许多的天然产物(如生物碱),为数众多的具有生物活性的药物分子和农药,以及已商品化的染料中等都含有联芳环结构单元;聚芳烃由于其特殊的物理和电子特性,已被用作有机导体、半导体和液晶材料;此外,具有阻转异构现象的手性联芳环类化合物在对映选择性反应中是一类非常重要的手性配体。
偶联反应是由两个有机化学单位进行某种化学反应而得到一个有机分子的过程。其大体可分为两种类型:自身偶联和交叉偶联反应。后者是指两种不同的片段连接成一个分子,如赫克反应(Heck reaction)和铃木反应(Suzuki reaction)等等。长期以来均相催化剂如Pd(PPh3)4、Pd(OAc)2等在催化偶联反应中取得了令人瞩目的成果。但是,这类催化剂也存在不可忽视的缺点:①多数膦配体对空气和水分敏感,需在惰性气体气氛中才能有效催化反应;②均相催化剂很难从反应混合物中分离,不能回收再利用,提高了成本;③痕量的金属残留会污染产物,特别对要求较高的医药和某些精细化学品而言是致命的缺点。因此,近年来,研究人员在探索新型高效的过渡金属催化剂做出了很多努力。本发明将均相金属有机催化剂引入到孔材料中,以提高所制备的催化剂的分散性以及稳定性,从而扩大其应用范围。
发明内容
本发明所要解决的技术问题是,针对现有技术的不足,提供一种成本低、制备简单、分散性高同时催化效率高的铁杂化材料,简称杂化材料。
本发明为解决上述技术问题所采用的技术方案为:一种能够高效催化C-C偶联反应的铁杂化材料,所述铁杂化材料的制备方法包括以下步骤:
(1)将芴酮吡啶溶于DMF,配制成芴酮吡啶的DMF溶液;
(2)将2,2-联吡啶溶于乙醇,配制成2,2-联吡啶的乙醇溶液;
(3)将铁盐溶于去离子水,配制成铁盐水溶液;
(4)将芴酮吡啶的DMF溶液、2,2-联吡啶的乙醇溶液以及铁盐水溶液混合,形成混合体系,其中芴酮吡啶、2,2-联吡啶与铁离子的物质的量之比为4:2:3~2,在室温下搅拌15~30min,然后将混合体系转移到带有聚四氟乙烯的不锈钢反应釜中120℃反应12~24h,反应结束后冷却至室温,过滤,用去离子水和乙醇洗涤2~3次,干燥,即获得所述铁杂化材料;
所述DMF(全称为N,N-二甲基甲酰胺)为化学纯,所述乙醇为工业乙醇,所述2,2-联吡啶为化学纯;
所述铁盐为氯化铁、硝酸铁、硫酸铁中的一种或几种;
所述芴酮吡啶的名称为2,7-二(4-吡啶基)-9-芴酮,分子式为C23H14N2O;
所述2,2-联吡啶分子式为C10H8N2
优选地,所述铁杂化材料的形貌为薄片状。
优选地,所述铁杂化材料作为高效催化剂,用于催化碳-碳键偶联反应。
进一步的,本发明还提供了所述的一种铁杂化材料的制备方法,所述制备方法包括以下步骤:
(1)将芴酮吡啶溶于DMF,配制成芴酮吡啶的DMF溶液;
