CN106160076A - 一种模块化串联型超级电容器的均压控制方法 - Google Patents

一种模块化串联型超级电容器的均压控制方法 Download PDF

Info

Publication number
CN106160076A
CN106160076A CN201610520897.XA CN201610520897A CN106160076A CN 106160076 A CN106160076 A CN 106160076A CN 201610520897 A CN201610520897 A CN 201610520897A CN 106160076 A CN106160076 A CN 106160076A
Authority
CN
China
Prior art keywords
diode
switching tube
switch group
monomer
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610520897.XA
Other languages
English (en)
Inventor
彭思敏
陈冲
王银杰
王建岗
姚志垒
沈翠凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangcheng Institute of Technology
Yancheng Institute of Technology
Original Assignee
Yangcheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangcheng Institute of Technology filed Critical Yangcheng Institute of Technology
Priority to CN201610520897.XA priority Critical patent/CN106160076A/zh
Publication of CN106160076A publication Critical patent/CN106160076A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • H02J7/0021
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公布了一种模块化串联型超级电容器的均压控制电路,包括:N个电容器单体、N个模块化开关组、1个电压检测电路、1个充电均压控制单元、1个放电均压控制单元、1个直流电源、1个直流负载,各模块化开关组由充放电开关组与均压开关组并联而成,充放电开关组与均压开关组均由1个开关管并联1个二极管。电路控制方法:电压检测电路检测各电容器单体端电压,并将电压值反馈给充、放电均压控制单元,然后判断各单体是否损坏,并控制开关管及二极管来剔除损坏的单体,在不影响其它单体充放电状态前提下实现串联型超级电容器均压控制。本发明的模块化串联型超级电容器控制方法的结构及控制简单、成本低,在单体损坏时能实现电容器均压控制。

