CN106179423A - 一种Ag@AgX/ZnO功能涂层及其制备方法 - Google Patents

一种Ag@AgX/ZnO功能涂层及其制备方法 Download PDF

Info

Publication number
CN106179423A
CN106179423A CN201610512723.9A CN201610512723A CN106179423A CN 106179423 A CN106179423 A CN 106179423A CN 201610512723 A CN201610512723 A CN 201610512723A CN 106179423 A CN106179423 A CN 106179423A
Authority
CN
China
Prior art keywords
zno
functional coating
agx
coating
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610512723.9A
Other languages
English (en)
Inventor
王田禾
俞佳杰
刘思雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610512723.9A priority Critical patent/CN106179423A/zh
Publication of CN106179423A publication Critical patent/CN106179423A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Ag@AgX/ZnO功能涂层及其制备方法,采用锌盐为前驱体,乙醇为溶剂,乙醇胺为结构导向剂,通过旋涂工艺和高温热处理等技术在基底上制备水平生长的ZnO亚微米线功能表面,然后通过依次反复浸泡在卤盐和AgNO3溶液中,得到AgX/ZnO亚微米线功能表面,最后将其光照一段时间,便得到水平生长的Ag@AgX/ZnO亚微米线功能表面。本发明制备方法简单,所制备的Ag@AgX/ZnO功能涂层可以克服现阶段粉末催化剂难以分离的缺点,可重复使用,且成本低,在光催化,抗菌,表面增强拉曼光谱等领域有着重要应用。

Description

一种Ag@AgX/ZnO功能涂层及其制备方法
技术领域
本发明涉及一种Ag@AgX(X=Cl,Br,I)/ZnO功能涂层及其制备方法,属于功能涂层制备领域。
背景技术
氧化锌(ZnO)是一种具有纤锌矿结构的宽禁代半导体材料,具有多种优异的物理性能并广泛应用于橡胶,陶瓷,涂料,光电器件领域。ZnO亚微米线由于其优异的光电性能,引起了国内外研究者的广泛兴趣。竖直生长的ZnO亚微米线已通过如光刻,电子束刻蚀和水热法等多种制备手段制备。但作为ZnO亚微米线家族的一员,水平生长的ZnO亚微米线的研究则相对较少,基于二维平面(玻璃,石英,硅片,不锈钢等)的水平生长的ZnO亚微米的研究则少之又少了。
ZnO作为光催化材料只能利用短波长范围内的紫外光。在实际应用中,可见光的吸收则对新一代的催化剂提出了更高的要求,因为太阳光中约有45%的可见光,而紫外光约则只占5%。因此,从节能的角度,有效利用可见光的吸收可以大大降低实际成本。
近年来,Ag@AgX(X=Cl,Br,I)作为一种表面等离子型光催化剂,对可见光具有响应,由于其优异的光催化性能成为催化领域的研究热点,并被运用到废水中染料分子的光催化降解领域。
2010年,Y. Xu等(Journal of Alloys and Compounds 509 (2011) 3286–3292)在水热条件下通过两步法制备AgCl@Ag/ZnO粉末催化剂,所负载的AgCl@Ag的尺寸在1微米到100纳米之间。负载了AgCl@Ag后的ZnO的光催化效率要优于纯ZnO,该催化剂的催化效率在5次重复使用之后仍然能在40min只能降解40%。
2011年,G. Begum等(Chem. Eur. J. 2012, 18, 6847 – 6853)用一步法通过在聚胺介质中生物激励手段合成AgCl@Ag/ZnO,聚胺作为制备ZnO的所需的矿化作用,并未Ag离子的还原提供电子。在可见光照射下,该催化剂对罗丹明和甲基橙的光催化降解速率分别为0.1204min-1和0.08159min-1
然而上述传统的粉末催化剂由于技术的限制,往往需要花费大量的时间和能源将粉末状催化剂从催化相中分离出来,且分离过程中产生的催化剂损耗限制了其有效重复使用,提高了生产成本。
发明内容
本发明的目的在于提供一种Ag@AgX(X=Cl,Br,I)/ZnO功能涂层及其制备方法。
实现本发明目的的技术解决方案是:一种Ag@AgX(X=Cl,Br,I)/ZnO功能涂层及其制备方法,采用锌盐为前驱体,乙醇为溶剂,乙醇胺为结构导向剂,通过旋涂工艺和高温热处理等技术在基底上制备水平生长的ZnO亚微米线功能表面,然后通过依次反复浸泡在卤盐和AgNO3溶液中,得到AgX/ZnO亚微米线功能表面,最后将其光照一段时间,便得到一种水平生长的Ag@AgX/ZnO亚微米线功能涂层。具体包括如下步骤:
步骤a) ,将锌盐加入到溶剂乙醇中,然后将乙醇胺逐滴滴入并不断搅拌,直至锌盐完全溶解;
步骤b) ,将步骤a)制得的溶胶涂覆在洁净的基底表面,用匀胶机以500~1000rev/min的转速旋涂一段时间,然后在常温下干燥,再于300-400℃下保温0.5~1 h,于400 ~600℃下保温4~6 h后自然冷却;
步骤 c) ,将步骤b) 中涂覆ZnO的基底依次浸泡在浓度相同的卤盐溶液和AgNO3溶液中10 min~30 min,重复该步骤3次以上,然后将其光照5 min~30 min,即得到所述的Ag@AgX/ZnO功能涂层。
进一步的,步骤a)中,锌盐与乙醇的比例为0.1 ~ 1mol/L, 锌盐与乙醇胺的摩尔比为0.5 ~ 2。
进一步的,步骤b)中,旋涂时间为15s以上。
进一步的,步骤c)中,卤盐为MX,其中,X= Cl、Br、I,M=K、Ca、Na、NH4等中的任意一种。
进一步的,步骤c)中,卤盐溶液和AgNO3溶液的浓度为0.001M~0.1M。
进一步的,步骤c)中,光源为汞灯或氙灯。
本发明与现有技术相比,其显著优点是:(1) Ag@AgX/ZnO功能涂层可以克服现阶段粉末催化剂难以分离的缺点,可重复使用,降低成本。 (2) Ag@AgX/ZnO功能涂层制备采用软化学法,其制备方法简单,无需昂贵的制备设备。
下面结合附图对本发明作进一步详细描述。
附图说明
图1为所制备的水平生长的ZnO亚微米线表面的不同放大倍数的(a)500倍,(b)2000倍,(c)5000倍,(d)10000倍SEM图。
图2为所制备的水平生长的ZnO亚微米线表面的AFM图(a)二维平面图,(b)三维立体图,(c)高度分布图。
图3为所制备的水平生长的Ag@AgBr/ZnO亚微米线表面的不同放大倍数的(a)1300倍,(b)2500倍,(c)5000倍,(d)10000倍SEM图。
图4为所制备的水平生长的Ag@AgCl /ZnO亚微米线表面的(a)XPS全谱,(b)Zn(2p),(c)O (1s),(d)Ag (3d),(e)Cl(2p),(f)C(1s)的高分辨图
图5所制备的水平生长的Ag@AgCl/ZnO亚微米线表面的紫外光谱图。
具体实施方式
下面的实施例可以使本专业技术人员更全面地理解本发明
实施例1:
将0.2 g加入到10 ml溶剂乙醇中,然后将0.25 ml乙醇胺逐滴滴入并不断搅拌,直至醋酸锌完全溶解。将所制备的溶胶涂覆在洁净的硅片表面,用匀胶机以1000 rev/min的转速旋涂15s,然后在常温下干燥,然后置于马弗炉在350 ℃下保温0.5 h,然后在600℃保温6 h后自然冷却。
所制备的水平生长的ZnO亚微米线表面的不同放大倍数的SEM图见图1,所制备的水平生长的ZnO亚微米线表面的AFM图见图2。
实施例2:
将0.1 g加入到10 ml溶剂乙醇中,然后将0.5 ml乙醇胺逐滴滴入并不断搅拌,直至醋酸锌完全溶解。将所制备的溶胶涂覆在洁净的石英片表面,用匀胶机以700 rev/min的转速旋涂30s,然后在常温下干燥,然后置于马弗炉在350 ℃下保温0.5 h,然后在600℃保温5 h后自然冷却。将所制备的ZnO亚微米线功能表面依次浸泡在浓度均为0.01M的KCl和AgNO3溶液中15 min,重复该步骤3次,然后将其在氙灯下光照15 min,即得到Ag@AgCl/ZnO亚微米线功能表面。
所制备的Ag@AgCl/ZnO功能表面的不同倍数下的SEM图见图3。
实施例3:
将0.4 g加入到10 ml溶剂乙醇中,然后将1 ml乙醇胺逐滴滴入并不断搅拌,直至醋酸锌完全溶解。将所制备的溶胶涂覆在洁净的玻璃片表面,用匀胶机以1000 rev/min的转速旋涂15 s,然后在常温下干燥,然后置于马弗炉在350 ℃下保温0.5 h,然后在600℃保温6h后自然冷却。将所制备的ZnO亚微米线功能表面依次浸泡在浓度均为0.001M的NaCl和AgNO3溶液中10 min,重复该步骤3次,然后将其在汞灯下光照5 min,即得到AgCl@Ag/ZnO亚微米线功能表面。
所制备的Ag@AgCl/ZnO功能表面的XPS图见图4。
实施例4:
将0.2 g加入到10 ml溶剂乙醇中,然后将0.5 ml乙醇胺逐滴滴入并不断搅拌,直至醋酸锌完全溶解。将所制备的溶胶涂覆在洁净的玻璃片表面,用匀胶机以1000 rev/min的转速旋涂20s,然后在常温下干燥,然后置于马弗炉在350 ℃下保温0.5 h,然后在600℃保温6h后自然冷却。将所制备的ZnO亚微米线功能表面依次浸泡在浓度均为0.01M的NaBr和AgNO3溶液中15 min,重复该步骤3次,然后将其在氙灯下光照30 min,即得到Ag@AgBr/ZnO亚微米线功能表面。
所制备的Ag@AgBr/ZnO功能表面的紫外光谱图见图5。

Claims (7)

1.一种Ag@AgX/ZnO功能涂层,其特征在于,由如下步骤制备:
步骤a) ,将锌盐加入到溶剂乙醇中,然后将乙醇胺逐滴滴入并不断搅拌,直至锌盐完全溶解;
步骤b) ,将步骤a)制得的溶胶涂覆在洁净的基底表面,用匀胶机以500~1000rev/min的转速旋涂一段时间,然后在常温下干燥,再于300-400℃下保温0.5~1 h,于400 ~600℃下保温4~6 h后自然冷却;
步骤 c) ,将步骤b) 中涂覆ZnO的基底依次浸泡在浓度相同的卤盐溶液和AgNO3溶液中10 min~30 min,重复该步骤3次以上,然后将其光照5 min~30 min,即得到所述的Ag@AgX/ZnO功能涂层。
2.如权利要求1所述的功能涂层,其特征在于,步骤a)中,锌盐与乙醇的比例为0.1 ~1mol/L, 锌盐与乙醇胺的摩尔比为0.5 ~ 2。
3.如权利要求1所述的功能涂层,其特征在于,步骤b)中,旋涂时间为15s以上。
4. 如权利要求1所述的功能涂层,其特征在于,步骤c)中,卤盐为MX,其中,X= Cl、Br、I,M=K、Ca、Na、NH4
5.如权利要求1所述的功能涂层,其特征在于,步骤c)中,卤盐溶液和AgNO3溶液的浓度为0.001M~0.1M。
6.如权利要求1所述的功能涂层,其特征在于,步骤c)中,光源为汞灯或氙灯。
7.如权利要求1-6任一所述的功能涂层的制备方法。
CN201610512723.9A 2016-07-01 2016-07-01 一种Ag@AgX/ZnO功能涂层及其制备方法 Pending CN106179423A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610512723.9A CN106179423A (zh) 2016-07-01 2016-07-01 一种Ag@AgX/ZnO功能涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610512723.9A CN106179423A (zh) 2016-07-01 2016-07-01 一种Ag@AgX/ZnO功能涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN106179423A true CN106179423A (zh) 2016-12-07

Family

ID=57463582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610512723.9A Pending CN106179423A (zh) 2016-07-01 2016-07-01 一种Ag@AgX/ZnO功能涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN106179423A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108855076A (zh) * 2018-06-05 2018-11-23 山东大学 一种Ag/ZnO复合光催化剂及其制备方法和应用
IT201700112570A1 (it) * 2017-10-06 2019-04-06 Andrea Ferruccio Zoppolato Apparato automatico per la distribuzione di prodotti
CN109647052A (zh) * 2018-12-04 2019-04-19 山西绿建科技有限公司 一种抗菌空调滤芯材料的制备方法
CN110732330A (zh) * 2018-07-20 2020-01-31 南京理工大学 WO3/Ag/AgCl光催化薄膜材料的制备方法
CN112517014A (zh) * 2020-11-11 2021-03-19 中国科学院长春应用化学研究所 一种窄带隙铁电半导体纳米颗粒、其制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054174A (zh) * 2007-04-05 2007-10-17 吉林大学 生物质高比表面积微孔碳材料的制备方法
CN101301609A (zh) * 2008-03-26 2008-11-12 华东师范大学 一种银沉积改性纳米ZnO薄膜的制备方法
CN102532947A (zh) * 2012-01-13 2012-07-04 同济大学 废旧线路板非金属粉的改性方法
CN102895952A (zh) * 2012-09-27 2013-01-30 浙江工业大学 一种选择性吸附金离子的多孔碳材料及其制备方法和应用
CN104707557A (zh) * 2015-02-09 2015-06-17 福建工程学院 一种用废旧线路板非金属粉末制备重金属吸附材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054174A (zh) * 2007-04-05 2007-10-17 吉林大学 生物质高比表面积微孔碳材料的制备方法
CN101301609A (zh) * 2008-03-26 2008-11-12 华东师范大学 一种银沉积改性纳米ZnO薄膜的制备方法
CN102532947A (zh) * 2012-01-13 2012-07-04 同济大学 废旧线路板非金属粉的改性方法
CN102895952A (zh) * 2012-09-27 2013-01-30 浙江工业大学 一种选择性吸附金离子的多孔碳材料及其制备方法和应用
CN104707557A (zh) * 2015-02-09 2015-06-17 福建工程学院 一种用废旧线路板非金属粉末制备重金属吸附材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEIBING LI等: "Ag@AgCl plasmon-induced sensitized ZnO particle for high-efficiency photocatalytic property under visible light", 《APPLIED SURFACE SCIENCE》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700112570A1 (it) * 2017-10-06 2019-04-06 Andrea Ferruccio Zoppolato Apparato automatico per la distribuzione di prodotti
CN108855076A (zh) * 2018-06-05 2018-11-23 山东大学 一种Ag/ZnO复合光催化剂及其制备方法和应用
CN110732330A (zh) * 2018-07-20 2020-01-31 南京理工大学 WO3/Ag/AgCl光催化薄膜材料的制备方法
CN109647052A (zh) * 2018-12-04 2019-04-19 山西绿建科技有限公司 一种抗菌空调滤芯材料的制备方法
CN112517014A (zh) * 2020-11-11 2021-03-19 中国科学院长春应用化学研究所 一种窄带隙铁电半导体纳米颗粒、其制备方法及应用
CN112517014B (zh) * 2020-11-11 2022-02-22 中国科学院长春应用化学研究所 一种窄带隙铁电半导体纳米颗粒、其制备方法及应用

Similar Documents

Publication Publication Date Title
CN106179423A (zh) 一种Ag@AgX/ZnO功能涂层及其制备方法
Li et al. Rational design of yolk–shell nanostructures for photocatalysis
Karatutlu et al. Liquid-phase synthesis of nanoparticles and nanostructured materials
Liu et al. Seed-mediated growth of anatase TiO2 nanocrystals with core–antenna structures for enhanced photocatalytic activity
Ren et al. Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores
Sounart et al. Secondary nucleation and growth of ZnO
Xu et al. Synthesis of Cu2O octadecahedron/TiO2 quantum dot heterojunctions with high visible light photocatalytic activity and high stability
Liang et al. Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance
Ni et al. Shape controllable preparation of PbS crystals by a simple aqueous phase route
Hua et al. Morphological evolution of Cu2O nanocrystals in an acid solution: stability of different crystal planes
Kawano et al. Fabrication of ZnO nanoparticles with various aspect ratios through acidic and basic routes
Thirugnanam Effect of Polymers (PEG and PVP) on Sol‐Gel Synthesis of Microsized Zinc Oxide
Cho et al. Three-dimensional type II ZnO/ZnSe heterostructures and their visible light photocatalytic activities
Orel et al. Cuprous oxide nanowires prepared by an additive-free polyol process
Zhang et al. Titanium dioxide (TiO2) mesocrystals: Synthesis, growth mechanisms and photocatalytic properties
Zhu et al. A general chemical conversion route to synthesize various ZnO-based core/shell structures
Stathatos et al. Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films
Liu et al. One-pot hydrothermal synthesis of ZnSe hollow nanospheres from an ionic liquid precursor
Xia et al. Surface synthesis of zinc oxide nanoparticles on silica spheres: preparation and characterization
CN102891015B (zh) 纳米结构体阵列基板及其制备方法和染料敏化太阳能电池
Chen et al. Hierarchical growth and shape evolution of HgS dendrites
Huang et al. Low temperature synthesis and photocatalytic properties of highly oriented ZnO/TiO2− xNy coupled photocatalysts
Kaur et al. Current status and future challenges in ionic liquids, functionalized ionic liquids and deep eutectic solvent-mediated synthesis of nanostructured TiO 2: a review
Zhang et al. Hierarchical growth of Cu2O double tower-tip-like nanostructures in water/oil microemulsion
Liu et al. Two-step self-assembly of hierarchically-ordered nanostructures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207