(2)将2,2-联吡啶溶于乙醇,配制成2,2-联吡啶的乙醇溶液;
(3)将铁盐溶于去离子水,配制成铁盐水溶液;
(4)将芴酮吡啶的DMF溶液、2,2-联吡啶的乙醇溶液以及铁盐水溶液混合,形成混合体系,其中芴酮吡啶、2,2-联吡啶与铁离子的物质的量之比为4:2:3~2,在室温下搅拌15~30min,然后将混合体系转移到带有聚四氟乙烯的不锈钢反应釜中120℃反应12~24h,反应结束后冷却至室温,过滤,用去离子水和乙醇洗涤2~3次,干燥,即获得所述铁杂化材料;
所述DMF(全称为N,N-二甲基甲酰胺)为化学纯,所述乙醇为工业乙醇,所述2,2-联吡啶为化学纯;
所述铁盐为氯化铁、硝酸铁、硫酸铁中的一种或几种;
所述芴酮吡啶的名称为2,7-二(4-吡啶基)-9-芴酮,分子式为C23H14N2O;
所述2,2-联吡啶分子式为C10H8N2
上述催化剂在催化碳碳偶联反应中应用的具体过程包括以下步骤:将碘代芳烃与硼酸芳烃或苯烯烃或苯炔烃、碳酸钾、乙醇/水混合溶剂或DMF、上述铁杂化材料装入反应器中,在60~100℃温度下反应10~24h,产率高达70~98%。
与现有技术相比,本发明的优点如下:
本发明通过选用价格低廉的铁盐,降低了催化剂成本;铁与具有大共轭体系的芴酮吡啶和2,2-联吡啶配位,激活三价铁离子在碳碳偶联反应中的催化活性;通过高压反应制备铁杂化材料,过程简单,催化活性高,能够高效催化碘代芳烃的交叉偶联反应,产率高达70~98%,使其在催化领域有广阔的应用前景。
附图说明
图1为本发明铁杂化材料的扫描电镜图。
具体实施方式
以下结合实施例对本发明作进一步详细描述。
实施例1
铁杂化材料的制备:将1.0mmol的芴酮吡啶溶于2mL的N,N-二甲基甲酰胺(DMF),配制成溶液;将0.5mmol的2,2-联吡啶溶于2mL乙醇,配制成溶液;将0.75mmol的FeCl3溶于10mL的去离子水中,配制成铁盐水溶液;将芴酮吡啶的DMF溶液、2,2-联吡啶的乙醇溶液以及铁盐水溶液混合,形成混合体系,在室温下搅拌30min,然后将混合体系转移到带有聚四氟乙烯的不锈钢反应釜中120℃反应24h,反应结束后冷却至室温,过滤,用去离子水和乙醇洗涤3次,干燥,即获得所述铁杂化材料。用扫描电镜观察所述铁杂化材料的形貌,如图1所示。
催化应用实验:称取0.218g对碘甲苯、0.146g苯硼酸、0.415g碳酸钾装入反应器中;然后量取4mL乙醇、3mL水加入上述反应器中,称取0.04g上述铁杂化材料作为催化剂加入到上述反应器中,在90℃温度下回流反应24h,经色谱分析所得产物的产率为98%。反应方程式如下:
实施例2
