CN106153616A - 一种测定滑溜水返排液中稠化剂含量的方法 - Google Patents

一种测定滑溜水返排液中稠化剂含量的方法 Download PDF

Info

Publication number
CN106153616A
CN106153616A CN201610824369.3A CN201610824369A CN106153616A CN 106153616 A CN106153616 A CN 106153616A CN 201610824369 A CN201610824369 A CN 201610824369A CN 106153616 A CN106153616 A CN 106153616A
Authority
CN
China
Prior art keywords
thickening agent
discharge opeing
slippery water
water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610824369.3A
Other languages
English (en)
Other versions
CN106153616B (zh
Inventor
郭建春
李杨
王世彬
孙勇
潘宝峰
李耕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201610824369.3A priority Critical patent/CN106153616B/zh
Publication of CN106153616A publication Critical patent/CN106153616A/zh
Application granted granted Critical
Publication of CN106153616B publication Critical patent/CN106153616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3196Correlating located peaks in spectrum with reference data, e.g. fingerprint data

Abstract

本发明公开了一种测定滑溜水返排液中稠化剂含量的方法,包括:(1)取2ml返排液加到锥形瓶中,加入48‑52ml清水;(2)向锥形瓶中加入0.2‑0.5g磷酸二氢钾、0.2‑1g双氧水和0.02‑0.5g磷酸氢二钾,最后加入0.1‑0.4g淀粉―碘化钾溶液,放置待测;(3)配制纯滑溜水稠化剂,进行显色反应,再稀释成100、200、300、400、500、600、700、800、900、1000mg/L溶液,测定其吸光度,以稠化剂浓度为横坐标,吸光度值为纵坐标,绘制标准曲线;(4)将待测溶液进行吸光度测定,从标准曲线上直接查出稠化剂浓度。本发明能提高滑溜水压裂液利用率,减轻页岩气开发带来的环保压力。

