CN106160003A - 一种并网型风光联合发电系统的电能计量系统及方法 - Google Patents

一种并网型风光联合发电系统的电能计量系统及方法 Download PDF

Info

Publication number
CN106160003A
CN106160003A CN201610692496.2A CN201610692496A CN106160003A CN 106160003 A CN106160003 A CN 106160003A CN 201610692496 A CN201610692496 A CN 201610692496A CN 106160003 A CN106160003 A CN 106160003A
Authority
CN
China
Prior art keywords
branch road
wind
outfan
electric energy
energy meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610692496.2A
Other languages
English (en)
Other versions
CN106160003B (zh
Inventor
姚昆
赵森
郑志强
孟强
张颖
廖源
张丽敏
王圆圆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan NARI Ltd
Jincheng Power Supply Co of State Grid Shanxi Electric Power Co Ltd
Original Assignee
Wuhan NARI Ltd
Jincheng Power Supply Co of State Grid Shanxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan NARI Ltd, Jincheng Power Supply Co of State Grid Shanxi Electric Power Co Ltd filed Critical Wuhan NARI Ltd
Priority to CN201610692496.2A priority Critical patent/CN106160003B/zh
Publication of CN106160003A publication Critical patent/CN106160003A/zh
Application granted granted Critical
Publication of CN106160003B publication Critical patent/CN106160003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H02J3/383
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/063Details of electronic electricity meters related to remote communication
    • H02J13/0006
    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • H02S10/12Hybrid wind-PV energy systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Abstract

本发明公开了一种并网型风光联合发电系统的电能计量系统及方法,包括光伏阵列和风力发电阵,光伏阵列的各个输出端分别与其对应的逆变器的输入端连通,逆变器的输出端与箱式变压器的输入端连通,风力发电阵的各个输出端分别与其对应的箱式变压器的输入端连通,箱式变压器的输出端与升压站进线柜的输入端连通,升压站输出端与对端变电站公共电网连通;各个箱式变压器与升压站进线柜之间还设有支路电能表和电压电流互感器,支路电能表和电压电流互感器输出端与采集终端连接;对端变电站进线柜内设有关口电能表和电压电流互感器,关口电能表和电压电流互感器的输出端与采集终端连接,采集终端的输出端与主控服务器连通。

Description

一种并网型风光联合发电系统的电能计量系统及方法
技术领域
本发明涉及电能计量技术领域,具体地指一种并网型风光联合发电系统的电能计量系统及方法。
背景技术
近年来,在传统化石能源日渐枯竭和环境问题日益凸显的背景下,大力发展太阳能、风电等可再生能源已成为大势所趋,现阶段我国在风光资源开发上仍以独立开发为主,由于太阳能和风能具有间歇性和波动性的特征,单一的风力发电或光伏发电难以弥补上述特性,在我国一些光照条件和风能资源较好的地区,太阳能和风能在时序上可以较好的互补,保持输出功率稳定,因此,实现大规模风光联合发电具有重要意义。
并网型发电系统存在的一个重要问题,就是接入电网,采用单一利用的方式在工程设计上将风机或光伏所发电能分别接入升压站,经不同通道送入电网,输出功率特性互不影响。而大规模风光联合发电系统所产生的电能经同一升压站汇流后通过一条并网通道接入公共电网,汇流后的输出功率特性由风力发电和光伏发电共同决定。由于目前各地电力公司对风光可再生能源资源开发的补贴电价不同,单一利用方式采用单独计量可依据国家政策进行上网电价的,然而该方式工程造价偏高,不利于风、光资源联合开发,风光联合开发系统由于共用一条并网通道,对其进行准确计量需合理区分风电和光伏所发的电能,并按不同电价进行补贴,目前尚没有一套系统或方法能解决该问题。
发明内容
本发明的目的是为了克服上述不足提供一种并网型风光联合发电系统的电能计量系统及方法,与现有技术相比,本方案解决了传统风光联合发电系统独立计量的弊端,对风力发电和光伏发电统一计量,省去了大量的变压器、断路器和导线等设备,大大节约了工程投资,精确计量上网电量,促进了大规模风光可再生资源的合理利用。
为实现上述目的,本发明包括光伏阵列和风力发电阵,所述光伏阵列的各个输出端分别与其对应的逆变器的输入端连通,所述逆变器的输出端与箱式变压器的输入端连通,所述风力发电阵的各个输出端分别与其对应的箱式变压器的输入端连通,所述箱式变压器的输出端与升压站进线柜的输入端连通,所述升压站输出端与升压站的主变压器输入端连通,所述升压站与对端变电站公共电网连通;
所述各个箱式变压器与升压站进线柜之间还设有支路电能表,所述支路电能表输出端与采集终端连接;
所述对端变电站公共电网内设有关口电能表和电压电流互感器,所述关口电能表和电压电流互感器的输出端与采集终端连接,所述采集终端的输出端与主控服务器连通,所述主控服务器与升压站的二次系统服务器连通。
进一步地,一种并网型风光联合发电系统的电能计量系统的方法,步骤为:
1)采集一个周期内关口电能表和支路电能表的交流信号,计算每个采样周期内瞬时功率、发电量和波形畸变率THD;
2)采集终端接收关口电能表和支路电能表的实时数据,监测实施设备工况和电能质量,并对采集数据进行管理,上传至主控服务器;
3)主控服务器接收升压站的二次测控保护设备信号;
4)主控服务器对数据进行处理,依据关口电能表的关口发电量数据和各支路上支路电能表的发电量数据差值计算总损耗,考虑负荷波动、谐波和三相不平衡等各个因素对电能损耗的影响,采用BP神经网络方法进行建模和计算,得到各支路的电能损耗,统计光伏支路和风力支路的发电量;
5)依据国家对可再生能源发电上网计价办法,计算上网电量和补助金额。
进一步地,所述步骤4)中:
升压站中主变压器基础综合损耗ΔP1模型如式:
ΔP0=P02PK
ΔQ=Q0+Kβ2QK
ΔP1=ΔP0+KQ×ΔQ
式中:ΔP0--负载损耗,P0--空载损耗,Pk--额定负载损耗,β--平均负载系数,K--负荷波动系数,KQ--无功损耗增加系数,β--平均负载系数,Q0=I0%SN,QK=UK%SN,I0%--空载电流百分比,UK%--短路电压百分比,SN--变压器额定容量。
升压站中主变压器谐波损耗模型ΔP2如式:
ΔP 2 = Σ n = 2 ∞ I n 2 n R T
式中:I--基波电流;UN--变压器归算额定电压。
三相不平衡附加损耗模型ΔP3如式:
ΔP3={[(Ia-Ib)2+(Ia-Ic)2+(Ib-Ic)2]/3}×RT×10-3
式中:Ia、Ib、Ic--基波电流。
线路损耗模型ΔP4如式:
ΔP 4 = 3 I i 2 R
采用BP神经网络建立变压器和线路损耗模型,利用BP神经网络算法对其进行计算,输入层为负载率、第一光伏电路电流畸变率、第一光伏电路平均电流、三相不平衡度、第n风力电路电流畸变率、第n风力电路平均电流,第一输出层和第二输出层为各支路损耗值,通过关口电能表计量的有功P0和各支路电能表计量的Pi(i=1、2……N),计算其总损耗为进而计算得到各支路损耗比,统计光伏支路和风力支路数量,从而计算得到光伏支路和风力支路损耗电量,随后可计算各列光伏支路和各列风机支路的发电量。
本发明的优点在于:与现有技术相比,本方案解决了传统风光联合发电系统独立计量的弊端,对风力发电和光伏发电统一计量,省去了大量的变压器、断路器和导线等设备,大大节约了工程投资,精确计量上网电量,促进了大规模风光可再生资源的合理利用。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为本发明的系统原理结构图。
图2为本发明的神经网络结构图。
图中:光伏阵列1、风力发电阵2、逆变器3、箱式变压器4、升压站进线柜5、升压站6、对端变电站公共电网7、支路电能表8、关口电能表9、电压电流互感器10、采集终端11、主控服务器12、输入层I、隐藏层II、第一输出层III、第二输出层IV、负载率A、第一光伏电路电流畸变率B、第一光伏电路平均电流C、三相不平衡度D、第n风力电路电流畸变率E、第n风力电路平均电流F、损耗比G。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1-2,本发明一种并网型风光联合发电系统的电能计量系统,包括光伏阵列1和风力发电阵2,所述光伏阵列1的各个输出端分别与其对应的逆变器3的输入端连通,所述逆变器3的输出端与箱式变压器4的输入端连通,所述风力发电阵2的各个输出端分别与其对应的箱式变压器4的输入端连通,所述箱式变压器4的输出端与升压站进线柜5的输入端连通,所述升压站进线柜5输出端与升压站6的主变压器输入端连通,所述升压站6与对端变电站公共电网7连通;
所述各个箱式变压器4与升压站进线柜5之间还设有支路电能表8,所述支路电能表8输出端与采集终端10连接;
所述对端变电站公共电网7内设有关口电能表9和电压电流互感器10,所述关口电能表9和电压电流互感器10的输出端与采集终端11连接,所述采集终端11的输出端与主控服务器12连通,所述主控服务器12与升压站6的二次系统服务器连通。
进一步地,一种并网型风光联合发电系统的电能计量系统的方法,步骤为:
1)采集一个周期内关口电能表9和支路电能表8的交流信号,计算每个采样周期内瞬时功率、发电量和波形畸变率THD;
2)采集终端11接收关口电能表9和支路电能表8的实时数据,监测实施设备工况和电能质量,并对采集数据进行管理,上传至主控服务器12;
3)主控服务器12接收升压站6的二次测控保护设备信号;
4)主控服务器12对数据进行处理,依据关口电能表9的关口发电量数据和各支路上支路电能表8的发电量数据差值计算总损耗,考虑负荷波动、谐波和三相不平衡等各个因素对电能损耗的影响,采用BP神经网络方法进行建模和计算,得到各支路的电能损耗,统计光伏支路和风力支路的发电量;
5)依据国家对可再生能源发电上网计价办法,计算上网电量和补助金额。
进一步地,所述步骤4)中:
升压站6中主变压器基础综合损耗ΔP1模型如式:
ΔP0=P02PK
ΔQ=Q0+Kβ2QK
ΔP1=ΔP0+KQ×ΔQ
式中:ΔP0--负载损耗,P0--空载损耗,Pk--额定负载损耗,β--平均负载系数,K--负荷波动系数,KQ--无功损耗增加系数,β--平均负载系数,Q0=I0%SN,QK=UK%SN,I0%--空载电流百分比,UK%--短路电压百分比,SN--变压器额定容量。
升压站6中主变压器谐波损耗模型ΔP2如式:
ΔP 2 = Σ n = 2 ∞ I n 2 n R T
式中:I--基波电流;UN--变压器归算额定电压。
三相不平衡附加损耗模型ΔP3如式:
ΔP3={[(Ia-Ib)2+(Ia-Ic)2+(Ib-Ic)2]/3}×RT×10-3
式中:Ia、Ib、Ic--基波电流。
线路损耗模型ΔP4如式:
ΔP 4 = 3 I i 2 R
采用BP神经网络建立变压器和线路损耗模型,利用BP神经网络算法对其进行计算,输入层I为负载率A、第一光伏电路电流畸变率B、第一光伏电路平均电流C、三相不平衡度D、第n风力电路电流畸变率E、第n风力电路平均电流F,第一输出层III和第二输出层IV为各支路损耗值,通过关口电能表9计量的有功P0和各支路电能表8计量的Pi(i=1、2……N),计算其总损耗为进而计算得到各支路损耗比,统计光伏支路和风力支路数量,从而计算得到光伏支路和风力支路损耗电量,随后可计算各列光伏支路和各列风机支路的发电量。
主控服务器12除了数据存储和处理外,也用于接收调度信号,并可发出远程信号令远动程序动作,关闭部分支路,协调光伏阵列1和风力发电阵2的输出功率特性,保证联合发电系统输出功率稳定。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (3)