铁杂化材料的制备:将1.0mmol的芴酮吡啶溶于2mL的N,N-二甲基甲酰胺(DMF),配制成溶液;将0.5mmol的2,2-联吡啶溶于2mL乙醇,配制成溶液;将0.5mmol的FeCl3溶于10mL的去离子水中,配制成铁盐水溶液;将芴酮吡啶的DMF溶液、2,2-联吡啶的乙醇溶液以及铁盐水溶液混合,形成混合体系,在室温下搅拌15min,然后将混合体系转移到带有聚四氟乙烯的不锈钢反应釜中120℃反应12h,反应结束后冷却至室温,过滤,用去离子水和乙醇洗涤2次,干燥,即获得所述铁杂化材料。用扫描电镜观察所述铁杂化材料的形貌。
催化应用实验:称取0.248g对碘苯乙醚、0.125g苯乙烯、0.415g碳酸钾装入反应器中;然后量取7mL DMF加入上述反应器中,称取0.04g上述铁杂化材料作为催化剂加入到上述反应器中,在100℃温度下回流反应10h,经色谱分析所得产物的产率为85%。反应方程式如下:
实施例3
铁杂化材料的制备:将0.5mmol的芴酮吡啶溶于2mL的N,N-二甲基甲酰胺(DMF),配制成溶液;将0.25mmol的2,2-联吡啶溶于2mL乙醇,配制成溶液;将0.30mmol的FeCl3溶于10mL的去离子水中,配制成铁盐水溶液;将芴酮吡啶的DMF溶液、2,2-联吡啶的乙醇溶液以及铁盐水溶液混合,形成混合体系,在室温下搅拌25min,然后将混合体系转移到带有聚四氟乙烯的不锈钢反应釜中120℃反应24h,反应结束后冷却至室温,过滤,用去离子水和乙醇洗涤2次,干燥,即获得所述铁杂化材料。用扫描电镜观察所述铁杂化材料的形貌。
催化应用实验:称取0.204g碘苯、0.123g苯乙炔、0.415g碳酸钾装入反应器中;然后量取4mL乙醇、3mL水加入上述反应器中,称取0.04g上述铁杂化材料作为催化剂加入到上述反应器中,在60℃温度下回流反应16h,经色谱分析所得产物的产率为86%。反应方程式如下:
实施例4
铁杂化材料的制备:将0.6mmol的芴酮吡啶溶于2mL的N,N-二甲基甲酰胺(DMF),配制成溶液;将0.3mmol的2,2-联吡啶溶于2mL乙醇,配制成溶液;将0.3mmol的FeCl3溶于10mL的去离子水中,配制成铁盐水溶液;将芴酮吡啶的DMF溶液、2,2-联吡啶的乙醇溶液以及铁盐水溶液混合,形成混合体系,在室温下搅拌20min,然后将混合体系转移到带有聚四氟乙烯的不锈钢反应釜中120℃反应20h,反应结束后冷却至室温,过滤,用去离子水和乙醇洗涤2次,干燥,即获得所述铁杂化材料。用扫描电镜观察所述铁杂化材料的形貌。
催化应用实验:称取0.187g对溴苯甲醚、0.200g对硝基苯硼酸、0.415g碳酸钾装入反应器中;然后量取4mL乙醇、3mL水加入上述反应器中,称取0.04g上述的铁杂化材料作为催化剂加入到上述反应器中,在80℃温度下回流反应20h,经色谱分析所得产物的产率为70%。反应方程式如下:

Claims (4)

1.一种铁杂化材料,其特征在于,所述铁杂化材料的制备方法包括以下步骤:
(1)将芴酮吡啶溶于DMF,配制成芴酮吡啶的DMF溶液;
(2)将2,2-联吡啶溶于乙醇,配制成2,2-联吡啶的乙醇溶液;
(3)将铁盐溶于去离子水,配制成铁盐水溶液;
(4)将芴酮吡啶的DMF溶液、2,2-联吡啶的乙醇溶液以及铁盐水溶液混合,形成混合体系,其中芴酮吡啶、2,2-联吡啶与铁离子的物质的量之比为4:2:3~2,在室温下搅拌15~30min,然后将混合体系转移到带有聚四氟乙烯的不锈钢反应釜中120℃反应12~24h,反应结束后冷却至室温,过滤,用去离子水和乙醇洗涤2~3次,干燥,即获得所述铁杂化材料;
所述DMF(全称为N,N-二甲基甲酰胺)为化学纯,所述乙醇为工业乙醇,所述2,2-联吡啶为化学纯;
所述铁盐为氯化铁、硝酸铁、硫酸铁中的一种或几种;
所述芴酮吡啶的名称为2,7-二(4-吡啶基)-9-芴酮,分子式为C23H14N2O;
所述2,2-联吡啶分子式为C10H8N2
2.根据权利要求1所述的一种铁杂化材料,其特征在于所述铁杂化材料的形貌为薄片状。
3.根据权利要求2所述的一种铁杂化材料,其特征在于,所述铁杂化材料作为高效催化剂,用于催化碳-碳键偶联反应。
4.一种如权利要求1所述的一种铁杂化材料的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)将芴酮吡啶溶于DMF,配制成芴酮吡啶的DMF溶液;
(2)将2,2-联吡啶溶于乙醇,配制成2,2-联吡啶的乙醇溶液;
(3)将铁盐溶于去离子水,配制成铁盐水溶液;
(4)将芴酮吡啶的DMF溶液、2,2-联吡啶的乙醇溶液以及铁盐水溶液混合,形成混合体系,其中芴酮吡啶、2,2-联吡啶与铁离子的物质的量之比为4:2:3~2,在室温下搅拌15~30min,然后将混合体系转移到带有聚四氟乙烯的不锈钢反应釜中120℃反应12~24h,反应结束后冷却至室温,过滤,用去离子水和乙醇洗涤2~3次,干燥,即获得所述铁杂化材料;
所述DMF(全称为N,N-二甲基甲酰胺)为化学纯,所述乙醇为工业乙醇,所述2,2-联吡啶为化学纯;
所述铁盐为氯化铁、硝酸铁、硫酸铁中的一种或几种;
所述芴酮吡啶的名称为2,7-二(4-吡啶基)-9-芴酮,分子式为C23H14N2O;
所述2,2-联吡啶分子式为C10H8N2
CN201610595935.8A 2016-07-26 2016-07-26 一种铁杂化材料及其制备方法 Active CN106188154B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610595935.8A CN106188154B (zh) 2016-07-26 2016-07-26 一种铁杂化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610595935.8A CN106188154B (zh) 2016-07-26 2016-07-26 一种铁杂化材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106188154A true CN106188154A (zh) 2016-12-07
CN106188154B CN106188154B (zh) 2018-12-11