Description

一种模块化串联型超级电容器的均压控制方法
技术领域
本发明涉及一种超级电容器的均压控制方法,尤其模块化串联型超级电容器的均压控制方法。
背景技术
由于超级电容器单体端电压一般较低,在大多数应用中,需要将它们串联连接以达到使用要求。在对这样一个串联连接的串联电池模组进行充电时,应该保证每个单体的电压相对均衡,即所谓的均压充电。但是,若电池模组中存在一个质量差的单体,该模组将会被过充电,使得模组电压高于正常情况或电池温度升高,进而影响其他单体,最终可能导致电池模组使用寿命的减少,其稳定性与效率降低,甚至导致系统崩溃。因此必须采取相应的措施来防止这种电压不均衡情况的发生。目前超级电容器的均压(电压均衡)方法主要包括能耗型与能量转移型,其中能耗型结构简单但效率低,能量转移型效率高但控制相对复杂、成本高。同时,这两种方法基本未考虑在充电过程中电池单体损坏时电池如何继续进行充放电均压控制。此外,目前的电压均衡方法主要应用于蓄电池,而针对超级电容器的均压方法研究成果不多。因此,研究超级电容器在充放电过程中某个单体损坏时继续进行充放电均压控制,具有重要的实际与理论价值。
如公开文献(CN104485703A)公开的一种锂离子储能电池电压均衡方法及其电路,其电路包括至少一有2个电池单体串联的电池组、电压采样电路、可控制电压采样电路及接收其反馈数据的DSP电路和DSP电路控制的双向DC/DC变流电路,针对N个电池单体,双向DC/DC变流电路包括至少N-1个均衡单元,均衡单元包括2个电池单体(BT1、BT2),2个N-MOS型场效应管(g1、g2),2个二极管,2个电感(L1,L2)和电容(C1)。该电路通过电压采样电路监测电池组的各电池单体信息,再将电压采样电路的信息反馈给DSP电路,由DSP电路来确定需要均衡的电池单体,并控制均衡单元进行均衡控制,从而实现电池充放电均衡控制。但其结构、控制复杂,且还需电感(L1,L2)和电容(C1)等器件,造成电路成本较高,同时,因未考虑某一个电池单体在充放电过程中损坏时提供一个充放电电流通路来实现均衡控制,易造成充放电过程因某一个电池单体损坏而导致充放电中断的后果,因而不利于实现推广应用。
发明内容
本发明的目的在于针对现有技术中均衡控制电路的缺点,提出一种结构与控制简单、所需开关器件较少的模块化电容器均压控制电路,其损耗小、能量转换效率高,并基于该均压控制电路提出一种在不影响其它电容器单体充放电状态前提下剔除损坏电池单体后实现串联型超级电容器充放电均压控制方法。
本发明的模块化串联型超级电容器均压控制电路包括:N个电容器单体(SC1~SCn)、N个模块化开关组(K1~Kn)、1个充电均压控制单元(1)、1个放电均压控制单元(2)、1个电压检测电路(3)、1个直流电源、1个直流负载,其中N为自然数,每个模块化开关组由1个充放电开关组与1个均压开关组并联而成,充放电开关组是由1个开关管(Q11~Q1n)与1个二极管(D11~D1n)并联而成,均压开关组则由1个开关管(Q21~Q2n)与1个二极管(D21~D2n)并联,具体拓朴结构为:直流电源(4)或直流负载(5)接第一电容器单体SC1的输入端,SC1的输出端与模块化开关组K1中的开关管Q11及二极管D11的输入端相连,开关管Q11及二极管D11的输出端与第二个电容器单体SC2的输入端相连,第一个电容器单体SC1的输入端与模块化开关组K1中的开关管Q21及二极管D21的输入端相连,开关管Q21及二极管D21的输出端与第二个电容器单体SC2的输入端相连;类似地,第二个电容器单体SC2的输出端与模块化开关组K2中的开关