1.一种并网型风光联合发电系统的电能计量系统,包括光伏阵列(1)和风力发电阵(2),其特征在于:所述光伏阵列(1)的各个输出端分别与其对应的逆变器(3)的输入端连通,所述逆变器(3)的输出端与箱式变压器(4)的输入端连通,所述风力发电阵(2)的各个输出端分别与其对应的箱式变压器(4)的输入端连通,所述箱式变压器(4)的输出端与升压站进线柜(5)的输入端连通,所述升压站进线柜(5)输出端与升压站(6)的主变压器输入端连通,所述升压站(6)与对端变电站公共电网(7)连通;
所述各个箱式变压器(4)与升压站进线柜(5)之间还设有支路电能表(8),所述支路电能表(8)输出端与采集终端(10)连接;
所述对端变电站公共电网(7)内设有关口电能表(9)和电压电流互感器(10),所述关口电能表(9)和电压电流互感器(10)的输出端与采集终端(11)连接,所述采集终端(11)的输出端与主控服务器(12)连通,所述主控服务器(12)与升压站(6)的二次系统服务器连通。
2.一种并网型风光联合发电系统的电能计量系统的方法,其特征在于:
1)采集一个周期内关口电能表(9)和支路电能表(8)的交流信号,计算每个采样周期内瞬时功率、发电量和波形畸变率THD;
2)采集终端(11)接收关口电能表(9)和支路电能表(8)的实时数据,监测实施设备工况和电能质量,并对采集数据进行管理,上传至主控服务器(12);
3)主控服务器(12)接收升压站(6)的二次测控保护设备信号;
4)主控服务器(12)对数据进行处理,依据关口电能表(9)的关口发电量数据和各支路上支路电能表(8)的发电量数据差值计算总损耗,考虑负荷波动、谐波和三相不平衡等各个因素对电能损耗的影响,采用BP神经网络方法进行建模和计算,得到各支路的电能损耗,统计光伏支路和风力支路的发电量;
5)依据国家对可再生能源发电上网计价办法,计算上网电量和补助金额。
3.按权利要求2所述的一种并网型风光联合发电系统的电能计量系统的方法,其特征在于:所述步骤4)中:
升压站(6)中主变压器基础综合损耗ΔP1模型如式(1):
ΔP0=P02PK
ΔQ=Q0+Kβ2QK
ΔP1=ΔP0+KQ×ΔQ (1)
式中:ΔP0--负载损耗,P0--空载损耗,Pk--额定负载损耗,β--平均负载系数,K--负荷波动系数,KQ--无功损耗增加系数,β--平均负载系数,Q0=I0%SN,QK=UK%SN,I0%--空载电流百分比,UK%--短路电压百分比,SN--变压器额定容量。
升压站(6)中主变压器谐波损耗模型ΔP2如式(2):
ΔP 2 = Σ n = 2 ∞ I n 2 n R T - - - ( 2 )
式中:I--基波电流;UN--变压器归算额定电压。
三相不平衡附加损耗模型ΔP3如式(3):
ΔP3={[(Ia-Ib)2+(Ia-Ic)2+(Ib-Ic)2]/3}×RT×10-3 (3)
式中:Ia、Ib、Ic--基波电流。
线路损耗模型ΔP4如式(4):
ΔP 4 = 3 I i 2 R - - - ( 4 )
采用BP神经网络建立变压器和线路损耗模型,利用BP神经网络算法对其进行计算,输入层I为负载率A、第一光伏电路电流畸变率B、第一光伏电路平均电流C、三相不平衡度D、第n风力电路电流畸变率E、第n风力电路平均电流F,第一输出层III和第二输出层IV为各支路损耗值,通过所述关口电能表(9)计量的有功P0和各所述支路电能表(8)计量的Pi(i=1、2……N),计算其总损耗为进而计算得到各支路损耗比,统计光伏支路和风力支路数量,从而计算得到光伏支路和风力支路损耗电量,随后计算各列光伏支路和各列风机支路的发电量。
CN201610692496.2A 2016-08-19 2016-08-19 一种并网型风光联合发电系统的电能计量系统的方法 Active CN106160003B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610692496.2A CN106160003B (zh) 2016-08-19 2016-08-19 一种并网型风光联合发电系统的电能计量系统的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610692496.2A CN106160003B (zh) 2016-08-19 2016-08-19 一种并网型风光联合发电系统的电能计量系统的方法

Publications (2)

Publication Number Publication Date
CN106160003A true CN106160003A (zh) 2016-11-23
CN106160003B CN106160003B (zh) 2020-01-14

Family

ID=57331421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610692496.2A Active CN106160003B (zh) 2016-08-19 2016-08-19 一种并网型风光联合发电系统的电能计量系统的方法

Country Status (1)

Country Link
CN (1) CN106160003B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110969339A (zh) * 2019-06-06 2020-04-07 国网辽宁省电力有限公司 一种新能源现货交易电量结算方法
CN111239485A (zh) * 2020-01-17 2020-06-05 明阳智慧能源集团股份公司 一种风力发电机组的自耗电软件计量方法
CN112180157A (zh) * 2020-09-28 2021-01-05 国电联合动力技术有限公司 风电机组发电量计量方法及基于其的智能分析方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769788A (zh) * 2009-12-29 2010-07-07 青海国泰节能技术研究院 一种光伏电站光功率预测及发电量预测的方法
CN202305659U (zh) * 2011-06-29 2012-07-04 江苏林洋电子股份有限公司 一种计量多路新能源并网电量的电能表
WO2015008706A1 (ja) * 2013-07-19 2015-01-22 ローム株式会社 電力管理システム、接続中継部
CN105186969A (zh) * 2015-08-24 2015-12-23 中国能源建设集团湖南省电力设计院有限公司 一种具有无功自补偿风光互补发电控制方法及系统
CN205123649U (zh) * 2015-12-01 2016-03-30 常州信息职业技术学院 太阳能和风能的联合发电系统
CN205404627U (zh) * 2015-12-30 2016-07-27 南京宇能新能源科技有限公司 基于光通讯网络的新能源电能计量仪表系统
CN205945095U (zh) * 2016-08-19 2017-02-08 国网电力科学研究院武汉南瑞有限责任公司 一种并网型风光联合发电系统的电能计量系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769788A (zh) * 2009-12-29 2010-07-07 青海国泰节能技术研究院 一种光伏电站光功率预测及发电量预测的方法
CN202305659U (zh) * 2011-06-29 2012-07-04 江苏林洋电子股份有限公司 一种计量多路新能源并网电量的电能表
WO2015008706A1 (ja) * 2013-07-19 2015-01-22 ローム株式会社 電力管理システム、接続中継部
CN105186969A (zh) * 2015-08-24 2015-12-23 中国能源建设集团湖南省电力设计院有限公司 一种具有无功自补偿风光互补发电控制方法及系统
CN205123649U (zh) * 2015-12-01 2016-03-30 常州信息职业技术学院 太阳能和风能的联合发电系统
CN205404627U (zh) * 2015-12-30 2016-07-27 南京宇能新能源科技有限公司 基于光通讯网络的新能源电能计量仪表系统
CN205945095U (zh) * 2016-08-19 2017-02-08 国网电力科学研究院武汉南瑞有限责任公司 一种并网型风光联合发电系统的电能计量系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VINCENT P. A. LONIJ ET AL.: "A scalable demand and renewable energy forecasting system for distribution grids", 《POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016》 *
于海波等: "新能源发电并网中电能计量问题的研究", 《电测与仪表》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110969339A (zh) * 2019-06-06 2020-04-07 国网辽宁省电力有限公司 一种新能源现货交易电量结算方法
CN110969339B (zh) * 2019-06-06 2023-06-09 国网辽宁省电力有限公司 一种新能源现货交易电量结算方法
CN111239485A (zh) * 2020-01-17 2020-06-05 明阳智慧能源集团股份公司 一种风力发电机组的自耗电软件计量方法
CN111239485B (zh) * 2020-01-17 2022-03-22 明阳智慧能源集团股份公司 一种风力发电机组的自耗电软件计量方法
CN112180157A (zh) * 2020-09-28 2021-01-05 国电联合动力技术有限公司 风电机组发电量计量方法及基于其的智能分析方法和系统
CN112180157B (zh) * 2020-09-28 2022-07-29 国电联合动力技术有限公司 风电机组发电量计量方法及基于其的智能分析方法和系统

Also Published As

Publication number Publication date
CN106160003B (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
Colmenar-Santos et al. Technical challenges for the optimum penetration of grid-connected photovoltaic systems: Spain as a case study
CN107069814B (zh) 配网分布式电源容量布点的模糊机会约束规划方法与系统
Behravesh et al. Control strategy for improving voltage quality in residential power distribution network consisting of roof-top photovoltaic-wind hybrid systems, battery storage and electric vehicles
CN105337301B (zh) 微电网并网点的选择方法和装置
CN103746404B (zh) 一种风光火打捆直流外送系统稳定性评价方法
CN103366064A (zh) 风电场动态模型参数测试方法
CN104779644B (zh) 一种风电场并网稳定性评估方法
Babazadeh et al. Optimal energy management of wind power generation system in islanded microgrid system
CN106160003A (zh) 一种并网型风光联合发电系统的电能计量系统及方法
CN104569527A (zh) 一种用于低压分布式光伏发电的计量箱
Shanmugapriya et al. IoT based approach in a power system network for optimizing distributed generation parameters
Zhou et al. Optimal sizing of pv system and bess for smart household under stepwise power tariff
Ding et al. Planning of soft open point integrated with ESS in active distribution network
CN101707372A (zh) 一种用于电能质量电压指标合格率的计算及发布方法
CN205945095U (zh) 一种并网型风光联合发电系统的电能计量系统
Kuriakose et al. Design & Development of PV-Wind Hybrid Grid Connected System
Faranda et al. SCADA system for optimization of energy exchange with the BESS in a residential case
Majumder et al. KPI for Solar PV-diesel hybrid mini grids in remote islands of Bangladesh
Alnawafah et al. Modeling and validation of jordanian power grid in DIgSILENT PowerFactory toward implementing a smart grid scenario
CN204374261U (zh) 一种用于低压分布式光伏发电的计量箱
CN104268798A (zh) 一种分布式电源及电动汽车对配电网影响的评估方法
CN105337300B (zh) 微电网接入配电网时的交换功率控制方法及装置
Besheer et al. Status Monitoring and Performance Investigation of a 5.1 kW Rooftop Grid-Tie Photovoltaic Energy System in Egypt
Jayawardana et al. Novel control strategy for operation of energy storage in a renewable energy-based microgrid
Wang et al. Research on Leakage Fault Mechanism of Photovoltaic Power Station Considering Photovoltaic Inverter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant