CN106169903B - 一种光伏-蓄电池发电系统的虚拟惯性控制方法 - Google Patents

一种光伏-蓄电池发电系统的虚拟惯性控制方法 Download PDF

Info

Publication number
CN106169903B
CN106169903B CN201610836288.5A CN201610836288A CN106169903B CN 106169903 B CN106169903 B CN 106169903B CN 201610836288 A CN201610836288 A CN 201610836288A CN 106169903 B CN106169903 B CN 106169903B
Authority
CN
China
Prior art keywords
accumulator
photovoltaic
energy
electricity generation
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610836288.5A
Other languages
English (en)
Other versions
CN106169903A (zh
Inventor
张祥宇
杨黎
付媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201610836288.5A priority Critical patent/CN106169903B/zh
Publication of CN106169903A publication Critical patent/CN106169903A/zh
Application granted granted Critical
Publication of CN106169903B publication Critical patent/CN106169903B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/20Systems characterised by their energy storage means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/385
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

本发明公开了一种光伏‑蓄电池发电系统的虚拟惯性控制方法。当电网正常运行时,储能系统可以平抑光伏输出功率的波动,光伏并网逆变器维持直流母线电压稳定,实现并网电流控制。当电网发生故障后,由于光伏,储能为静止元件,无旋转动能,接入电网后系统的能量储备降低,将使系统面临新的稳定性问题。本发明通过检测系统频率的变化与蓄电池荷电状态SOC,调节蓄电池的荷电状态变化率与充放电电流的速率,从而短时调节蓄电池储备能量对系统提供惯性支持。

Description

一种光伏-蓄电池发电系统的虚拟惯性控制方法
技术领域
本发明涉及发电系统的虚拟惯性控制方法,尤其是一种光伏-蓄电池发电系统的虚拟惯性控制方法,属于光伏发电方法领域。
背景技术
新能源的大规模开发和利用已成为全球实现能源—经济—环境可持续发展的共同选择。其中,随着光伏与储能方法的成本降低,光伏发电在电力系统中的渗透率不断增加,对电力系统的安全稳定运行将带来新的挑战。光伏通过电力电子变流器接入电网,与传统同步发电机相比,含逆变器接口的电源虽响应速度快但不含机械转子,又因光伏采用最大功率点追踪控制与电网电气解耦,将导致系统陷入缺乏惯性和调频能力的困境。因此如何使光伏发电具备传统发电厂对电网的调节能力,建立“电网友好型”的光伏发电是保证电网稳定运行,实现新能源可持续发展亟待解决的问题。光伏、蓄电池是非旋转静止元件,高渗透率下电网面临的低惯性问题将会比风电更为严峻,但目前关于光伏-蓄电池发电系统的惯性控制方法尚缺乏理论研究。合理定义光储装置的虚拟惯量,拓展惯性的能量来源,利用蓄电池装置的快速充放电进行有功调节,抑制频率突变,获得对于系统频率变化的惯性响应具有重大意义。
发明内容
本发明要解决的方法问题是提供一种光伏-蓄电池发电系统的虚拟惯性控制方法。
本发明采用下述方法方案:
一种光伏-蓄电池发电系统的虚拟惯性控制方法,包括以下步骤:
步骤1:采集光伏-蓄电池发电系统的频率变化量Δf;
步骤2:判断光伏-蓄电池发电系统的频率变化量Δf是否等于0,如果是,转向步骤9,否则,转向步骤3;
步骤3:判断Δf是否大于零,若Δf>0,如果是,转向步骤4,否则,转向步骤6;
步骤4:判断蓄电池荷电状态SOC是否大于90%,如果是,转向步骤5,否则,转向步骤7;
步骤5:蓄电池停止充电,光伏退出最大功率跟踪MPPT模式,转为减载运行;转向步骤9;
步骤6:判断蓄电池荷电状态SOC是否小于10%,如果是,转向步骤8,否则,转向步骤7;
步骤7:蓄电池采用虚拟惯性控制,系统频率变化过程中,蓄电池的能量WB表示为:
式中,uB、iB分别为蓄电池的电压和电流,γsoc_0为蓄电池的起始荷电状态,QN为蓄电池的额定容量;Js为发电机的转动惯量,ωe为发电机的同步电角速度,pn为发电机的极对数;转向步骤9;
步骤8:蓄电池停止放电,光伏仍采用最大功率跟踪MPPT模式;
步骤9:结束。
采用上述方法方案所产生的有益效果在于:
本发明通过检测系统频率的变化与蓄电池荷电状态SOC,调节蓄电池的荷电状态变化率与充放电电流的速率,从而短时调节蓄电池储备能量对系统提供惯性支持。蓄电池属于静止储能元件,无旋转惯性,本发明定义了蓄电池的虚拟转动惯量,建立了频率与能量之间的动态关系,使蓄电池的虚拟惯量灵活可调,为系统提供及时的惯性支持。
附图说明
图1是本发明的流程图;
图2是本发明的光储发电系统的仿真拓扑结构图;
图3是本发明的蓄电池虚拟惯性控制原理图;
图4是本发明的蓄电池惯性分区图;
图5是本发明的光伏单向Boost电路控制图;
图6是本发明的本发明实施例中Case A系统的频率图;
图7是本发明的本发明实施例中Case A的发电机G1电磁功率图;
图8是本发明的本发明实施例中Case A的蓄电池SOC图;
图9是本发明的本发明实施例中Case A的蓄电池功率图;
图10是本发明的本发明实施例中Case B系统的频率图;
图11是本发明的本发明实施例中Case B的发电机G1电磁功率图;
图12是本发明的本发明实施例中Case B的蓄电池SOC图;
图13是本发明的本发明实施例中Case B的蓄电池功率图;
图14是本发明的本发明实施例中Case B的光伏输出功率图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,一种光伏-蓄电池发电系统的虚拟惯性控制方法,包括以下步骤:
步骤1:采集光伏-蓄电池发电系统的频率变化量Δf;
步骤2:判断光伏-蓄电池发电系统的频率变化量Δf是否等于0,如果是,则光伏-蓄电池发电系统正常运行,此时,光伏采用最大功率跟踪MPPT模式,实现光伏能量的最大化利用,蓄电池系统用于平抑光伏输出功率的波动,转向步骤9,否则,转向步骤3;
步骤3:判断光伏-蓄电池发电系统的频率变化量Δf是否大于零,如果是,表明系统频率发生突增,转向步骤4,否则,表明系统频率发生突减,转向步骤6;
步骤4:判断蓄电池荷电状态SOC是否大于90%,如果是,转向步骤5,否则,转向步骤7;
步骤5:蓄电池停止充电,光伏退出最大功率跟踪MPPT模式,转为减载运行;转向步骤9;
步骤6:判断蓄电池荷电状态SOC是否小于10%,如果是,转向步骤8,否则,转向步骤7;
步骤7:蓄电池采用虚拟惯性控制,系统频率变化过程中,蓄电池的能量WB表示为:
式中,uB、iB分别为蓄电池的电压和电流,γsoc_0为蓄电池的起始荷电状态,QN为蓄电池的额定容量;Js为发电机的转动惯量,ωe为发电机的同步电角速度,pn为发电机的极对数;转向步骤9;
步骤8:蓄电池停止放电,光伏仍采用最大功率跟踪MPPT模式;
步骤9:结束。
将光伏储能发电系统连接于图2所示的B2母线处,为简化分析,假定辐照强度为800w/m2。仿真中采用三种方式:①无附加虚拟惯性控制;②附加虚拟惯性控制;③与替换蓄电池为同容量的同步发电机,设置了两种蓄电池情况下的两个案例:(1)Case A:蓄电池处于安全充放电区,系统在10s时负荷突减60kW;(2)Case B:蓄电池处于安全充放电区但接近过充过放警戒区,系统在10s时负荷突减60kW。
系统在10s时发生负荷突减,如图6中的方式一所示,系统频率增大至50.58Hz。当光储系统附加虚拟惯性控制后如图6中的方式二所示,系统频率的上升速率得到明显减缓,频率上升的最高值由50.58Hz下降至50.36Hz,频率幅值的变化减少了37.9%。此时蓄电池快速充电,如图9所示,蓄电池快速吸收同步发电机发出的多余功率,减缓系统频率的变化,为系统提供惯性支持。同时从图7中也可看出,当附加虚拟惯性控制后,由于蓄电池的迅速充电,快速分担了系统中同步发电机承担的不平衡功率。然而频率逐渐稳定后仍未达到50Hz,故从图8和9中也可看出,蓄电池仍在充电,直到系统频率恢复至50Hz。当将蓄电池替换成同容量的发电机后,如图6中的方式三所示,系统的负荷突减时,频率上升的最高值由50.58Hz仅下降至50.557Hz,系统频率的上升速率并未得到明显改善,可见相同容量的蓄电池和发电机相比,蓄电池可短时调节能量,提供比同步发电机更大的虚拟惯量,更好的改善系统的频率。
系统在10s时负荷突减,频率也随之突然增大,未加虚拟惯性控制时,如图10所示,频率最大值升高为50.58Hz。当附加虚拟惯性控制后,如图10所示,系统的频率的上升得到减缓,频率上升的最高值由50.58Hz下降至50.4Hz。由于蓄电池初始荷电状态虽位于安全充放电区但已接近过充警戒区,在附加虚拟惯性控制的过程中,如图12所示,当蓄电池荷电状态达到90%时,蓄电池立即停止工作,故Case B中系统频率的恢复效果相较于Case A稍弱。但如图11和图13所示,附加了虚拟惯性控制后,蓄电池虽作用时间不长,但仍分担了同步发电机的一部分不平衡功率,保证了系统频率的稳定性。然而当蓄电池停止工作后,为保证系统中功率的平衡,如图14所示,此时光伏便退出最大功率跟MPPT模式减载运行。
静止储能元件-蓄电池虚拟惯性的控制原理分析如下:
蓄电池在满充状态下的额定容量为QN,放电过程中电流为iB(t),则t时刻的荷电状态参数γsoc可表示为
Qr表示蓄电池剩余电量。
结合式(1),蓄电池存储的能量WB可表示为
WB=∫uB×iB(t)dt=uBQNγsoc_0 (5)
式中,uB、iB分别为蓄电池的电压和电流,γsoc_0为蓄电池的起始荷电状态,QN为蓄电池的额定容量。
系统频率变化过程中,蓄电池的能量又可表示为
由式(3)可知,在电网频率变化引起的能量交换过程中,系统若能够合理使用蓄电池具备的静止能量将会使其旋转惯性得到新的能量来源,其大小可视为与转动惯量为Jvir_B、极对数为pn的等效同步发电机组具有的动能相同。因此,Jvir_B可定义为蓄电池的虚拟转动惯量。根据式(4),蓄电池的虚拟转动惯量大小将于其自身电压、荷电状态及系统频率等多因素密切相关。
结合式(1),将式(4)进一步展开,蓄电池的虚拟惯量可表示为
式中,γsoc、ωe分别为蓄电池的荷电状态和同步发电机的转速变化量;kB为蓄电池荷电状态变化率与发电机转速变化率的比值。
如图3为蓄电池虚拟惯性的控制原理框图。系统正常运行时,光伏工作在MPPT模式,实现最大化的利用光伏的能量,蓄电池采集光伏发出的波动功率,通过控制蓄电池的工作电流,达到平抑光伏输出功率波动的效果。系统发生有功扰动时,蓄电池采集系统频率的变化量Δf发生变化,当蓄电池采集的系统频率的变化量Δf>0时,系统的频率上升,为了抑制频率的突变,且同时防止蓄电池过度充放电,接着引入蓄电池荷电状态SOC,判断蓄电池是否在正常工作状态。若蓄电池在安全充放电区,即10%<SOC<90%,此时将频率的变化量经过高通滤波环节输出,通过调节蓄电池荷电状态变化率与发电机转速变化率的比值kB的大小,控制蓄电池的工作电流,进而间接的控制了蓄电池的荷电状态γsoc的变化量,定义放电电流为正,使电流的参考值也相应增大,从而加快蓄电池的充放电速度,快速吸收能量,为系统提供惯性支持。反之,若蓄电池位于过充警戒区,即SOC>90%。此时蓄电池充电电流为零,光伏退出最大功率跟踪MPPT模式,通过系统负荷的变化量,调节Boost电路的占空比减载运行。
当系统发生有功扰动,蓄电池采集的系统频率的变化量Δf<0时,系统的频率下降,此时仍先通过检测蓄电池荷电状态SOC的值判断是否工作在安全充放电区。若蓄电池工作在安全充放电区,则引入系统频率的变化量,附加虚拟惯性控制,通过调节蓄电池荷电状态变化率与发电机转速变化率的比值kB的大小,控制蓄电池的放电电流,虚拟出比同步发电机更大的转动惯量,调节系统的惯性。反之,若蓄电池工作在过放警戒区,即SOC<10%。为保护蓄电池过度放电,此时蓄电池放电电流为零,无法再为系统提供惯性支持,光伏仍工作在最大功率跟MPPT模式,实现光伏能量最大化利用,并网逆变器采用双闭环控制。

Claims (1)

1.一种光伏-蓄电池发电系统的虚拟惯性控制方法,其特征在于:包括以下步骤:
步骤1:采集光伏-蓄电池发电系统的频率变化量Δf;
步骤2:判断光伏-蓄电池发电系统的频率变化量Δf是否等于0,如果是,则光伏-蓄电池发电系统正常运行,此时,光伏电池采用最大功率跟踪MPPT模式,实现光伏电池能量的最大化利用,蓄电池系统用于平抑光伏电池输出功率的波动,转向步骤9,否则,转向步骤3;
步骤3:判断Δf是否大于零,若Δf>0,如果是,转向步骤4,否则,转向步骤6;
步骤4:判断蓄电池荷电状态SOC是否大于90%,如果是,转向步骤5,否则,转向步骤7;
步骤5:蓄电池停止充电,光伏电池退出最大功率跟踪MPPT模式,转为减载运行;转向步骤9;
步骤6:判断蓄电池荷电状态SOC是否小于10%,如果是,转向步骤8,否则,转向步骤7;
步骤7:蓄电池采用虚拟惯性控制,系统频率变化过程中,蓄电池的能量WB表示为:
式中,Jvir_B定义为蓄电池的虚拟转动惯量;γsoc为蓄电池的荷电状态;uB、iB分别为蓄电池的电压和电流,γsoc_0为蓄电池的起始荷电状态,QN为蓄电池的额定容量;Js为同步发电机的转动惯量,ωe为发电机的同步电角速度,pn为发电机的极对数,Ek为发电机的旋转动能;WB为蓄电池存储的能量;kB为蓄电池荷电状态变化率与发电机转速变化率的比值;
步骤8:蓄电池停止放电,光伏电池仍采用最大功率跟踪MPPT模式;
步骤9:结束。
CN201610836288.5A 2016-09-21 2016-09-21 一种光伏-蓄电池发电系统的虚拟惯性控制方法 Active CN106169903B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610836288.5A CN106169903B (zh) 2016-09-21 2016-09-21 一种光伏-蓄电池发电系统的虚拟惯性控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610836288.5A CN106169903B (zh) 2016-09-21 2016-09-21 一种光伏-蓄电池发电系统的虚拟惯性控制方法

Publications (2)

Publication Number Publication Date
CN106169903A CN106169903A (zh) 2016-11-30
CN106169903B true CN106169903B (zh) 2018-08-21

Family

ID=57376398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610836288.5A Active CN106169903B (zh) 2016-09-21 2016-09-21 一种光伏-蓄电池发电系统的虚拟惯性控制方法

Country Status (1)

Country Link
CN (1) CN106169903B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019051696A1 (zh) * 2017-09-13 2019-03-21 中国电力科学研究院有限公司 一种光伏发电站的控制方法、装置及存储介质
CN108736519B (zh) * 2018-07-26 2021-03-26 云南电网有限责任公司电力科学研究院 一种光伏电站的虚拟同步发电机自适应控制方法及装置
CN109256786B (zh) * 2018-09-21 2023-08-11 国网青海省电力公司 一种光储电站有功协调控制方法和系统
CN109103930B (zh) * 2018-09-25 2021-08-03 武汉大学 一种含超级电容器的光储系统可控虚拟惯性控制方法
CN109742814A (zh) * 2019-03-25 2019-05-10 山东理工大学 一种基于虚拟惯量的电动汽车充放电控制方法
CN109904852B (zh) * 2019-04-19 2021-03-16 华北电力大学(保定) 一种基于主动负荷的直流电网虚拟储能控制方法及系统
CN110797915B (zh) * 2019-11-13 2021-01-08 国网安徽省电力有限公司 一种基于储能的光伏电站主动频率控制方法
CN116093998B (zh) * 2022-11-28 2024-03-08 国网冀北电力有限公司经济技术研究院 一种基于可控负荷的虚拟蓄电池控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10069306B2 (en) * 2014-02-21 2018-09-04 Solarlytics, Inc. System and method for managing the power output of a photovoltaic cell
CN104795831B (zh) * 2015-05-12 2017-08-29 山东建筑大学 基于变下垂控制的电池储能系统充放电控制方法及系统
CN105162167B (zh) * 2015-09-30 2018-01-19 国网山东省电力公司电力科学研究院 一种基于自适应下垂控制的风光储微网调频方法
CN105260797B (zh) * 2015-10-22 2022-04-15 华北电力大学 一种微网储能电站规划控制方法

Also Published As

Publication number Publication date
CN106169903A (zh) 2016-11-30

Similar Documents

Publication Publication Date Title
CN106169903B (zh) 一种光伏-蓄电池发电系统的虚拟惯性控制方法
CN110474354B (zh) 含锂电池和超级电容的微电网孤岛运行模式协调控制方法
CN109586343A (zh) 基于虚拟同步发电机控制的光伏-储能发电系统及方法
CN110299722A (zh) 一种氢燃料电池平抑光伏输出功率波动的控制方法
CN104362656B (zh) 一种基于混合储能vsi平抑微网功率波动的控制方法
CN104300567A (zh) 一种平抑间歇性电源功率波动的混合储能控制方法
CN104810858A (zh) 一种光储微电网并网发电系统的控制方法
CN106505616B (zh) 一种直流配电网直流电压的调节方法
CN106877368A (zh) 一种光伏发电微网系统混合储能控制方法
CN106712093B (zh) 基于大容量储能系统的孤岛并联运行的控制方法
CN105162167A (zh) 一种基于自适应下垂控制的风光储微网调频方法
CN105356505A (zh) 适用于微电网的多源分布式发电系统及控制方法
CN202424196U (zh) 基于多组逆变器单元并联构成的大容量储能变流器
CN103762628A (zh) 一种双向变流器对蓄电池充放电的控制方法
CN204669070U (zh) 风光油互补智能发电控制系统
CN106972536B (zh) 一种光伏电站虚拟同步发电机的控制方法及装置
CN105515019A (zh) 一种用于提高微电网运行可靠性的方法及系统
CN107546771A (zh) 高比例风光储接入配电网多模式自适应控制方法
CN112701706A (zh) 一种电池储能电站参与电网二次调频特性分析方法及系统
CN109245160A (zh) 一种平抑光伏功率波动的光储并网控制方法及装置
CN109103930B (zh) 一种含超级电容器的光储系统可控虚拟惯性控制方法
CN107104456A (zh) 含多端光伏发电系统的直流电网电压优化控制方法
CN204905882U (zh) 基于混合储能的双馈风力发电机励磁装置
CN113131516A (zh) 一种光储柴孤岛微电网系统的能量管理及协调控制策略的方法
CN108988372B (zh) 直驱风电机组的混合储能系统的功率控制方法与装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant