CN106169738B - 一种基于线性传变区识别的差动保护抗ta饱和方法及装置 - Google Patents

一种基于线性传变区识别的差动保护抗ta饱和方法及装置 Download PDF

Info

Publication number
CN106169738B
CN106169738B CN201610557439.3A CN201610557439A CN106169738B CN 106169738 B CN106169738 B CN 106169738B CN 201610557439 A CN201610557439 A CN 201610557439A CN 106169738 B CN106169738 B CN 106169738B
Authority
CN
China
Prior art keywords
cycle
differential protection
point
linear transform
starting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610557439.3A
Other languages
English (en)
Other versions
CN106169738A (zh
Inventor
吕航
王风光
鲍凯鹏
丁杰
龚啸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NR Electric Co Ltd
NR Engineering Co Ltd
Original Assignee
NR Electric Co Ltd
NR Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NR Electric Co Ltd, NR Engineering Co Ltd filed Critical NR Electric Co Ltd
Priority to CN201610557439.3A priority Critical patent/CN106169738B/zh
Publication of CN106169738A publication Critical patent/CN106169738A/zh
Application granted granted Critical
Publication of CN106169738B publication Critical patent/CN106169738B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • H02H7/262Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of switching or blocking orders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/50Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the appearance of abnormal wave forms, e.g. ac in dc installations
    • H02H3/52Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the appearance of abnormal wave forms, e.g. ac in dc installations responsive to the appearance of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • H02H7/263Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of measured values

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)

Abstract

本发明公开了一种基于线性传变区识别的差动保护抗电流互感器(TA)饱和方法,所述方法包括:依据TA的输出电流信息,每周波根据差动及制定电流信息搜索区外故障TA线性传变区起点,若存在该特征点则闭锁差动保护,同时记忆特征点位置;若某周波不存在该特征点,则根据前一周波TA线性传变区起点推算出本周波采样值差动判别区间,若区间内采样值差动动作点数超过预设门槛,则判别为区内故障。本发明还公开了一种基于线性传变区识别的差动保护抗电流互感器(TA)饱和方法的装置。采用本发明所述方法的差动保护,能够可靠识别区外故障TA饱和情况,保证差动保护在区外故障TA饱和情况下不误动作,在区内故障保护能保证快速可靠动作。

Description

一种基于线性传变区识别的差动保护抗TA饱和方法及装置
技术领域
本发明涉及电力系统中识别电流互感器TA饱和的相关技术,尤其涉及一种基于线性传变区的识别TA饱和的方法及装置。
背景技术
区外故障TA饱和的情况下,差动保护中可能会遇到到很大的差动电流,容易引起保护误动作,所以TA饱和问题一直是影响差动保护正确动作的主要问题,目前,差动保护采用的主要方法有异步法和谐波法。
异步法利用TA从不饱和进入饱和需要一定时间的特点,通过制动电流/电压和差动电流之间的时间差识别差动电流是由区内故障还是TA饱和引起,区内故障时保护快速动作,区外故障TA饱和情况下保护不会误动作,但异步法在区外转区内故障,尤其是同名相转换性故障情况下不能保证可靠动作。
谐波法利用TA饱和情况下差流波形畸变的特征识别TA饱和,在区外转区内故障情况下保护也能动作,但在区内故障中含有较大谐波成分,尤其是区内故障TA饱和的情况下,谐波法可能动作速度较慢,甚至可能拒动,随着电力系统中静止无功发生器(SVG,StaticVar Generator)、无功补偿器(SVC,Static Var Compensator)等电力电子设备广泛使用,区内故障时差动保护可能遇到较大的谐波分量,这进一步影响了谐波法的适应性。
综上所述,提供一种识别TA饱和的方案,一方面能够可靠识别TA饱和情况,保证差动保护在区外故障TA饱和情况下不误动作,另一方面,在区内故障差动电流中存在较大谐波分量的情况下,保护也应能保证可靠动作,已成为亟待解决的问题。
发明内容
有鉴于此,本发明实施例期望提供一种识别TA饱和的方法及装置,能够可靠识别区外故障TA饱和情况,保证差动保护在区外故障TA饱和情况下不误动作,在区内故障差动电流中存在较大谐波分量的情况下,保护也能保证快速可靠动作。
为达到上述目的,本发明实施例的技术方案是这样实现的:
一种基于线性传变区识别的差动保护抗TA饱和方法,所述方法包括:
依据TA的输出电流信息,确定在当前周波内选取的采样点的差动电流信息及制动电流信息;
每周波根据差动电流信息及制动电流信息搜索是否有符合预设的区外故障TA线性传变区起点特征,如果符合则闭锁差动保护同时记忆此特征点位置;否则根据前一周波TA线性传变区起点推算出本周波采样值差动判别区间,若区间内采样值差动动作点数超过预设门槛,则判别为区内故障。
更进一步的,所述每周波根据差动电流信息及制动电流信息搜索是否有符合预设的区外故障TA线性传变区起点特征的方法为:
且Ir>K2Id
其中,所述Id为采样点的差动电流;所述Ir为采样点的制动电流;所述k1、k2为预设常数;
如果存在符合上述特征的采样点,则判定为区外故障TA饱和,闭锁差动保护,同时记忆满足上述要求的第一个特征点位置。
更进一步的,如果是故障后的第一周波,则直接以故障起始点作为区间起点;
否则,若本周波内不存在符合预设的区外故障TA线性传变区起点,则根据前一周波TA线性传变区起点推后一周波采样点数作为区间起点,以区间起点往后连续R点计算采样值差动判据:
Id>KzdIr
其中,所述kzd为采样值差动制动系数;
若区间内采样值差动动作点数超过预设门槛S,则判别为区内故障,差动保护动作;否则判定为区外故障TA饱和,闭锁差动保护直到再次找到线性传变区起点,继续重复上述权利要求所述方法进行区内外判别,直至保护启动返回。
更进一步的,所述装置包括:采集模块、确定模块及判断模块;其中,
所述采集模块,用于采集当前设备中各支路TA的输出电流信息;
所述确定模块,用于依据TA的输出电流信息,确定在当前周波内选取的采样点的差动电流信息及制动电流信息;
所述判断模块,用于判断所述采样点的差动电流信息及制动电流信息是否符合预设的区外故障TA饱和条件,如果符合,闭锁差动保护;否则开放差动保护。
更进一步的,所述判断模块,每周波根据差动电流信息及制动电流信息搜索是否有符合预设的区外故障TA线性传变区起点特征的方法为:
且Ir>K2Id
其中,所述Id为采样点的差动电流;所述Ir为采样点的制动电流;所述k1、k2为预设常数;
如果存在符合上述特征的采样点,则判定为区外故障TA饱和,闭锁差动保护,同时记忆满足上述要求的第一个特征点位置;
如果是故障后的第一周波,则直接以故障起始点作为区间起点;否则,若本周波内不存在符合预设的区外故障TA线性传变区起点,则根据前一周波TA线性传变区起点推后一周波采样点数作为区间起点,以区间起点往后连续R点计算采样值差动判据:
Id>KzdIr
其中,所述kzd为采样值差动制动系数;
若区间内采样值差动动作点数超过预设门槛S,则判别为区内故障,差动保护动作;否则判定为区外故障TA饱和,闭锁差动保护直到再次找到线性传变区起点,继续重复上述权利要求所述方法进行区内外判别,直至保护启动返回。
本发明实施例所提供的识别TA饱和的方法及装置,依据TA的输出电流信息,每周波根据差动及制定电流信息搜索区外故障TA线性传变区起点,若存在该特征点则闭锁差动保护,同时记忆此特征点位置;若某周波不存在该特征点,则根据前一周波TA线性传变区起点推算出本周波采样值差动判别区间,若区间内采样值差动动作点数超过预设门槛,则判别为区内故障。如此,能够可靠识别区外故障TA饱和情况,保证差动保护在区外故障TA饱和情况下不误动作,在区内故障差动电流中存在较大谐波分量的情况下,保护也能保证快速可靠动作。
附图说明
图1为典型TA饱和波形图;
图2为本发明实施识别TA饱和的方法流程示意图;
图3为本发明实施例识别TA饱和的装置组成结构示意图。
具体实施方式
在本发明实施例中,依据TA的输出电流信息,每周波根据差动及制定电流信息搜索区外故障TA线性传变区起点,若存在该特征点则闭锁差动保护,同时记忆此特征点位置;若某周波不存在该特征点,则根据前一周波TA线性传变区起点推算出本周波采样值差动判别区间,若区间内采样值差动动作点数超过预设门槛,则判别为区内故障。
图2所示为本发明实施例一识别TA饱和的方法流程示意图,如图2所示,本发明实施例识别TA饱和的方法包括:
步骤1:依据TA的输出电流信息,确定在当前周波内选取的采样点的差动电流信息及制动电流信息;
本步骤之前,所述方法还包括:采集当前设备中各支路TA的输出电流信息;这里,所述TA为电流互感器的电气图形的文字代号,所述TA的输出电流信息即所述TA的二次电流信息;所述设备为高压、超高压设备。
所述差动电流为所述各支路TA的输出电流矢量和,所述制动电流为所述各支路TA的输出电流标量和。
TA进入饱和需要一定的时间,所以每个周波均存在线性传变区,此时差动保护感受的差动电流较小,而TA进入饱和后二次电流迅速下降,差动电流急剧上升,如图1所示,因此,TA每周波周期性地进入饱和的特征,可以用以鉴别差流是否由TA饱和引起。
步骤2:每周波根据差动电流信息及制动电流信息搜索是否有符合预设的区外故障TA线性传变区起点特征:
且Ir>K2Id
其中,所述Id为采样点的差动电流;所述Ir为采样点的制动电流;所述k1、k2为预设常数。
步骤3:如果存在符合步骤2特征的采样点,则判定为区外故障TA饱和,闭锁差动保护,同时记忆满足上述要求的第一个特征点位置。
步骤4:如果是故障后的第一周波,则直接以故障起始点作为区间起点;否则如果不存在区外故障TA线性传变区特征点,则根据前一周波TA线性传变区起点推后一周波采样点数作为区间起点,以区间起点往后连续R点计算采样值差动判据:
Id>KzdIr
其中,所述kzd为采样值差动制动系数;
若区间内采样值差动动作点数超过预设门槛S,则判别为区内故障,差动保护动作;否则判定为区外故障TA饱和,闭锁差动保护直到再次找到线性传变区起点,继续重复上述权利要求所述方法进行区内外判别。
在本发明实施例中,所述采集模块1、判断模块2及确定模块3均可由服务器中的中央处理器(CPU,Central Processing Unit)或数字信号处理器(DSP,Digital SignalProcessor)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)、或集成电路(ASIC,Application Specific Integrated Circuit)实现。
以上所述,仅为本发明较佳实施例而已,并非用于限定本发明的保护范围。

Claims (4)

1.一种基于线性传变区识别的差动保护抗TA饱和方法,其特征在于,所述方法包括:
依据TA的输出电流信息,确定在当前周波内选取的采样点的差动电流信息及制动电流信息;
每周波根据差动电流信息及制动电流信息搜索是否有符合预设的区外故障TA线性传变区起点特征,如果符合则闭锁差动保护同时记忆此特征点位置;否则根据前一周波TA线性传变区起点推算出本周波采样值差动判别区间,若区间内采样值差动动作点数超过预设门槛,则判别为区内故障。
2.根据权利要求1所述方法,其特征在于:所述每周波根据差动电流信息及制动电流信息搜索是否有符合预设的区外故障TA线性传变区起点特征的方法为:
且Ir>K2Id
其中,所述Id为采样点的差动电流;所述Ir为采样点的制动电流;所述k1、k2为预设常数;
如果存在符合上述特征的采样点,则判定为区外故障TA饱和,闭锁差动保护,同时记忆满足上述要求的第一个特征点位置。
3.根据权利要求1所述方法,其特征在于:如果是故障后的第一周波,则直接以故障起始点作为区间起点;
否则,若本周波内不存在符合预设的区外故障TA线性传变区起点,则根据前一周波TA线性传变区起点推后一周波采样点数作为区间起点,以区间起点往后连续R点计算采样值差动判据:
Id>KzdIr
其中,所述kzd为采样值差动制动系数;
若区间内采样值差动动作点数超过预设门槛S,则判别为区内故障,差动保护动作;否则判定为区外故障TA饱和,闭锁差动保护直到再次找到线性传变区起点,继续重复所述基于线性传变区识别的差动保护抗TA饱和方法进行区内外判别,直至保护启动返回。
4.一种基于线性传变区识别的差动保护抗TA饱和方法的装置,其特征在于,所述装置包括:采集模块、确定模块及判断模块;其中,
所述采集模块,用于采集当前设备中各支路TA的输出电流信息;
所述确定模块,用于依据TA的输出电流信息,确定在当前周波内选取的采样点的差动电流信息及制动电流信息;
所述判断模块基于区外故障TA线性传变区起点判断,用于判断所述采样点的差动电流信息及制动电流信息是否符合预设的区外故障TA饱和条件,如果符合,闭锁差动保护;否则开放差动保护;
所述判断模块,每周波根据差动电流信息及制动电流信息是否有符合预设的区外故障TA饱和条件,具体方法为:
且Ir>K2Id
其中,所述Id为采样点的差动电流;所述Ir为采样点的制动电流;所述k1、k2为预设常数;
如果存在符合上述特征的采样点,则判定为区外故障TA饱和,闭锁差动保护,同时记忆满足上述要求的第一个特征点位置;
如果是故障后的第一周波,则直接以故障起始点作为区间起点;否则,若本周波内不存在符合预设的区外故障TA线性传变区起点,则根据前一周波TA线性传变区起点推后一周波采样点数作为区间起点,以区间起点往后连续R点计算采样值差动判据:
Id>KzdIr
其中,所述kzd为采样值差动制动系数;
若区间内采样值差动动作点数超过预设门槛S,则判别为区内故障,差动保护动作;否则判定为区外故障TA饱和,闭锁差动保护直到再次找到线性传变区起点,继续重复所述基于线性传变区识别的差动保护抗TA饱和方法进行区内外判别,直至保护启动返回。
CN201610557439.3A 2016-07-14 2016-07-14 一种基于线性传变区识别的差动保护抗ta饱和方法及装置 Active CN106169738B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610557439.3A CN106169738B (zh) 2016-07-14 2016-07-14 一种基于线性传变区识别的差动保护抗ta饱和方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610557439.3A CN106169738B (zh) 2016-07-14 2016-07-14 一种基于线性传变区识别的差动保护抗ta饱和方法及装置

Publications (2)

Publication Number Publication Date
CN106169738A CN106169738A (zh) 2016-11-30
CN106169738B true CN106169738B (zh) 2018-12-21

Family

ID=58065410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610557439.3A Active CN106169738B (zh) 2016-07-14 2016-07-14 一种基于线性传变区识别的差动保护抗ta饱和方法及装置

Country Status (1)

Country Link
CN (1) CN106169738B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602521B (zh) * 2016-12-31 2019-02-22 南京理工大学 基于电流互感器线性传变区的母线采样值差动保护方法
CN107255760B (zh) * 2017-06-21 2019-11-22 重庆新世杰电气股份有限公司 一种判断电流互感器饱和的方法及系统
CN108173247B (zh) * 2017-12-29 2019-04-05 华中科技大学 一种母线保护ta饱和闭锁与再开放控制方法及系统
CN109768526B (zh) * 2019-03-13 2020-09-04 南京南瑞继保电气有限公司 一种基于电流分布系数识别非故障相饱和的方法和装置
CN115792782B (zh) * 2023-01-06 2023-04-14 石家庄科林电气股份有限公司 Ct饱和的识别方法、装置、电子设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183786A (zh) * 2007-11-16 2008-05-21 国电南瑞科技股份有限公司 预测ct线性传变区的抗ct饱和采样值差动保护
CN104682360A (zh) * 2015-01-22 2015-06-03 南京南瑞继保电气有限公司 一种识别电流互感器饱和的方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183786A (zh) * 2007-11-16 2008-05-21 国电南瑞科技股份有限公司 预测ct线性传变区的抗ct饱和采样值差动保护
CN104682360A (zh) * 2015-01-22 2015-06-03 南京南瑞继保电气有限公司 一种识别电流互感器饱和的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于电流互感器线性传变区检测的母线采样值差动保护;吴崇昊等;《电网技术》;20080731;第32卷(第14期);70-74 *
适用于微机母线保护的CT饱和识别新判据;黄小波等;《湖北电力》;20060228;第30卷(第1期);23-24,36 *

Also Published As

Publication number Publication date
CN106169738A (zh) 2016-11-30

Similar Documents

Publication Publication Date Title
CN106169738B (zh) 一种基于线性传变区识别的差动保护抗ta饱和方法及装置
CN104682360B (zh) 一种识别电流互感器饱和的方法及装置
RU2743460C1 (ru) Способ и устройство для быстрого устранения ферромагнитного резонанса трансформатора напряжения
Swetapadma et al. Data‐mining‐based fault during power swing identification in power transmission system
Mahari et al. High impedance fault protection in transmission lines using a WPT-based algorithm
Stumpe et al. DC fault protection for modular multi‐level converter‐based HVDC multi‐terminal systems with solid state circuit breakers
CN104466903A (zh) 一种差动保护的电流互感器饱和识别方法
Lu et al. A morphological scheme for inrush identification in transformer protection
CN105140893A (zh) 一种差动保护ct饱和识别方法
Pérez-Molina et al. Challenges for protection of future HVDC grids
WO2018122632A1 (en) A method for detecting inrush and ct saturation and an inteligent electronic device therfor
KR102162207B1 (ko) 로고스키 코일을 이용한 직류전류 측정장치
EP2955529B1 (en) Power converter, short-circuit detecting device thereof and short-circuit detecting method thereof
WO2006012717A3 (en) Method for sectioning with a section switch a medium-voltage electric power distribution line exhibiting a disturbance, section switch for medium-voltage electric power distribution line applicable thereon and electronic circuit for detecting a fault current and comprised by said section switch
US6879478B2 (en) Surge counter/detector apparatus, system and method
US20170163024A1 (en) Method for preventing differential protection maloperation of optical fiber caused by saturation of single ct of 3/2 connection
Wang et al. Transient current curvature based protection for multi‐terminal flexible DC distribution systems
Krstivojevic et al. A new method of improving transformer restricted earth fault protection
CN108963974B (zh) 一种防止区外故障切除差动保护误动的方法及装置
Ribeiro et al. Modelling and simulation of a time‐domain line protection relay
Hossain et al. Partial operating current characteristics to discriminate internal and external faults of differential protection zones during CT saturation
Silva et al. Positive sequence voltage memory filter for numerical digital relaying applications
Ghanbari et al. Solid‐state transient limiter for capacitor bank switching transients
Bashi et al. Power transformer protection using microcontroller-based relay
Ukil et al. Adjusted Haar wavelet for application in the power systems disturbance analysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant