CN106167408A - 一种低温烧结高致密度的大功率led散热氮化铝陶瓷基板 - Google Patents

一种低温烧结高致密度的大功率led散热氮化铝陶瓷基板 Download PDF

Info

Publication number
CN106167408A
CN106167408A CN201610574157.4A CN201610574157A CN106167408A CN 106167408 A CN106167408 A CN 106167408A CN 201610574157 A CN201610574157 A CN 201610574157A CN 106167408 A CN106167408 A CN 106167408A
Authority
CN
China
Prior art keywords
ceramic substrate
compactness
low
power led
great power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610574157.4A
Other languages
English (en)
Inventor
陆厚平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei E-Chon Metal Plate Technology Co Ltd
Original Assignee
Hefei E-Chon Metal Plate Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei E-Chon Metal Plate Technology Co Ltd filed Critical Hefei E-Chon Metal Plate Technology Co Ltd
Priority to CN201610574157.4A priority Critical patent/CN106167408A/zh
Publication of CN106167408A publication Critical patent/CN106167408A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板,该陶瓷基板使用离子液体和去离子水混合作为溶剂介质,取代了传统的流延成型工艺中的有毒有机溶剂,提高了各原料的分散性和结合性,此外以铝硅溶胶‑聚乙烯醇作为粘接剂,这种粘接剂不仅粘接效果良好,残炭低,且其中的有效成分能降低烧结氛的氧含量,提高晶格纯净度,获得良好的导热性能,加入的氧化钼、氟化锆等原料有效的降低了烧结温度,并在较低的烧结温度下获得了高致密度的产品,最终制备的复合氮化铝陶瓷基板具有良好的导热性,力学性能优良,其更适合应用于大功率LED芯片封装。

Description

一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板
技术领域
本发明涉及氮化铝陶瓷技术领域,尤其涉及一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板。
背景技术
大功率LED芯片产生的热量不能及时有效的散失,将严重影响LED的发射光谱、发光强度、封装材料性能、芯片的寿命等,因此,大功率LED的散热问题一直是固态照明行业的一大技术瓶颈,在传统封装工艺生产的LED中,基板散热因其直接有效的散热优势成为国内外重点研究的对象。目前研究应用较多的为铝基散热基板,然而,随着LED散热需求的提升,铝基板的缺陷也逐步表现出来,其内部的绝缘层导致整体散热性差,容易结温,从而降低灯具的使用寿命。相比于铝基板散热套件,陶瓷散热基板具有高绝缘性、高热辐射、高导热、电磁兼容性好等优点成为备受瞩目的一种替代材料,其中氮化铝陶瓷是综合性能较为理想的封装材料,然而,在实际应用中氮化铝陶瓷存在烧结温度高,导热性能较差等缺陷,制约着产品的推广应用。
《Y2O3和纳米AlN协同作用对氮化铝陶瓷烧结性能及热传导的影响》一文介绍了以Y2O3作为烧结助剂与纳米氮化铝协同作用在低烧结温度下制成了较高导热系数的氮化铝陶瓷,这种方法虽然一定程度的提高了氮化铝陶瓷的致密度,但是其导热系数仍有待提高,且纳米粉体的添加量必须受到严格的控制,需要在较高的烧结温度下才能改善氮化铝陶瓷的性能。
发明内容
本发明目的就是为了弥补已有技术的缺陷,提供一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板。
本发明是通过以下技术方案实现的:
一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板,该陶瓷基板由以下重量份的原料制成:氮化铝35-50、纳米氧化铝8-10、氧化钇2-3、氧化钼0.4-0.5、氟化锆0.5-1、聚乙烯醇1-2、离子液体10-15、异丙醇铝0.1-0.2、正硅酸乙酯0.4-0.5、去离子水20-25,适量的稀硝酸溶液。
所述的氮化铝的氧含量为0.5-1.5wt.%,D50粒径为0.5-2μm。
所述的氧化钇纯度大于99.99%,D50粒径为0.1-0.5μm。
所述的氧化钼D50粒径为0.1-0.5μm。
所述的氟化锆D50粒径为0.1-0.5μm。
所述的离子液体为水溶性离子液体。
所述的一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板的制备方法分为以下几个步骤:
(1)先将异丙醇铝与8-10重量份的去离子水混合,置于90℃水浴条件下,磁力搅拌混合,待混合液的pH值不再变化为止,随后加入稀硝酸溶液,调节体系pH值为4.0-5.0,随后水浴升温至100℃,继续回流1-1.5h得到稳定的铝溶胶备用。
(2)将正硅酸乙酯与余量的去离子水混合,在50-60℃的水浴中超声反应20-30min,随后滴加稀硝酸溶液,调节溶液pH值为4.0-5.0,反应40-50min后得硅溶胶备用。
(3)将步骤(1)制备的铝溶胶加热至80-85℃,缓慢加入步骤(2)制备的硅溶胶,边加边搅拌,随后再加入聚乙烯醇,继续搅拌混合40-50min后备用。
(4)将纳米氧化铝与离子液体混合球磨20-30min,随后将其与氮化铝、氧化钇、氧化钼、氟化锆混合,继续球磨分散3-5h,最后再将其与步骤(3)制得的物料混合,再次球磨分散10-15h,球磨结束后所得浆料真空脱泡,控制粘度为4500-6000mPa.s,所得浆料进行流延处理,控制厚度,得到胚体。
(5)将制得的胚体在承烧板上以1-2℃/min的升温速率升温至400-500℃,保温排胶5-6h,随后在1650-1750℃条件下真空保温烧结4-5h,出料后即得。
本发明优点在于,使用离子液体和去离子水混合作为溶剂介质,取代了传统的流延成型工艺中的有毒有机溶剂,提高了各原料的分散性和结合性,此外以铝硅溶胶-聚乙烯醇作为粘接剂,这种粘接剂不仅粘接效果良好,残炭低,且其中的有效成分能降低烧结氛的氧含量,提高晶格纯净度,获得良好的导热性能,加入的氧化钼、氟化锆等原料有效的降低了烧结温度,并在较低的烧结温度下获得了高致密度的产品,最终制备的复合氮化铝陶瓷基板具有良好的导热性,力学性能优良,其更适合应用于大功率LED芯片封装。
具体实施方式
一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板,该陶瓷基板由以下重量份的原料制成:氮化铝35、纳米氧化铝8、氧化钇2、氧化钼0.4、氟化锆0.5、聚乙烯醇1、离子液体10、异丙醇铝0.1、正硅酸乙酯0.4、去离子水20,适量的稀硝酸溶液。
其中氮化铝的氧含量为0.5wt.%,D50粒径为0.5μm。
其中氧化钇纯度大于99.99%,D50粒径为0.1μm。
其中氧化钼D50粒径为0.1μm。
其中氟化锆D50粒径为0.1μm。
其中离子液体为水溶性离子液体。
该实施例陶瓷基板由以下几个步骤制备而成:
(1)先将异丙醇铝与8重量份的去离子水混合,置于90℃水浴条件下,磁力搅拌混合,待混合液的pH值不再变化为止,随后加入稀硝酸溶液,调节体系pH值为4.0,随后水浴升温至100℃,继续回流1h得到稳定的铝溶胶备用。
(2)将正硅酸乙酯与余量的去离子水混合,在50℃的水浴中超声反应20min,随后滴加稀硝酸溶液,调节溶液pH值为4.0,反应40min后得硅溶胶备用。
(3)将步骤(1)制备的铝溶胶加热至80℃,缓慢加入步骤(2)制备的硅溶胶,边加边搅拌,随后再加入聚乙烯醇,继续搅拌混合40min后备用。
(4)将纳米氧化铝与离子液体混合球磨20min,随后将其与氮化铝、氧化钇、氧化钼、氟化锆混合,继续球磨分散3h,最后再将其与步骤(3)制得的物料混合,再次球磨分散10h,球磨结束后所得浆料真空脱泡,控制粘度为5000mPa.s,所得浆料进行流延处理,得到厚度为0.55mm胚体。
(5)将制得的胚体在承烧板上以1℃/min的升温速率升温至400℃,保温排胶5h,随后在1700℃条件下真空保温烧结4h,出料后即得。
该陶瓷基板根据相应标准测试得到的各项性能指标如下:
密度:3.58g.cm-3;导热率:186.8W/(mk);表面粗糙度Rmax≤0.2μm;抗弯强度:442MPa;断裂韧性:3.60±0.05MPa.m1/2

Claims (7)

1.一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板,其特征在于,该陶瓷基板由以下重量份的原料制成:氮化铝35-50、纳米氧化铝8-10、氧化钇2-3、氧化钼0.4-0.5、氟化锆0.5-1、聚乙烯醇1-2、离子液体10-15、异丙醇铝0.1-0.2、正硅酸乙酯0.4-0.5、去离子水20-25,适量的稀硝酸溶液。
2.如权利要求1所述的一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板,其特征在于,所述的氮化铝的氧含量为0.5-1.5wt.%,D50粒径为0.5-2μm。
3.如权利要求1所述的一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板,其特征在于,所述的氧化钇纯度大于99.99%,D50粒径为0.1-0.5μm。
4.如权利要求1所述的一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板,其特征在于,所述的氧化钼D50粒径为0.1-0.5μm。
5.如权利要求1所述的一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板,其特征在于,所述的氟化锆D50粒径为0.1-0.5μm。
6.如权利要求1所述的一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板,其特征在于,所述的离子液体为水溶性离子液体。
7.如权利要求1所述的一种低温烧结高致密度的大功率LED散热氮化铝陶瓷基板的制备方法分为以下几个步骤:
(1)先将异丙醇铝与8-10重量份的去离子水混合,置于90℃水浴条件下,磁力搅拌混合,待混合液的pH值不再变化为止,随后加入稀硝酸溶液,调节体系pH值为4.0-5.0,随后水浴升温至100℃,继续回流1-1.5h得到稳定的铝溶胶备用;
(2)将正硅酸乙酯与余量的去离子水混合,在50-60℃的水浴中超声反应20-30min,随后滴加稀硝酸溶液,调节溶液pH值为4.0-5.0,反应40-50min后得硅溶胶备用;
(3)将步骤(1)制备的铝溶胶加热至80-85℃,缓慢加入步骤(2)制备的硅溶胶,边加边搅拌,随后再加入聚乙烯醇,继续搅拌混合40-50min后备用;
(4)将纳米氧化铝与离子液体混合球磨20-30min,随后将其与氮化铝、氧化钇、氧化钼、氟化锆混合,继续球磨分散3-5h,最后再将其与步骤(3)制得的物料混合,再次球磨分散10-15h,球磨结束后所得浆料真空脱泡,控制粘度为4500-6000mPa.s,所得浆料进行流延处理,控制厚度,得到胚体;
(5)将制得的胚体在承烧板上以1-2℃/min的升温速率升温至400-500℃,保温排胶5-6h,随后在1650-1750℃条件下真空保温烧结4-5h,出料后即得。
CN201610574157.4A 2016-07-20 2016-07-20 一种低温烧结高致密度的大功率led散热氮化铝陶瓷基板 Withdrawn CN106167408A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610574157.4A CN106167408A (zh) 2016-07-20 2016-07-20 一种低温烧结高致密度的大功率led散热氮化铝陶瓷基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610574157.4A CN106167408A (zh) 2016-07-20 2016-07-20 一种低温烧结高致密度的大功率led散热氮化铝陶瓷基板

Publications (1)

Publication Number Publication Date
CN106167408A true CN106167408A (zh) 2016-11-30

Family

ID=58065756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610574157.4A Withdrawn CN106167408A (zh) 2016-07-20 2016-07-20 一种低温烧结高致密度的大功率led散热氮化铝陶瓷基板

Country Status (1)

Country Link
CN (1) CN106167408A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928764A (zh) * 2019-02-27 2019-06-25 郑海东 一种led灯用陶瓷材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421418A (zh) * 2003-01-10 2003-06-04 清华大学 高热导率氮化铝陶瓷
CN105384444A (zh) * 2015-10-27 2016-03-09 合肥龙多电子科技有限公司 一种含纳米碳球的高导热氮化铝-碳化硅复合电路板基板材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421418A (zh) * 2003-01-10 2003-06-04 清华大学 高热导率氮化铝陶瓷
CN105384444A (zh) * 2015-10-27 2016-03-09 合肥龙多电子科技有限公司 一种含纳米碳球的高导热氮化铝-碳化硅复合电路板基板材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928764A (zh) * 2019-02-27 2019-06-25 郑海东 一种led灯用陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN106187261A (zh) 一种碳化硅晶须增韧的大功率led用高导热氮化铝陶瓷基板
CN104017448B (zh) 一种高导热水溶性光扩散涂料及制备方法和制备涂层方法
CN106220182A (zh) 一种含纳米金刚石的大功率led散热陶瓷基板
CN103342543B (zh) 一种led陶瓷基板及其制备方法
CN111998310B (zh) 一种多级红外散热路灯灯罩
CN104763901B (zh) Led日光灯
CN105925243A (zh) 一种室温固化型高导热柔性硅胶
CN103265792B (zh) Led灯具散热材料及其制备方法和散热器、led灯具
CN106220183A (zh) 一种含纳米碳纤维增韧的大功率led散热氮化铝陶瓷基板
CN104141068A (zh) 一种led用抗静电绝缘铝基复合散热材料
CN106187204A (zh) 一种氟羟基磷灰石改性的高致密度大功率led散热陶瓷基板
CN106187208A (zh) 一种含纳米石墨的大功率led散热氮化铝陶瓷基板
CN104861862A (zh) 一种用于led灯具的散热涂料及其制备方法
CN106167408A (zh) 一种低温烧结高致密度的大功率led散热氮化铝陶瓷基板
CN106187250A (zh) 一种纳米氧化锆‑纳米铜增韧的大功率led散热氮化铝陶瓷基板
JPWO2019124147A1 (ja) ガラス被覆窒化アルミニウム粒子、その製造方法およびそれを含む放熱性樹脂組成物
CN106187210A (zh) 一种耐磨损大功率led散热氮化铝陶瓷基板
CN106187206A (zh) 一种掺杂氮化硼纳米管的大功率led散热用氮化铝陶瓷基板
CN106220185A (zh) 一种含纳米氧化锌的低温烧结大功率led散热陶瓷基板
CN106187205A (zh) 一种含碳纳米管的大功率led散热陶瓷基板
CN106187207A (zh) 一种高光洁度的大功率led散热氮化铝陶瓷基板
CN104894435A (zh) 一种掺杂金刚石的铝基复合散热材料及其制备方法
CN104195376A (zh) 一种led用含改性浮石粉的铝基复合散热材料
CN106187209A (zh) 一种掺硼改性的大功率led用氮化铝陶瓷基板
CN104141069B (zh) 一种led用低热阻铝基复合散热材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20161130