CN106169650B - 一种宽带高隔离2x2MIMO圆极化微带天线 - Google Patents

一种宽带高隔离2x2MIMO圆极化微带天线 Download PDF

Info

Publication number
CN106169650B
CN106169650B CN201610793023.1A CN201610793023A CN106169650B CN 106169650 B CN106169650 B CN 106169650B CN 201610793023 A CN201610793023 A CN 201610793023A CN 106169650 B CN106169650 B CN 106169650B
Authority
CN
China
Prior art keywords
shaped slot
dielectric substrate
feeding unit
unit
circularly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610793023.1A
Other languages
English (en)
Other versions
CN106169650A (zh
Inventor
鲁勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jieshitai Communication Technology Co ltd
Original Assignee
Shanghai Jieshitai Communication Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jieshitai Communication Technology Co ltd filed Critical Shanghai Jieshitai Communication Technology Co ltd
Priority to CN201610793023.1A priority Critical patent/CN106169650B/zh
Publication of CN106169650A publication Critical patent/CN106169650A/zh
Application granted granted Critical
Publication of CN106169650B publication Critical patent/CN106169650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种宽带高隔离2x2MIMO圆极化微带天线,涉及天线技术领域,包含第一、二辐射单元、第一、二H形开槽、第一、二馈电单元、90°移相功分网络、第一天线端口、第二天线端口、第一、二、三介质基板、空气介质层、地层和垫片,第一、二辐射单元分别附着在第一、二介质基板的上表面,第一介质基板和第二介质基板之间为空气介质层,并由垫片支撑,地层附着在第二介质基板的下表面和第三介质基板的上表面,第一馈电单元和第二馈电单元附着在第三介质基板的下表面,第一H形开槽和第二H形开槽为地层挖开的开槽,90°移相功分网络分别将输入信号分成幅度相等、相位相差90度/‑90度的两路信号,其输出端口分别连接第一馈电单元和第二接馈电单元。

Description

一种宽带高隔离2x2MIMO圆极化微带天线
技术领域
本发明涉及天线技术领域,特别涉及一种宽带高隔离2x2MIMO圆极化微带天线。
背景技术
近年来,随着移动通信的快速发展,无线移动通信也得到了广泛应用。天线是无线移动通信系统的重要组成部分,负责无线信号的收发。在诸多天线种类中微带天线以其体积小、重量轻、平面结构易于与IC器件集成、易于批量加工以及成本低等众多优点受到市场青睐,得到了广泛应用。但是微带天线工作带宽窄的缺点(<5%)也极大地限制了微带天线的应用。圆极化天线在雷达、军事、卫星通信以及移动通信系统中有着广泛的应用。相对于线极化波而言,圆极化波能够抑制雨雾干扰,减小多径反射,具有很好的移动性,并且在发射和接收系统中,只要有一方应用了圆极化天线,接收天线以任何旋向都可以接收到信号,极大地方便了在无线通信系统中的应用。而高隔离2x2MIMO圆极化微带天线因兼具了圆极化波和微带天线的优点,得到了广泛应用。
近年来随着高速数据通信时代的来临,无线宽带通信发展迅猛,无线宽带通信需要的工作带宽比较宽,而微带天线的工作带宽窄的缺点限制了其在发展迅猛的无线宽带通信领域的应用。
随着越来越高的无线通信速率的强烈需求以及越来越多的无线移动通信用户,而移动通信系统可利用的频率资源有很有限,这就催生了无线通信领域能够更有效利用频谱资源、提高通信速率的新技术-MIMO(Multiple-Input-Multiple-Output多输入多输出)技术。MIMO技术通过将待无线传输的数据流分成多路子数据流并行发送,接收端多路接收子系统分别将多路子数据流接收后再整合成原数据流,极大地提高了无线通信速率,并且待传输数据流被分成了多路子数据独立并行发射,为接收机提供多路独立样本,提高了信噪比,可在提高无线通信速率的同时增加了无线通信距离。因此,MIMO技术成为高速无线通信不可或缺的关键技术。而MIMO技术的关键是有效避免MIMO天线之间的干扰,以区分多个并行数据流。因此,设计高隔离度的MIMO宽带天线成为MIMO技术的一个重要研究课题。
发明内容
本发明所要解决的技术问题是提供一种宽带高隔离2x2MIMO圆极化微带天线,以解决现有技术中导致的上述多项缺陷。
为实现上述目的,本发明提供以下的技术方案:一种宽带高隔离2x2MIMO圆极化微带天线,包含第一辐射单元、第二辐射单元、第一H形开槽、第二H形开槽、第一馈电单元、第二馈电单元、90°移相功分网络、第一天线端口、第二天线端口、第一介质基板、第二介质基板、第三介质基板、空气介质层、地层和垫片,所述第一辐射单元附着在第一介质基板的上表面,所述第二辐射单元附着在第二介质基板的上表面,所述第一介质基板和第二介质基板之间为所述空气介质层,并由所述垫片支撑,所述地层附着在第二介质基板的下表面和第三介质基板的上表面,且两个地层接触,所述第一馈电单元和第二馈电单元附着在第三介质基板的下表面,所述第一馈电单元和第二馈电单元与第三介质基板的上表面的地层分别构成微带线,所述第一H形开槽和第二H形开槽为第二介质基板的下表面和第三介质基板的上表面的地层挖开的H形状的开槽,且第一H形开槽和第二H形开槽物理方向上互相垂直设置,第一馈电单元和第二馈电单元物理方向上互相垂直设置,所述90°移相功分网络上设有所述第一天线端口和第二天线端口,90°移相功分网络的输出端口Ⅰ连接第一馈电单元,90°移相功分网络上的输出端口Ⅱ连接第二馈电单元。
优选的,所述第一馈电单元和第二馈电单元由第三介质基板的下表面边缘分别延伸至第一H形开槽和第二H形开槽的下方。
优选的,所述第一H形开槽和第二H形开槽空隙中间的“-”结构的长度大于开槽两边的“|”结构的高度。
优选的,所述第二H形开槽大小和第一H形开槽大小相同,所述第二馈电单元大小和第一馈电单元大小相同,所述第二H形开槽和第二馈电单元的相对位置与第一H形开槽和第一馈电单元的相对位置相同。
优选的,所述第一H形开槽和第二H形开槽位于所述第二辐射单元的下方。
优选的,所述第一辐射单元位于第二辐射单元的上方。
优选的,所述第一辐射单元和第二辐射单元均为方形金属板。
优选的,所述第一辐射单元和第二辐射单元的长度是可变化的。
优选的,所述空气介质层厚度为可变化的。
优选的,所述90°移相功分网络分别将一路信号分成幅度相等、相位相差90度/-90度的两路信号。
采用以上技术方案的有益效果是:本发明结构宽带高隔离2x2MIMO圆极化微带天线通过在正交馈电网络的两个端口分别给圆极化微带天线馈电,在同一个微带天线上分别实现了左旋圆极化微带天线和右旋圆极化微带天线,由于极化正交,有效避免MIMO天线之间的干扰,以区分多个并行数据流,实现了宽带高隔离2x2MIMO圆极化微带天线,拓宽了微带天线的应用市场。
附图说明
图1是本发明宽带高隔离2x2MIMO圆极化微带天线的俯视结构示意图。
图2是本发明宽带高隔离2x2MIMO圆极化微带天线的在其厚度方向的相对位置关系结构示意图。
图3是本发明宽带高隔离2x2MIMO圆极化微带天线的驻波比(VSWR)结果图。
图4是本发明宽带高隔离2x2MIMO圆极化微带天线的隔离度结果图。
其中,1-第一辐射单元,2-第二辐射单元,301-第一H形开槽,302-第二H形开槽,401-第一馈电单元,402-第二馈电单元,5-第一介质基板,6-第二介质基板,7-第三介质基板,8-垫片,9-空气介质层,10-地层,11-90°移相功分网络,12-第一天线端口,13-第二天线端口,14-输出端口Ⅰ,15-输出端口Ⅱ。
具体实施方式
下面结合附图详细说明本发明宽带高隔离2x2MIMO圆极化微带天线的优选实施方式。
图1-图2出示本发明宽带高隔离2x2MIMO圆极化微带天线的具体实施方式:一种宽带高隔离2x2MIMO圆极化微带天线,包含第一辐射单元1、第二辐射单元2、第一H形开槽301、第二H形开槽302、第一馈电单元401、第二馈电单元402、90°移相功分网络11、第一天线端口12、第二天线端口13、第一介质基板5、第二介质基板6、第三介质基板7、空气介质层9、地层10和垫片8。所述第一辐射单元1附着在第一介质基板5的上表面,所述第二辐射单元2附着在第二基板6的上表面,第一介质基板5和第二介质基板6之间为空气介质层9,并由垫片8支撑。所述地10层附着在第二介质基板6的下表面和第三介质基板7的上表面,两个地层10相互接触。所述馈电单元401和402附着在第三介质基板7的下表面,馈电单元401和402与第三介质基板7的上表面的地10分别构成微带线。所述第一H形开槽301和第二H形开槽302为第二介质基板6的下表面和第三介质基板7的上表面的地层10挖开的H形开槽。第一H形开槽301和第二H形开槽302物理方向上互相垂直,第一馈电单元401和第二馈电单元402物理方向上互相垂直。90°移相功分网络11将从本发明的宽带高隔离2x2MIMO圆极化微带天线的第一天线端口12输入的电磁能量分成幅度相等,相位相差90度的两路信号,传输至的输出端口Ⅰ14和输出端口Ⅱ15,输出端口Ⅰ14连接第一馈电单元401,输出端口Ⅱ15连接第二馈电单元402。幅度相等,相位相差90度/-90度的两路信号分别沿第一馈电单元401和第二馈电单元402与地层10构成的微带线传输。所述第一馈电单元401通过第一H形开槽301与第二辐射单元2进行能量耦合,第二辐射单元2再将电磁能量耦合到第一辐射单元1。所述第二馈电单元402通过第二H形开槽302与第二辐射单元2进行能量耦合,第二辐射单元2再将电磁能量耦合到第一辐射单元1。最终幅度相等,相位相差90度的两路信号组成右旋圆极化电磁波辐射出本宽带高隔离2x2MIMO圆极化微带天线。同理,90°移相功分网络11将从从本发明的宽带高隔离2x2MIMO圆极化微带天线的第二天线端口13输入的电磁能量分成幅度相等,相位相差-90度的两路信号,传输至90°移相功分网络11的输出端口Ⅰ14和输出端口Ⅱ15,输出端口Ⅰ14连接第一馈电单元401,输出端口Ⅱ15连接第二馈电单元402。幅度相等,相位相差-90度的两路信号分别沿第一馈电单元401和第二馈电单元402与地层10构成的微带线传输。所述第一馈电单元401通过第一H形开槽301与第二辐射单元2进行能量耦合,第二辐射单元2再将电磁能量耦合到第一辐射单元1。所述的第二馈电单元402通过第二H形开槽302与第二辐射单元2进行能量耦合,第二辐射单元2再将电磁能量耦合到第一辐射单元1。最终幅度相等,相位相差-90度的两路信号组成左旋圆极化电磁波辐射出本宽带高隔离2x2MIMO圆极化微带天线。90°移相功分网络11构成了正交馈电网络。
在本实施例中,所述第一馈电单元401和第二馈电单元402由第三介质基板7的下表面边缘分别延伸至第一H形开槽301和第二H形开槽302的下方。
在本实施例中,所述第一H形开槽301和第二H形开槽302空隙中间的“-”为瘦长条结构,开槽两边的“|”为短条结构,“-”结构的长度大于“|”结构的高度。
在本实施例中,所述第二H形开槽302大小和第一H形开槽301大小相同,所述第二馈电单元402大小和第一馈电单元401大小相同,所述第二H形开槽302和第二馈电单元402的相对位置与第一H形开槽301和第一馈电单元401的相对位置相同。
在本实施例中,所述第一H形开槽301和第二H形开槽302位于所述第二辐射单元2的下方。
在本实施例中,所述第一辐射单元1位于第二辐射单元2的上方。
在本实施例中,所述第一辐射单元1和第二辐射单元2均为方形金属板。
在本实施例中,所述第一辐射单元1和第二辐射单元2的长度是可变化的,以便于第一辐射单元1的谐振频率和第二辐射单元2的谐振频率不完全一样,但是靠得很近,以便拓宽本宽带高隔离2x2MIMO圆极化微带天线的工作频率带宽。
在本实施例中,所述的空气介质层9厚度为可变化的,该厚度可以调节第一辐射单元1和第二辐射单元2之间的能量耦合度,使得第一辐射单元1和第二辐射单元2能量耦合最优,以便拓宽本宽带高隔离2x2MIMO圆极化微带天线的工作频率带宽。
在本实施例中,所述90°移相功分网络分别将一路信号分成幅度相等、相位相差90度/-90度的两路信号。
当本发明的微带天线作为发射天线时,第一路电磁能量由本发明的第一天线端口12输入90°移相功分网络11。90°移相功分网络11将电磁能量分成幅度相等,相位相差90度的两路信号,传输至90°移相功分网络11的输出端口Ⅰ14和输出端口Ⅱ15,输出端口Ⅰ14连接第一馈电单元401,输出端口Ⅱ15连接第二馈电单元402。幅度相等,相位相差90度的两路信号分别沿第一馈电单元401和第二馈电单元402与地层10构成的微带线传输。所述第一馈电单元401通过第一H形开槽301与第二辐射单元2进行能量耦合,第二辐射单元2再将电磁能量耦合到第一辐射单元1。所述第二馈电单元402通过第二H形开槽302与第二辐射单元2进行能量耦合,第二辐射单元2再将电磁能量耦合到第一辐射单元1。最终幅度相等,相位相差90度的两路信号组成右旋圆极化电磁波辐射出本宽带高隔离2x2MIMO圆极化微带天线。
同理,当本发明的微带天线作为发射天线时,第二路电磁能量由本发明的第二天线端口13输入90°移相功分网络11。90°移相功分网络11将电磁能量分成幅度相等,相位相差-90度的两路信号,传输至90°移相功分网络11的输出端口Ⅰ14和输出端口Ⅱ15,输出端口Ⅰ14连接第一馈电单元401,输出端口Ⅱ15连接第二馈电单元402。幅度相等,相位相差-90度的两路信号分别沿第一馈电单元401和第二馈电单元402与地层10构成的微带线传输。所述第一馈电单元401通过第一H形开槽301与第二辐射单元2进行能量耦合,第二辐射单元2再将电磁能量耦合到第一辐射单元1。所述的第二馈电单元402通过第二H形开槽302与第二辐射单元2进行能量耦合,第二辐射单元2再将电磁能量耦合到第一辐射单元1。最终幅度相等,相位相差-90度/-90度的两路信号组成左旋圆极化电磁波辐射出本宽带高隔离2x2MIMO圆极化微带天线。
当本发明的微带天线作为接收天线时,第一辐射单元1接收电磁能量,第一辐射单元1将电磁能量耦合至第二辐射单元2,第二辐射单元2通过第一H形开槽301和第二H形开槽302将电磁能量分别耦合至第一馈电单元401和第二馈电单元402,第一馈电单元401和第二馈电单元402与第三介质基板上7表面的地层10组成两组微带线,电磁能量分别沿微带线将电磁能量传输至90°移相功分网络11的输出端口Ⅰ14和输出端口Ⅱ15。90°移相功分网络11将接收信号中的右旋圆极化电磁波合成为一路信号传输至本宽带高隔离2x2MIMO圆极化微带天线的第一天线端口12。90°移相功分网络11将接收信号中的左旋圆极化电磁波合成为一路信号传输至本宽带高隔离2x2MIMO圆极化微带天线的第二天线端口13。由于极化的正交性,实现了宽带高隔离2x2MIMO圆极化微带天线。
图3是本发明宽带高隔离2x2MIMO圆极化微带天线的驻波比(VSWR)结果,图4是本发明宽带高隔离2x2MIMO圆极化微带天线的隔离度结果。由图3和图4可论证,本发明的微带天线VSWR<2的驻波比带宽结果是35.6%,在工作频段范围内,两天线隔离度高于16dB。本发明的高隔离2x2MIMO圆极化微带天线达到了宽带的工作需求。
基于上述,本发明结构宽带高隔离2x2MIMO圆极化微带天线通过在正交馈电网络的两个端口分别给圆极化微带天线馈电,在同一个微带天线上分别实现了左旋圆极化微带天线和右旋圆极化微带天线,由于极化正交,有效避免MIMO天线之间的干扰,以区分多个并行数据流,实现了宽带高隔离2x2MIMO圆极化微带天线,拓宽了微带天线的应用市场。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (4)

1.一种宽带高隔离2x2MIMO圆极化微带天线,其特征在于:包含第一辐射单元、第二辐射单元、第一H形开槽、第二H形开槽、第一馈电单元、第二馈电单元、90°移相功分网络、第一天线端口、第二天线端口、第一介质基板、第二介质基板、第三介质基板、空气介质层、地层和垫片,所述第一辐射单元附着在第一介质基板的上表面,所述第二辐射单元附着在第二介质基板的上表面,所述第一介质基板和第二介质基板之间为所述空气介质层,并由所述垫片支撑,所述地层附着在第二介质基板的下表面和第三介质基板的上表面,且两个地层接触,所述第一馈电单元和第二馈电单元附着在第三介质基板的下表面,所述第一馈电单元和第二馈电单元与第三介质基板的上表面的地层分别构成微带线,所述第一H形开槽和第二H形开槽为第二介质基板的下表面和第三介质基板的上表面的地层挖开的H形状的开槽,且第一H形开槽和第二H形开槽物理方向上互相垂直设置,第一馈电单元和第二馈电单元物理方向上互相垂直设置,所述90°移相功分网络上设有所述第一天线端口和第二天线端口,90°移相功分网络的输出端口Ⅰ连接第一馈电单元,90°移相功分网络上的输出端口Ⅱ连接第二馈电单元;
所述第一馈电单元和第二馈电单元由第三介质基板的下表面边缘分别延伸至第一H形开槽和第二H形开槽的下方;
所述第一H形开槽和第二H形开槽空隙中间的“-”结构的长度大于开槽两边的“|”结构的高度;
所述第二H形开槽大小和第一H形开槽大小相同,所述第二馈电单元大小和第一馈电单元大小相同,所述第二H形开槽和第二馈电单元的相对位置与第一H形开槽和第一馈电单元的相对位置相同;
所述90°移相功分网络分别将一路信号分成幅度相等、相位相差90度/-90度的两路信号。
2.根据权利要求1所述的一种宽带高隔离2x2MIMO圆极化微带天线,其特征在于,所述第一H形开槽和第二H形开槽位于所述第二辐射单元的下方。
3.根据权利要求1所述的一种宽带高隔离2x2MIMO圆极化微带天线,其特征在于,所述第一辐射单元位于第二辐射单元的上方。
4.根据权利要求1所述的一种宽带高隔离2x2MIMO圆极化微带天线,其特征在于,所述第一辐射单元和第二辐射单元均为方形金属板。
CN201610793023.1A 2016-08-31 2016-08-31 一种宽带高隔离2x2MIMO圆极化微带天线 Active CN106169650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610793023.1A CN106169650B (zh) 2016-08-31 2016-08-31 一种宽带高隔离2x2MIMO圆极化微带天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610793023.1A CN106169650B (zh) 2016-08-31 2016-08-31 一种宽带高隔离2x2MIMO圆极化微带天线

Publications (2)

Publication Number Publication Date
CN106169650A CN106169650A (zh) 2016-11-30
CN106169650B true CN106169650B (zh) 2023-05-23

Family

ID=57377235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610793023.1A Active CN106169650B (zh) 2016-08-31 2016-08-31 一种宽带高隔离2x2MIMO圆极化微带天线

Country Status (1)

Country Link
CN (1) CN106169650B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394397B (zh) * 2017-07-17 2020-07-28 常州柯特瓦电子有限公司 一种高隔离度双极化微带型4g lte mimo天线
CN111224239A (zh) * 2018-11-26 2020-06-02 华为技术有限公司 一种信号传输设备、系统以及方法
CN110459865A (zh) * 2019-07-09 2019-11-15 哈尔滨工程大学 一种Ka波段小型的圆极化单层贴片天线
CN112751191B (zh) * 2019-10-29 2023-07-21 Oppo广东移动通信有限公司 一种天线模组和移动终端

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206340668U (zh) * 2016-08-31 2017-07-18 上海捷士太通讯技术有限公司 一种宽带高隔离2x2MIMO圆极化微带天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241321A (en) * 1992-05-15 1993-08-31 Space Systems/Loral, Inc. Dual frequency circularly polarized microwave antenna
CN200956408Y (zh) * 2006-03-13 2007-10-03 中国科学院电子学研究所 用于宽频微带天线的可变频耦合馈电装置
CN202333124U (zh) * 2011-10-26 2012-07-11 常州亚邦天线有限公司 一种微带天线
CN104103906A (zh) * 2014-08-01 2014-10-15 东南大学 一种多层pcb工艺的低成本微波毫米波圆极化天线
CN105529519A (zh) * 2016-01-26 2016-04-27 华南理工大学 一种双频带圆极化射频识别阅读器天线

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206340668U (zh) * 2016-08-31 2017-07-18 上海捷士太通讯技术有限公司 一种宽带高隔离2x2MIMO圆极化微带天线

Also Published As

Publication number Publication date
CN106169650A (zh) 2016-11-30

Similar Documents

Publication Publication Date Title
CN106169650B (zh) 一种宽带高隔离2x2MIMO圆极化微带天线
JP6247407B2 (ja) 超広帯域小型化交差円偏波アンテナ
CN103872459A (zh) 一种新型ltcc双层单馈圆极化微带贴片阵列天线
CN113839216B (zh) 一种基于超表面的低剖面宽带圆极化天线
CN104617380B (zh) 一种圆极化端射特性的平面口径‑对称环组合天线
CN110085979B (zh) 一种具有多样性斜射角度特性的毫米波天线阵列
CN103094681A (zh) Csrr阵列叠层耦合北斗双频微带天线
CN106229686B (zh) 一种宽带圆极化微带天线
CN206340668U (zh) 一种宽带高隔离2x2MIMO圆极化微带天线
CN106169656A (zh) 一种宽带圆极化微带天线阵列
CN106384880A (zh) 北斗gps邻近频段双定位体系月牙缝隙阵列天线
CN210040568U (zh) 单层同轴馈电双极化微带阵列天线
CN114552221B (zh) 一种改善方向性的圆极化腔体天线
US7750855B2 (en) Compact polarization-sensitive and phase-sensitive antenna with directionality and multi-frequency resonances
CN107611606B (zh) 天线结构和终端
CN210296621U (zh) 一种单馈双圆极化微带天线
CN105406186B (zh) 具有低轴比特性的宽带圆极化微带天线
CN206134942U (zh) 一种宽带圆极化微带天线
CN206003972U (zh) 一种宽带圆极化微带天线阵列
CN113871901A (zh) 一种基于偶极子线阵的宽带高增益全向天线
CN102800968B (zh) 用于北斗导航系统的嵌套复合环微带多频天线
CN108832290A (zh) 三臂圆极化天线
Gusain et al. Comparative Analysis of a Circularly Polarized Microstrip Antenna with a Cross-Slot using Single and Double Substrate
CN108511893A (zh) 一种基于多边耦合的双极化天线
CN214336892U (zh) 一种用于卫星通信的宽带圆极化相控阵天线

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: Room 301, Building 3, No. 111, Xiangke Road, China (Shanghai) Pilot Free Trade Zone, Pudong New Area, Shanghai, October 2012

Patentee after: SHANGHAI JIESHITAI COMMUNICATION TECHNOLOGY CO.,LTD.

Address before: 200131 902D, No. 560, Shengxia Road, Pilot Free Trade Zone, Pudong New Area, Shanghai

Patentee before: SHANGHAI JIESHITAI COMMUNICATION TECHNOLOGY CO.,LTD.