管Q12及二极管D12的输入端相连,开关管Q12及二极管D12的输出端与第三个电容器单体SC3的输入端相连,第二个电容器单体SC2的输入端与模块化开关组K2中的开关管Q22及二极管D22的输入端相连,开关管Q22及二极管D22的输出端与第三个电容器单体SC3的输入端相连;类似地,第n个电容器单体SCn的输出端与模块化开关组Kn中的开关管Q1n及二极管D1n的输入端相连,开关管Q1n及二极管D1n的输出端与超级电容器负极相连,第n个电容器单体SCn的输入端与模块化开关组Kn中的开关管Q2n及二极管D2n的输入端相连,开关管Q2n及二极管D2n的输出端与超级电容器负极相连。该电路由电压检测电路(1)检测各电容器单体(SC1~SCn)端电压,并将电压值分别反馈给放电均压控制单元(2)、充电均压控制单元(3);放电均压控制单元(2)与充电均压控制单元(3)根据电压检测电路(1)反馈的各电容器单体SC1~SCn)电压值与给定值进行比较,来判断各电容器单体的好坏与否,并控制模块化开关组中开关管及二极管的导通与关断来剔除损坏的电池单体,在不影响其它电容器单体充放电状态前提下实现串联型超级电容器充放电均压控制。
所述模块化电容器充电均压控制过程为:正常充电时,各开关管(Q11~Q1n)断开,各二极管(D11~D1n)正向导通,充电电流由直流电源(4)向第一个电容器单体SC1的输入端流入,经第1个二极管D11,再流入第二个电容器单体SC2的输入端,再经第2个经第2个二极管D12,再流入下一个电容器单体的输入端,类似地,直止最后经第n个二极管D1n的输出端接超级电容器负极;当充电均压控制单元检测到某单体SCk电压上升异常时,并判断其为坏状态,则控制均压开关组来开通对应的开关管Q2k,该异常单体将被剔除,充电电流不再经过第k个模块化开关组中对应二极管D1k,而经过第k个模块化开关组中对应开关管Q2k,k为自然数。
所述电容器放电均压控制过程为:正常放电时,各开关管(Q11~Q1n)闭合,充电电流经第n个开关管Q1n,再从第n个电容器单体SCn输出,再流入下一个开关管及电容器单体,类似地,直止最后经第1个开关管Q11,从第1个电容器单体SC1输出接超级电容器正极向直流负载(5)供电;当放电均压控制单元检测到某单体SCk电压上升异常时,并判断其为坏状态,则控制均压开关组来关断对应的开关管Q1k,该异常单体将被剔除,充电电流不再经过第k个模块化开关组中对应开关管Q1k,而经过第k个模块化开关组中对应二极管D2k
模块化超级电容器均压控制电路中的开关管(Q11~Q1n)及开关管(Q21~Q2n)可为IGBT或MOSFET,二极管(D11~D1n)及二极管(D21~D2n)可为普通二极管或肖特基二极管或MOSFET型二极管,放电均压控制单元为单片机、DSP、ARM等芯片中的一种,直流电源为蓄电池、燃料电池或光伏电池等新型储能电源中的一种。
本发明的模块化串联型超级电容器均压控制电路结构与控制简单、所需开关器件较少,损耗小、能量转换效率高,能在不影响其它电容器单体充放电状态前提下剔除损坏电池单体,实现串联型超级电容器充放电均压控制方法。
附图说明
图1为现有的串联型电池均压控制电路结构图;
图2为本发明的模块化串联型超级电容器均压控制电路结构图;
图3为本发明的充电时第2个电容器单体损坏时均压控制电路结构图。
图4为本发明的放电时第2个电容器单体损坏时均压控制电路结构图;
具体实施方式
下面结合具体的实例对本发明作进一步的详细说明,所述为对本发明的解释而不是限定。
由图2可知,本发明的电容器均压控制电路包括N个电容器单体(SC1~SCn)、N个模块化开关组(K1~Kn)、1个充电均压控制单元(1)、1个放电均压控制单元(2)、1个电压检测电路(3)、1个直流电源、1个直流负载,其中N为自然数,每个模块化开关组由1个充放电开关组与1个均压开关组并联而成,充放电开关组是由1个开关管(Q11~Q1n)与1个二极管(D11~D1n)并联而成,均压开关组则由1个开关管(Q21~Q2n)与1个二极管(D21~D2n)并联,具体拓朴结构为:直流电源(4)或直流负载(5)接第一电容器单体SC1的输入端,SC1的输出端与模块化开关组K1中的开关管Q11及二极管D11的输入端相连,开关管Q11及二极管D11的输出端与第二个电容器单体SC2的输入端相连,第一个电容器单体SC1的输入端与模块化开关组K1中的开关管Q21及二极管D21的输入端相连,开关管Q21及二极管D21的输出端与第二个电容器单体SC2的输入端相连;类似地,第n个电容器单体SCn的输出端与模块化开关组Kn中的开关管Q1n及二极管D1n的输入端相连,开关管Q1n及二极管D1n的输出端与超级电容器负极相连,第n个电容器单体SCn的输入端与模块化开关组Kn中的开关管Q2n及二极管D2n的输入端相连,开关管Q2n及二极管D2n的输出端与超级电容器负极相连。该电路由电压检测电路(1)检测各电容器单体(SC1~SCn)端电压,并将电压值分别反馈给放电均压控制单元(2)、充电均压控制单元(3);放电均压控制单元(2)与充电均压控制单元(3)根据电压检测电路(1)反馈的各电容器单体SC1~SCn)电压值与给定值进行比较,来判断各电容器单体的好坏与否,并控制模块化开关组中开关管及二极管的导通与关断来剔除损坏的电池单体,在不影响其它电容器单体充放电状态前提下实现串联型超级电容器充放电均压控制。
所述模块化电容器充电均压控制过程为:正常充电时,各开关管(Q11~Q1n)断开,各二极管(D11~D1n)正向导通,充电电流由直流电源(4)向第一个电容器单体SC1的输入端流入,经第1个二极管D11,再流入第二个电容器单体SC2的输入端,再经第2个经第2个二极管D12,再流入下一个电容器单体的输入端,类似地,直止最后经第n个二极管D1n的输出端接超级电容器负极;当充电均压控制单元检测到第2个单体SC2电压上升异常时,并判断其为坏状态,则控制均压开关组来开通对应的开关管Q22,该异常单体将被剔除,充电电流不再经过第2个模块化开关组中对应二极管D12,而经过第2个模块化开关组中对应开关管Q22,图3为充电时第2个电容器单体损坏时均压控制电路结构图。
所述电容器放电均压控制过程为:正常放电时,各开关管(Q11~Q1n)闭合,充电电流经第n个开关管Q1n,再从第n个电容器单体SCn输出,再流入下一个开关管及电容器单体,类似地,直止最后经第1个开关管Q11,从第1个电容器单体SC1输出接超级电容器正极向直流负载(5)供电;当放电均压控制单元检测到第2个单体SC2电压上升异常时,并判断其为坏状态,则控制均压开关组来关断对应的开关管Q12,该异常单体将被剔除,充电电流不再经过第2个模块化开关组中对应开关管Q12,而经过第2个模块化开关组中对应二极管D22,图4为充电时第2个电容器单体损坏时均压控制电路结构图。
模块化超级电容器均压控制电路中的开关管(Q11~Q1n)及开关管(Q21~Q2n)可为IGBT或MOSFET,二极管(D11~D1n)及二极管(D21~D2n)可为普通二极管或肖特基二极管或MOSFET型二极管,放电均压控制单元为单片机、DSP、ARM等芯片中的一种,直流电源为蓄电池、燃料电池或光伏电池等新型储能电源中的一种。

Claims (6)

1.本发明公布了一种模块化串联型超级电容器的均压控制电路,其特征在于该电路包括:N个电容器单体(SC1~SCn)、N个模块化开关组(K1~Kn)、1个充电均压控制单元(1)、1个放电均压控制单元(2)、1个电压检测电路(3)、1个直流电源、1个直流负载,其中N为自然数,每个模块化开关组由1个充放电开关组与1个均压开关组并联而成,充放电开关组是由1个开关管(Q11~Q1n)与1个二极管(D11~D1n)并联而成,均压开关组则由1个开关管(Q21~Q2n)与1个二极管(D21~D2n)并联,具体拓朴结构为:直流电源(4)或直流负载(5)接第一电容器单体SC1的输入端,SC1的输出端与模块化开关组K1中的开关管Q11及二极管D11的输入端相连,开关管Q11及二极管D11的输出端与第二个电容器单体SC2的输入端相连,第一个电容器单体SC1的输入端与模块化开关组K1中的开关管Q21及二极管D21的输入端相连,开关管Q21及二极管D21的输出端与第二个电容器单体SC2的输入端相连;类似地,第二个电容器单体SC2的输出端与模块化开关组K2中的开关管Q12及二极管D12的输入端相连,开关管Q12及二极管D12的输出端与第三个电容器单体SC3的输入端相连,第二个电容器单体SC2的输入端与模块化开关组K2中的开关管Q22及二极管D22的输入端相连,开关管Q22及二极管D22的输出端与第三个电容器单体SC3的输入端相连;类似地,第n个电容器单体SCn的输出端与模块化开关组Kn中的开关管Q1n及二极管D1n的输入端相连,开关管Q1n及二极管D1n的输出端与超级电容器负极相连,第n个电容器单体SCn的输入端与模块化开关组Kn中的开关管Q2n及二极管D2n的输入端相连,开关管Q2n及二极管D2n的输出端与超级电容器负极相连。该电路由电压检测电路(1)检测各电容器单体(SC1~SCn)端电压,并将电压值分别反馈给放电均压控制单元(2)、充电均压控制单元(3);放电均压控制单元(2)与充电均压控制单元(3)根据电压检测电路(1)反馈的各电容器单体SC1~SCn)电压值与给定值进行比较,来判断各电容器单体的好坏与否,并控制模块化开关组中开关管及二极管的导通与关断来剔除损坏的电池单体,在不影响其它电容器单体充放电状态前提下实现串联型超级电容器充放电均压控制。
所述模块化电容器充电均压控制过程为:正常充电时,各开关管(Q11~Q1n)断开,各二极管(D11~D1n)正向导通,充电电流由直流电源(4)向第一个电容器单体SC1的输入端流入,经第1个二极管D11,再流入第二个电容器单体SC2的输入端,再经第2个经第2个二极管D12,再流入下一个电容器单体的输入端,类似地,直止最后经第n个二极管D1n的输出端接超级电容器负极;当充电均压控制单元检测到某单体SCk电压上升异常时,并判断其为坏状态,则控制均压开关组来开通对应的开关管Q2k,该异常单体将被剔除,充电电流不再经过第k个模块化开关组中对应二极管D1k,而经过第k个模块化开关组中对应开关管Q2k,k为自然数。
所述电容器放电均压控制过程为:正常放电时,各开关管(Q11~Q1n)闭合,充电电流经第n个开关管Q1n,再从第n个电容器单体SCn输出,再流入下一个开关管及电容器单体,类似地,直止最后经第1个开关管Q11,从第1个电容器单体SC1输出接超级电容器正极向直流负载(5)供电;当放电均压控制单元检测到某单体SCk电压上升异常时,并判断其为坏状态,则控制均压开关组来关断对应的开关管Q1k,该异常单体将被剔除,充电电流不再经过第k个模块化开关组中对应开关管Q1k,而经过第k个模块化开关组中对应二极管D2k
2.根据权利要求1所述的模块化超级电容器均压控制电路,所述的开关管(Q11~Q1n)及开关管(Q21~Q2n)为IGBT或MOSFET。
3.根据权利要求1所述的模块化超级电容器均压控制电路,所述的二极管(D11~D1n)及二极管(D21~D2n)为普通二极管或肖特基二极管或MOSFET型二极管。
4.根据权利要求1所述的模块化超级电容器均压控制电路,所述的充电均压控制单元为单片机、DSP、ARM等芯片中的一种。
5.根据权利要求1所述的模块化超级电容器均压控制电路,所述的放电均压控制单元为单片机、DSP、ARM等芯片中的一种。
6.根据权利要求1所述的模块化超级电容器均压控制电路,所述的直流电源为蓄电池、燃料电池或光伏电池等新型储能电源中的一种。
CN201610520897.XA 2016-07-04 2016-07-04 一种模块化串联型超级电容器的均压控制方法 Pending CN106160076A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610520897.XA CN106160076A (zh) 2016-07-04 2016-07-04 一种模块化串联型超级电容器的均压控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610520897.XA CN106160076A (zh) 2016-07-04 2016-07-04 一种模块化串联型超级电容器的均压控制方法

Publications (1)

Publication Number Publication Date
CN106160076A true CN106160076A (zh) 2016-11-23

Family

ID=58061235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610520897.XA Pending CN106160076A (zh) 2016-07-04 2016-07-04 一种模块化串联型超级电容器的均压控制方法

Country Status (1)

Country Link
CN (1) CN106160076A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359680A (zh) * 2017-09-13 2017-11-17 重庆大及电子科技有限公司 电源补偿器充电电容蓄电管理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312442A (ja) * 1999-04-23 2000-11-07 Hitachi Ltd 直列電池充放電装置
CN2648675Y (zh) * 2003-04-04 2004-10-13 京东方科技集团股份有限公司 具有冗余电池单元的电池
WO2009096926A1 (en) * 2008-02-01 2009-08-06 Moog Inc. Device for controlling regeneration energy in an electronic motor drive having an lc filter to reduce conducted emissions from the motor back to the voltage source
CN102170139A (zh) * 2011-04-02 2011-08-31 西安工程大学 一种串联型电压暂变补偿电路拓扑及其控制方法
CN102195315A (zh) * 2010-03-03 2011-09-21 株式会社东芝 串联充放电系统及串联充放电系统中的单元电池的切断方法
CN104253469A (zh) * 2014-09-24 2014-12-31 于志章 二次电池组充放电管理系统
CN105656142A (zh) * 2016-03-10 2016-06-08 北京航空航天大学 一种锂离子动力电池组充放电主动均衡电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312442A (ja) * 1999-04-23 2000-11-07 Hitachi Ltd 直列電池充放電装置
CN2648675Y (zh) * 2003-04-04 2004-10-13 京东方科技集团股份有限公司 具有冗余电池单元的电池
WO2009096926A1 (en) * 2008-02-01 2009-08-06 Moog Inc. Device for controlling regeneration energy in an electronic motor drive having an lc filter to reduce conducted emissions from the motor back to the voltage source
CN102195315A (zh) * 2010-03-03 2011-09-21 株式会社东芝 串联充放电系统及串联充放电系统中的单元电池的切断方法
CN102170139A (zh) * 2011-04-02 2011-08-31 西安工程大学 一种串联型电压暂变补偿电路拓扑及其控制方法
CN104253469A (zh) * 2014-09-24 2014-12-31 于志章 二次电池组充放电管理系统
CN105656142A (zh) * 2016-03-10 2016-06-08 北京航空航天大学 一种锂离子动力电池组充放电主动均衡电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359680A (zh) * 2017-09-13 2017-11-17 重庆大及电子科技有限公司 电源补偿器充电电容蓄电管理系统
CN107359680B (zh) * 2017-09-13 2023-06-27 重庆大及电子科技有限公司 电源补偿器充电电容蓄电管理系统

Similar Documents

Publication Publication Date Title
CN101752624B (zh) 一种电池均衡充电方法及装置
CN105140998B (zh) 基于电感储能的串联电池组双向无损均衡电路
CN107733007B (zh) 一种电池组双目标直接均衡电路及均衡方法
CN109510319B (zh) 一种由超级电容、锂电池和铅酸电池组成的储能电池系统
CN108321871A (zh) 一种串联电池组的主动均衡电路及其均衡方法
CN105391130B (zh) 基于多相交错变换器的电池均衡电路及其控制方法
CN104505876A (zh) 串联储能系统的电容式电压均衡系统及方法
CN105958570A (zh) 一种锂电池电压均衡电路拓扑
CN102593893A (zh) 一种实现电池组均衡放电的系统
CN104113110A (zh) 一种电池均衡电路
CN109768589A (zh) 一种电池电压均衡设备
CN107134599A (zh) 一种串联电池组的电压均衡电路及其工作方法
CN209217738U (zh) 一种含正激变换器的电池主动均衡装置
CN104393631A (zh) 电量的均衡系统及其均衡的方法
CN110729795B (zh) 一种储能电站及其电池均衡控制方法
CN101471576A (zh) 一种充电装置及充电方法
CN106100072B (zh) 一种低损耗串联锂离子电池组电量均衡电路
CN107528353B (zh) 一种串联电池电压均衡方法及均衡电路
CN202309119U (zh) 单电感式蓄电池组均衡电路
CN106160076A (zh) 一种模块化串联型超级电容器的均压控制方法
CN108667104A (zh) 一种锂电池组交直流充电及主动均衡电路
CN203607876U (zh) 电池均衡管理装置
CN110341548A (zh) 一种基于外接电源的动力电池组主动均衡系统及控制方法
CN114759636A (zh) 电池组双层主动均衡电路
CN201690248U (zh) 一种蓄电池充放电的连接装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161123

RJ01 Rejection of invention patent application after publication