Description

一种测定滑溜水返排液中稠化剂含量的方法
技术领域
本发明属于石油开发领域,具体涉及页岩气增产改造中滑溜水返排液稠化剂含量的测定方法。
背景技术
近年来,世界上各个国家页岩气勘探开发技术发展速度非常快。尤其是美国从1821年起就开始对页岩气进行开发开采。然而由于页岩致密低渗,招致了页岩气开采难度较大、资本成本费用较高,21世纪之前,页岩气大规模开发在经济上是不可行性的。随着水平井钻井技术和水力压裂技术等增产措施的发展,开采成本费用下降幅度大,表明了页岩气已经开始具备商业化开发的可行性。
页岩气是指以吸附和游离状态存在于低孔、特低渗、富含有机质的暗色泥页岩或高碳泥页层系中的天然气。属于典型的超低渗气藏,开采必须进行大型水力压裂(体积压裂)生产才具有一定的产能,资源潜力大,中国页岩气资源地质储量为(30―160)×1012m3,是天然气开发的重要目标。基本特征是开发初期产量较高,产量在早期递减速度较快,后期低产稳产时间较长。
水力压裂技术是低渗油气藏增产改造的重要措施,更是目前开采天然气的重要手段。它主要是利用地面高压泵车组,以超过地层吸收液体能力的注入速度将压裂液泵入储层产生裂缝,然后继续泵入含支撑剂的压裂液,让裂缝继续扩展延伸。泵车停泵后压裂液返排到地面,储层闭合压力下,裂缝中有起支撑作用的支撑剂阻止裂缝在上覆岩层压力下闭合,这样储层中就形成了许多具有一定宽度和长度的高速流通通道。
滑溜水是指粘度较低、防摩减阻性能较好的一种压裂液,是用于页岩储层增产改造中最常见的压裂液体系,主要成分包括:水、稠化剂、防膨剂、助排剂和杀菌剂。其中稠化剂主要是为增加粘度继而携带支撑剂下入地层。在页岩气单井压裂过程中需消耗上万方滑溜水,一个井组施工液体用量超过10×104m3,如果能对滑溜水压裂液进行回收和重复利用,不但可以降低施工成本,而且能有效提高压裂液利用率。
滑溜水返排液是指滑溜水压裂液在完成改造地层的使命后,由于地面停泵导致泵压消失,使地层压力大于井筒静夜柱压力和大气压力之和,在压差作用下将储层的压裂液“吐出来”,但是滑溜水中的稠化剂分子容易与在页岩储层发生吸附滞留作用导致浓度降低,如果想要继续回收利用返排液,就必须对返排液中稠化剂的浓度进行测定,从而确定滑溜水再次入井前的稠化剂加量,以保证滑溜水压裂液能够有效携带支撑剂进入地层。
另一方面,被泵车泵入地层的滑溜水压裂液中掺入了大量化学物质,国家环保部门正在担忧这项技术将会污染水源,威胁当地生态环境和居民身体健康。而国家能源部门则认为页岩气的高效开发是保证我国经济增长的重要保障,所以在未来的很长一段时间里,会继续加大对页岩气气藏的开采。为消除国家环保部门的担忧,也为保障国家能源安全,需要对现有页岩气开发技术进行优化改进,而滑溜水返排液的回收利用就是该项技术优化的重中之重。
关于滑溜水返排液的回收分析检测,国内外学者已经提出了多种方法,但这些方法主要的检测指标都集中在酸碱度、固体含量、离子浓度等方面,还没有关注返排液中稠化剂的含量问题。
发明内容
本发明的目的在于提供一种测定滑溜水返排液中稠化剂含量的方法,该方法原理可靠,操作简单,能够精确、快速测出返排液中稠化剂浓度,从而为页岩储层的增产改造节约施工成本,提高滑溜水压裂液利用率,减轻页岩气开发带来的环保压力。
为解决上述技术问题,本发明提供以下技术方案。
一种测定滑溜水返排液中稠化剂含量的方法,依次包括以下步骤:
(1)样品制备:取2ml返排液加到容量为200ml的锥形瓶中,向其中加入48-52ml清水,混匀待用;
(2)样品显色:向步骤(1)中的锥形瓶中加入0.2-0.5g磷酸二氢钾,混合均匀后,向其中继续加入0.2-1g双氧水,10-15min后,再向锥形瓶中加入0.02-0.5g磷酸氢二钾,溶液反应5-10min,最后向瓶中加入0.1-0.4g淀粉―碘化钾溶液,放置20-30min待测;
(3)标准曲线绘制:准确配制浓度为1000mg/L纯滑溜水稠化剂,按照步骤(1)、(2)所述方法进行显色反应,再将已经进行显色反应的稠化剂溶液稀释成100、200、300、400、500、600、700、800、900、1000mg/L溶液,用分光光度计以清水为参比,测定各个浓度下的吸光度值,再以稠化剂浓度为横坐标,吸光度值为纵坐标,绘制标准曲线;
(4)样品测定:将步骤(2)的待测溶液加入到石英比色皿中,以清水为参比进行吸光度测定,再从标准曲线上直接查出稠化剂浓度,即可得到滑溜水返排液中稠化剂的含量。
所述双氧水中H2O2含量为30质量%,淀粉碘化钾溶液是将淀粉1g、碘化钾1.5g溶解在25ml水中。
所述磷酸二氢钾和磷酸氢二钾为缓冲液。
与现有技术相比,本发明的有益效果是:提出了一种适用于页岩储层增产改造的滑溜水返排液稠化剂的浓度测试方法,能够精确快速测出返排液中稠化剂含量,为页岩储层增产改造节约了施工成本,同时减轻了页岩气开发带来的环保压力,对比现有滑溜水返排液的分析检测技术更具针对性和实用性。
附图说明
图1为吸光度-稠化剂浓度标准曲线和样品标定曲线。
具体实施方式
本实例以川南页岩气藏压裂返排液为例,采用本发明所提供的方法测定该区块返排液中稠化剂含量。
实施例1
(1)样品制备:取2ml返排液加到容量为200ml锥形瓶中,向其中加入48ml清水,混匀待用;
(2)样品显色:向步骤(1)中的锥形瓶中加入0.5g磷酸二氢钾,混合均匀后,向其中继续加入1g双氧水10min后,再向锥形瓶中加入0.02g磷酸氢二钾,溶液反应10min,最后向瓶中加入0.2g淀粉―碘化钾溶液,放置20min待测;
(3)标准曲线绘制:准确配制浓度为1000mg/L纯滑溜水稠化剂,按照步骤(1)、(2)进行显色反应,再将已经进行显色反应的稠化剂溶液稀释成100、200、300、400、500、600、700、800、900、1000mg/L溶液, 25min后用分光光度计以清水为参比,测定各个浓度下的吸光度值;以稠化剂分子浓度横坐标,吸光度值为纵坐标,绘制标准曲线如图1所示;
(4)样品测定:将步骤(2)中已经放置了20min的待测溶液加入到石英比色皿中在波长λ=578nm处以清水为参比进行吸光度测定;从标准曲线上查出的稠化剂浓度即为返排液中稠化剂的含量,结果可在图1中读出。
实施例2
(1)样品制备:取2ml返排液加到容量为200ml锥形瓶中,向其中加入48ml清水,混匀待用;
(2)样品显色:向步骤(1)中的锥形瓶中加入0.3g磷酸二氢钾,混合均匀后,向其中继续加入0.3g双氧水10min后,再向锥形瓶中加入0.5g磷酸氢二钾,溶液反应5min,最后向瓶中加入0.4g淀粉―碘化钾溶液,放置25min待测;
(3)标准曲线绘制:准确配制浓度为1000mg/L纯滑溜水稠化剂,按照步骤(1)、(2)进行显色反应,再将已经进行显色反应的稠化剂溶液稀释成100、200、300、400、500、600、700、800、900、1000mg/L溶液, 25min后用分光光度计以清水为参比,测定各个浓度下的吸光度值;以稠化剂分子浓度横坐标,吸光度值为纵坐标,绘制标准曲线如图1所示;
(4)样品测定:将步骤(2)中已经放置了25min的待测溶液加入到石英比色皿中在波长λ=578nm处以清水为参比进行吸光度测定;从标准曲线上查出的稠化剂浓度即为返排液中稠化剂的含量,结果可在图1中读出。
从图1的实验结果中可以看出标准曲线可信度较高,趋势线线性拟合度较好,滑溜水返排液中稠化剂浓度的测定结果十分可靠,吸光度实际曲线与拟合曲线对应的浓度结果几乎相同。
综上所述,本发明所提出的滑溜水返排液稠化剂浓度的测定方法具有很好的针对性和实用性,能够页岩储层增产改造节约施工成本,同时减轻页岩气开发带来的环保压力。

Claims (3)

1.一种测定滑溜水返排液中稠化剂含量的方法,依次包括以下步骤:
(1)样品制备:取2ml返排液加到锥形瓶中,向其中加入48-52ml清水,混匀待用;
(2)样品显色:向步骤(1)中的锥形瓶中加入0.2-0.5g磷酸二氢钾,混合均匀后,向其中继续加入0.2-1g双氧水,10-15min后,再向锥形瓶中加入0.02-0.5g磷酸氢二钾,溶液反应5-10min,最后向瓶中加入0.1-0.4g淀粉―碘化钾溶液,放置20-30min待测;
(3)标准曲线绘制:准确配制浓度为1000mg/L纯滑溜水稠化剂,按照步骤(1)、(2)所述方法进行显色反应,再将已经进行显色反应的稠化剂溶液稀释成100、200、300、400、500、600、700、800、900、1000mg/L溶液,用分光光度计以清水为参比,测定各个浓度下的吸光度值,再以稠化剂浓度为横坐标,吸光度值为纵坐标,绘制标准曲线;
(4)样品测定:将步骤(2)的待测溶液加入到石英比色皿中,以清水为参比进行吸光度测定,再从标准曲线上直接查出稠化剂浓度,即可得到滑溜水返排液中稠化剂的含量。
2.如权利要求1所述的一种测定滑溜水返排液中稠化剂含量的方法,其特征在于,所述双氧水中H2O2含量为30质量%。
3.如权利要求1所述的一种测定滑溜水返排液中稠化剂含量的方法,其特征在于,所述淀粉碘化钾溶液是将淀粉1g、碘化钾1.5g溶解在25ml水中。
CN201610824369.3A 2016-09-14 2016-09-14 一种测定滑溜水返排液中稠化剂含量的方法 Active CN106153616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610824369.3A CN106153616B (zh) 2016-09-14 2016-09-14 一种测定滑溜水返排液中稠化剂含量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610824369.3A CN106153616B (zh) 2016-09-14 2016-09-14 一种测定滑溜水返排液中稠化剂含量的方法

Publications (2)

Publication Number Publication Date
CN106153616A true CN106153616A (zh) 2016-11-23
CN106153616B CN106153616B (zh) 2018-09-21

Family

ID=57341561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610824369.3A Active CN106153616B (zh) 2016-09-14 2016-09-14 一种测定滑溜水返排液中稠化剂含量的方法

Country Status (1)

Country Link
CN (1) CN106153616B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307640A (zh) * 2017-07-28 2019-02-05 中国石油天然气股份有限公司 一种测定滑溜水中降阻剂含量的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078399A (ja) * 2008-09-25 2010-04-08 Chubu Electric Power Co Inc アスベスト判定法
CN102478506A (zh) * 2010-11-22 2012-05-30 刘筱筱 一种酸液稠化剂样品的红外光谱图分析方法
CN102998262A (zh) * 2011-09-14 2013-03-27 刘高昌 酸液稠化剂样品的红外谱图分析方法
CN104345042A (zh) * 2014-11-05 2015-02-11 中国石油集团川庆钻探工程有限公司 页岩气压裂返排液回收分析检测方法
CN105223143A (zh) * 2015-09-02 2016-01-06 中国石油天然气集团公司 一种测定油田污水中压裂液含量的方法
WO2016032438A1 (en) * 2014-08-26 2016-03-03 Halliburton Energy Services, Inc. Systems and methods for analyzing the characteristics and compositions of cement additives