Family

ID=57496296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610595935.8A Active CN106188154B (zh) 2016-07-26 2016-07-26 一种铁杂化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106188154B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072896A1 (en) * 2006-12-13 2008-06-19 Korea Research Institute Of Chemical Technology A porous organic-inorganic hybrid materials and an absorbent comprising the same
CN104628628A (zh) * 2015-02-05 2015-05-20 宁波大学 一种芴吡啶镍纳米颗粒及其制备方法
CN105777620A (zh) * 2016-04-29 2016-07-20 宁波大学 一种芴酮吡啶绿色荧光材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072896A1 (en) * 2006-12-13 2008-06-19 Korea Research Institute Of Chemical Technology A porous organic-inorganic hybrid materials and an absorbent comprising the same
CN104628628A (zh) * 2015-02-05 2015-05-20 宁波大学 一种芴吡啶镍纳米颗粒及其制备方法
CN105777620A (zh) * 2016-04-29 2016-07-20 宁波大学 一种芴酮吡啶绿色荧光材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. LEZHNINA 等: ""Luminescent Hybrid Material Based on a Clay Mineral"", 《CHEM. MATER.》 *

Also Published As

Publication number Publication date
CN106188154B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
Dhakshinamoorthy et al. Formation of C–C and C–heteroatom bonds by C–H activation by metal organic frameworks as catalysts or supports
Hong et al. Palladium nanoparticles on assorted nanostructured supports: applications for Suzuki, Heck, and Sonogashira cross-coupling reactions
Chen et al. Anhydride post-synthetic modification in a hierarchical metal–organic framework
Shang et al. Graphene oxide supported N-heterocyclic carbene-palladium as a novel catalyst for the Suzuki–Miyaura reaction
Bai et al. Two-dimensional MOF-derived nanoporous Cu/Cu2O networks as catalytic membrane reactor for the continuous reduction of p-nitrophenol
Zhang et al. Microwave-assisted aqueous carbon–carbon cross-coupling reactions of aryl chlorides catalysed by reduced graphene oxide supported palladium nanoparticles
Li et al. Rationally designed metal cocatalyst for selective photosynthesis of bibenzyls via dehalogenative C–C homocoupling
CN103949286A (zh) 一种用于选择性加氢反应的MOFs@贵金属@MOFs催化剂、制备方法及其用途
Cao et al. Palladium nanocrystals stabilized by cucurbit [6] uril as efficient heterogeneous catalyst for direct C–H functionalization of polyfluoroarenes
Ye et al. A highly efficient and recyclable Pd (II) metallogel catalyst: A new scaffold for Suzuki-Miyaura coupling
Mohr et al. Heterogenization of a Molecular Ni Catalyst within a Porous Macroligand for the Direct C–H Arylation of Heteroarenes
Yang et al. Microwave-assisted air epoxidation of mixed biolefins over a spherical bimetal ZnCo-MOF catalyst
Rao et al. Influence of pendent alkyl chains on Heck and Sonogashira C–C coupling catalyzed with palladium (II) complexes of selenated Schiff bases having liquid crystalline properties
Saha et al. Surface enriched palladium on palladium-copper bimetallic nanoparticles as catalyst for polycyclic triazoles synthesis
Wen et al. A Triptycene‐Based Microporous Organic Polymer Bearing Tridentate Ligands and Its Application in Suzuki–Miyaura Cross‐Coupling Reaction
Dong et al. Dual-Metal N-Heterocyclic Carbene Complex (M= Au and Pd)-Functionalized UiO-67 MOF for Alkyne Hydration–Suzuki Coupling Tandem Reaction
Dabiri et al. Pd nanoparticles supported on cubic shaped ZIF-based materials and their catalytic activates in organic reactions
Kiani et al. Pd nanoparticles catalyst supported on TMU-16-NH2 metal-organic framework for Sonogashira cross-coupling reaction
Wu et al. Metal–organic framework surface functionalization enhancing the activity and stability of palladium nanoparticles for carbon–halogen bond activation
Kiani et al. Versatile and an efficient Sonogashira coupling reaction catalyzed with modified Pd-functionalized TMU-16 as a novel and reusable nanocatalyst
Ren et al. Fabrication and catalytic properties of “cage like” aryl imine Pd (II)/Cu (II)-bimetallic catalytic monolayer supported on graphene oxide for Suzuki coupling reaction
Tian et al. A highly crosslinked, mesoporous poly (ionic liquid) containing salen–Pd for efficient, eco-friendly Suzuki–Miyaura coupling reactions
Yadav et al. Bottom-up de novo synthesis of porous organic polymers with enone functionalities as supports for Pd and Cu nanoparticles for catalytic tandem synthesis
Manna et al. Fixing CO2 under Atmospheric Conditions and Dual Functional Heterogeneous Catalysis Employing Cu MOFs: Polymorphism, Single-Crystal-to-Single-Crystal (SCSC) Transformation and Magnetic Studies
Huang et al. Multi-active sites in situ formed on Schiff-base Pd (II)/Cu (II) self-assembly monolayer supported on graphene oxide: a simple protocol to enhance the catalytic activity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201202

Address after: Room 1,020, Nanxun Science and Technology Pioneering Park, No. 666 Chaoyang Road, Nanxun District, Huzhou City, Zhejiang Province, 313000

Patentee after: Huzhou You Yan Intellectual Property Service Co.,Ltd.

Address before: 315211 Zhejiang Province, Ningbo Jiangbei District Fenghua Road No. 818

Patentee before: Ningbo University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211116

Address after: 256600 No. 1, Gaosi Road, high tech Industrial Development Zone, Binzhou City, Shandong Province

Patentee after: Binzhou Kechuang Incubator Co., Ltd

Address before: 313000 room 1020, first floor, Nanxun science and technology entrepreneurship Park, No. 666, Chaoyang Road, Nanxun Town, Nanxun District, Huzhou City, Zhejiang Province

Patentee before: Huzhou Youyan Intellectual Property Service Co., Ltd