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078399A (ja) * 2008-09-25 2010-04-08 Chubu Electric Power Co Inc アスベスト判定法
CN102478506A (zh) * 2010-11-22 2012-05-30 刘筱筱 一种酸液稠化剂样品的红外光谱图分析方法
CN102998262A (zh) * 2011-09-14 2013-03-27 刘高昌 酸液稠化剂样品的红外谱图分析方法
WO2016032438A1 (en) * 2014-08-26 2016-03-03 Halliburton Energy Services, Inc. Systems and methods for analyzing the characteristics and compositions of cement additives
CN104345042A (zh) * 2014-11-05 2015-02-11 中国石油集团川庆钻探工程有限公司 页岩气压裂返排液回收分析检测方法
CN105223143A (zh) * 2015-09-02 2016-01-06 中国石油天然气集团公司 一种测定油田污水中压裂液含量的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUO JIANCHUN,ET AL: "Opening of natural fracture and its effect on leakoff behavior in fractured gas reservoirs", 《JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING》 *
YORAM COHEN,ET AL: "Polymer Retention and Adsorption in the Flow of Polymer Solutions Through Porous Media", 《SPE RESERVIOR ENGINEERING》 *
胥潘 等: "聚丙烯酰胺浓度测量方法概述", 《广东化工》 *
舒炼 等: "淀粉-碘化镉法检测聚丙烯酰胺类聚合物浓度测量条件的优化", 《应用化工》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307640A (zh) * 2017-07-28 2019-02-05 中国石油天然气股份有限公司 一种测定滑溜水中降阻剂含量的方法

Also Published As

Publication number Publication date
CN106153616B (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
Liu et al. Recycling flowback water for hydraulic fracturing in Sichuan Basin, China: Implications for gas production, water footprint, and water quality of regenerated flowback water
Beck et al. The drivers of biogeochemistry in beach ecosystems: a cross-shore transect from the dunes to the low-water line
Bottrell et al. Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK
Wu et al. Geochemical characteristics of tight gas and gas-source correlation in the Daniudi gas field, the Ordos Basin, China
Klusman A geochemical perspective and assessment of leakage potential for a mature carbon dioxideenhanced oil recovery project and as a prototype for carbon dioxide sequestration; Rangely field, Colorado
Li et al. Water-rock interaction and methanogenesis in formation water in the southeast Huaibei coalfield, China
CN104007482A (zh) 一种基于各向异性有效场的泥页岩岩石物理模型方法
Heilweil et al. Gas‐partitioning tracer test to quantify trapped gas during recharge
McMahon et al. Methane in aquifers used for public supply in the United States
Grobe et al. Saline groundwater in the Münsterland Cretaceous Basin, Germany: clues to its origin and evolution
Rostron et al. Fingerprinting “stray” formation fluids associated and production with hydrocarbon exploration and production
Cui et al. Impact of water-rock interactions on indicators of hydraulic fracturing flowback fluids produced from the Jurassic shale of Qaidam Basin, NW China
Rostron et al. Fingerprinting formation-waters using stable isotopes, Midale area, Williston Basin, Canada
Fu et al. Fracturing flowback fluids from shale gas wells in western chongqing: Geochemical analyses and relevance for exploration & development
CN1064758C (zh) 同位素井间示踪测定技术
CN106153616A (zh) 一种测定滑溜水返排液中稠化剂含量的方法
Négrel et al. Comparison of the Sr isotopic signatures in brines of the Canadian and Fennoscandian shields
Shi et al. Hydrochemistry, Sources and Management of Fracturing Flowback Fluid in Tight Sandstone Gasfield in Sulige Gasfield (China)
Shi et al. Mechanism of groundwater bursting in a deep rock salt mine region: a case study of the Anpeng trona and glauber mines, China
Chen et al. Hydrochemical analysis of groundwater in coastal coal mining areas—A case study of the Liangjia coal mine, North China
Birkle Application of 129I/127I to define the source of hydrocarbons of the Pol-Chuc, Abkatún and Taratunich–Batab oil reservoirs, Bay of Campeche, southern Mexico
Felber Selected US department of energy’s EOR technology applications
CN105804733A (zh) 页岩油测井评价方法
Warner Subsurface disposal of liquid industrial wastes by deep-well injection
Huang et al. Real-time monitoring of coalbed methane production network following liquid CO2 injection in a low-efficiency well network: Response to gas and water production characteristics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant