CN106145951A - A kind of porous two dimension transition metal carbide and preparation method thereof - Google Patents
A kind of porous two dimension transition metal carbide and preparation method thereof Download PDFInfo
- Publication number
- CN106145951A CN106145951A CN201510164821.3A CN201510164821A CN106145951A CN 106145951 A CN106145951 A CN 106145951A CN 201510164821 A CN201510164821 A CN 201510164821A CN 106145951 A CN106145951 A CN 106145951A
- Authority
- CN
- China
- Prior art keywords
- transition metal
- porous
- metal carbide
- alc
- mxenes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052723 transition metal Inorganic materials 0.000 title claims abstract description 31
- 150000003624 transition metals Chemical class 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title description 17
- 239000000463 material Substances 0.000 claims abstract description 40
- 239000006104 solid solution Substances 0.000 claims abstract description 25
- 238000005530 etching Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 34
- 239000003518 caustics Substances 0.000 claims description 19
- 239000007864 aqueous solution Substances 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 150000004673 fluoride salts Chemical class 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 2
- 229910017665 NH4HF2 Inorganic materials 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000001117 sulphuric acid Substances 0.000 claims 1
- 235000011149 sulphuric acid Nutrition 0.000 claims 1
- 239000002243 precursor Substances 0.000 abstract description 48
- 239000011148 porous material Substances 0.000 abstract description 20
- 239000002245 particle Substances 0.000 abstract description 7
- 238000004146 energy storage Methods 0.000 abstract description 6
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 28
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 24
- 229910021389 graphene Inorganic materials 0.000 description 21
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 11
- 230000007797 corrosion Effects 0.000 description 11
- 125000004429 atom Chemical group 0.000 description 9
- 239000002033 PVDF binder Substances 0.000 description 8
- 239000002135 nanosheet Substances 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- -1 transition metal carbides Chemical class 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000002484 cyclic voltammetry Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N dimethyl sulfoxide Natural products CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000012876 topography Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 2
- 241000446313 Lamella Species 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000002073 nanorod Substances 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 229920002246 poly[2-(dimethylamino)ethyl methacrylate] polymer Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical group FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910021401 carbide-derived carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明提供了一种多孔二维过渡金属碳化物,通过在MXenes材料中设置孔洞,有利于提高MXenes材料的比表面积,以及MXenes材料的吸附和传输粒子的能力,在电子学、储能等领域具有良好的应用前景。另外,本发明采用在M位掺杂Cr元素的MAX相固溶体材料作为前驱体,通过选择性刻蚀,在Al原子从MAX相固溶体中刻蚀脱出形成MXenes片层结构的同时将至少部分Cr原子也从MAX相固溶体中刻蚀脱出的方法形成孔洞结构,该方法简单易行,一步制得具有孔洞结构的MXenes片层材料,并且孔洞的数目与孔径能够通过刻蚀时间、Cr元素的掺杂量而调控。
The invention provides a porous two-dimensional transition metal carbide. By setting holes in the MXenes material, it is beneficial to improve the specific surface area of the MXenes material, and the ability of the MXenes material to adsorb and transport particles. It can be used in the fields of electronics, energy storage, etc. It has a good application prospect. In addition, the present invention uses the MAX phase solid solution material doped with Cr at the M site as a precursor, and through selective etching, Al atoms are etched out from the MAX phase solid solution to form an MXenes sheet structure while at least part of the Cr atoms The pore structure is also formed by etching and detaching from the MAX phase solid solution. This method is simple and easy, and the MXenes sheet material with a pore structure can be prepared in one step, and the number and pore size of the pores can be determined by the etching time and the doping of Cr elements. controlled by quantity.
Description
技术领域technical field
本发明涉及过渡族金属碳化物层状陶瓷材料技术领域,具体涉及一种多孔二维过渡金属碳化物及其制备方法。The invention relates to the technical field of transition metal carbide layered ceramic materials, in particular to a porous two-dimensional transition metal carbide and a preparation method thereof.
背景技术Background technique
石墨烯(graphene)是目前研究最多的二维晶体,自2004年被Geim、Novoselov等人发现以来,在短短十年间受到了极大的关注。石墨烯是一种由碳原子以sp2杂化连接的单原子层构成的新型二维原子晶体,为目前已知的最薄的一种材料(单层为0.335nm),其价带与导带在费米能级相交,能隙为零;载流子在费米能级处呈现出一种线性的色散关系,具有奇特的性质:热导率高达5150J/(m·K)、载流子迁移率达到1.5×104cm2·V-1·s-1,以及比表面积理论值为2630m2/g等,在电子学、电磁学、光学、传感器、催化、储能等诸多领域都展示出了巨大的应用潜力。Graphene is currently the most studied two-dimensional crystal. Since it was discovered by Geim and Novoselov in 2004, it has received great attention in just ten years. Graphene is a new type of two-dimensional atomic crystal composed of single atomic layers of carbon atoms connected by sp 2 hybridization. The bands intersect at the Fermi level, and the energy gap is zero; the carriers exhibit a linear dispersion relationship at the Fermi level, which has peculiar properties: the thermal conductivity is as high as 5150J/(m K), and the current-carrying The ion mobility reaches 1.5×10 4 cm 2 ·V -1 ·s -1 , and the theoretical value of the specific surface area is 2630m 2 /g. It is widely used in electronics, electromagnetics, optics, sensors, catalysis, energy storage and many other fields. It shows great application potential.
在石墨烯表面打孔可以进一步提高石墨烯的比表面积,合适的孔洞也可以成为小粒子穿梭的通道或贮存的空间。Wen等发现多孔石墨烯是一种良好的超级电容器电极材料,尤其在快速充放电条件下依旧能够保持很高的比电容量(在1V/s时具有200F/g)和结构稳定性(循环5000次后,比电容仍然保持在初始值的97%以上)(Wen,Z.H.,et al.,Adv.Mater.,2012,24,5610)。Sint等发现具有不同官能团修饰的石墨烯孔洞能够对不同离子起到选择性的作用,比如带负电的F-N修饰的孔洞有利于阳离子的通过,而带正电的H修饰的孔洞则是阴离子良好的通道(Sint,K.et al.,J.Am.Chem.Soc.,2008,130,16448)。Wells等则将多孔石墨烯应用到了DNA序列的确定上。他们通过模拟发现当DNA通过石墨烯上的孔洞时,DNA中的核苷酸会有离子阻碍电流产生,并且这个值同核苷酸的种类有关(Wells,D.B.,et al.,Nano Lett.,2012,12,4117)。Punching holes on the surface of graphene can further increase the specific surface area of graphene, and suitable holes can also become channels or storage spaces for small particles to shuttle. Wen et al. found that porous graphene is a good supercapacitor electrode material, especially under fast charge and discharge conditions, it can still maintain a high specific capacitance (200F/g at 1V/s) and structural stability (cycle 5000 After several times, the specific capacitance remains above 97% of the initial value) (Wen, Z.H., et al., Adv. Mater., 2012, 24, 5610). Sint et al. found that graphene pores modified with different functional groups can be selective for different ions. For example, negatively charged F-N modified pores are conducive to the passage of cations, while positively charged H modified pores are good for anions. Channel (Sint, K. et al., J. Am. Chem. Soc., 2008, 130, 16448). Wells et al applied porous graphene to the determination of DNA sequence. They found through simulation that when DNA passes through the holes on the graphene, the nucleotides in the DNA will have ions to hinder the current generation, and this value is related to the type of nucleotides (Wells, D.B., et al., Nano Lett., 2012, December, 4117).
目前,多孔石墨烯的制备方法有很多,可以分为聚合物构建法,等离子束、电子束或光子束刻蚀法,模板法和化学刻蚀法等。Bieri等用碘化苯作为前驱体聚合第一次得到由苯环构建的二维六方网络结构,该结构具有的孔径约为的小孔,并且呈周期性均匀分布(Bieri,M.,Chem.Commum.,2009,6919)。Akhavan则用ZnO纳米棒的光催化活性在氧化石墨烯得到300nm左右的多孔石墨烯,该法的优势在于孔洞大小可通过ZnO纳米棒的直径进行调整,但是其孔分布密度有待进一步提高(Akhavan,O.ACS Nano,2010,4,4174)。Jung等利用Au纳米网络结构作为模板,利用AAO工艺刻蚀得到直径约为100nm的均匀密集分布的多孔石墨烯(Jung,I.,et al.,Appl.Phys.Lett.,2013,103,023105.)。Zhu等利用KOH溶液对经微波处理的氧化石墨烯进行刻蚀,得到纳米尺度的多孔石墨烯,该法简单有效,可使多孔石墨烯的比表面积升高到3100m2/g(Zhu,Y.et al.,Science,2011,332,1537)。At present, there are many methods for preparing porous graphene, which can be divided into polymer construction method, plasma beam, electron beam or photon beam etching method, template method and chemical etching method. Bieri et al. used benzene iodide as a precursor to polymerize for the first time to obtain a two-dimensional hexagonal network structure constructed by benzene rings. The structure has a pore size of about The pores are distributed uniformly and periodically (Bieri, M., Chem. Commum., 2009, 6919). Akhavan uses the photocatalytic activity of ZnO nanorods to obtain porous graphene of about 300nm in graphene oxide. The advantage of this method is that the size of the holes can be adjusted by the diameter of ZnO nanorods, but the pore distribution density needs to be further improved (Akhavan, O. ACS Nano, 2010, 4, 4174). Jung et al. used the Au nano-network structure as a template, and obtained uniform and densely distributed porous graphene with a diameter of about 100 nm by etching with AAO process (Jung, I., et al., Appl. Phys. Lett., 2013, 103, 023105 .). Zhu et al. used KOH solution to etch microwave-treated graphene oxide to obtain nanoscale porous graphene. This method is simple and effective, and can increase the specific surface area of porous graphene to 3100m 2 /g (Zhu, Y. et al., Science, 2011, 332, 1537).
二维过渡金属碳化物或碳氮化物(MXenes)是由Gogotsi和Barsoum等人在2011年合作发现的具有二维片层结构的陶瓷材料,一般可用Mn+1XnTz表示,其中M指过渡族金属(如Ti、Zr、Hf、V、Nb、Ta、Cr、Sc等),X指C或/和N,n一般为1-3,Tz指表面基团(如O2-、OH-、F-、NH3、NH4 +等)。目前,MXenes一般来源于三元层状金属陶瓷Mn+1AXn相(M为过渡金属元素,A为主族元素,X为C和/或N,n一般为1~3,简称MAX相),通过将MAX相中结合较弱的A位元素(如Al原子)抽出而得到。Two-dimensional transition metal carbides or carbonitrides (MXenes) are ceramic materials with a two-dimensional sheet structure discovered by Gogotsi and Barsoum et al. in 2011, which can generally be represented by M n+1 X n T z , where M Refers to transition metals (such as Ti, Zr, Hf, V, Nb, Ta, Cr, Sc, etc.), X refers to C or/and N, n is generally 1-3, and T z refers to surface groups (such as O 2- , OH - , F - , NH 3 , NH 4 + etc.). At present, MXenes are generally derived from ternary layered cermets M n+1 AX n phase (M is a transition metal element, A is a main group element, X is C and/or N, n is generally 1 to 3, referred to as MAX phase ), obtained by extracting weakly bound A-site elements (such as Al atoms) in the MAX phase.
同石墨烯类似,MXenes也呈二维片层结构,具有高比表面积、高电导率等,在电子学、电磁学、光学、传感器、催化、储能等领域具有应用潜力。Similar to graphene, MXenes also have a two-dimensional sheet structure, high specific surface area, high electrical conductivity, etc., and have potential applications in the fields of electronics, electromagnetics, optics, sensors, catalysis, and energy storage.
例如,在储能方面,M.Naguib等报道V2CTz作为锂离子电池的电极材料具有优异的质量比容量(循环速率为1C时,280mAhg-1;循环速率为10C时,125mAhg-1),并且在充放电140次以后依旧能够保持良好的稳定性(M.Naguib etal,J.Am.Chem.Soc.,2013,135,15966);M.Lukatskaya等则研究了片层Ti3C2Tx作为超级电容器的电极活性材料,发现当1M MgSO4作为电解质,使用1A g-1测试电流时该材料的比电容高达400Fcm-3(M.Lukatskaya,et al,Science,2013,341,1502);近来,M.W.Barsoum等发现以粘土状的Ti3C2Tz制备的超级电容器具有900F/cm3的体积比电容,该值非常接近水合氧化钌(1000-1500F/cm3),比活化石墨烯(60-100F/cm3),微米薄碳化物衍生碳电极(180F/cm3),化学转化石墨烯(260F/cm3)等的体积比电容高得多(M.Ghidiu et al,Nature,2014,516,78)。For example, in terms of energy storage, M.Naguib et al. reported that V 2 CT z as an electrode material for lithium-ion batteries has excellent mass specific capacity (280mAhg -1 when the cycle rate is 1C; 125mAhg -1 when the cycle rate is 10C) , and can still maintain good stability after charging and discharging for 140 times (M.Naguib et al, J.Am.Chem.Soc., 2013, 135, 15966); M.Lukatskaya et al. studied the lamellar Ti 3 C 2 T x is used as the electrode active material of the supercapacitor, and it is found that when 1M MgSO 4 is used as the electrolyte, the specific capacitance of the material is as high as 400Fcm -3 when using 1A g -1 test current (M.Lukatskaya, et al, Science, 2013, 341, 1502 ); Recently, MWBarsoum et al. found that the supercapacitor prepared with clay-like Ti 3 C 2 T z has a specific volumetric capacitance of 900F/cm 3 , which is very close to that of hydrated ruthenium oxide (1000-1500F/cm 3 ), which is higher than that of activated graphite. ene (60-100F/cm 3 ), micron-thin carbide-derived carbon electrodes (180F/cm 3 ), chemically converted graphene (260F/cm 3 ), etc. have much higher volume specific capacitance (M.Ghidiu et al, Nature , 2014, 516, 78).
在其他应用领域中,周爱国等率先研究了经NaOH活化的Ti3C2Tz纳米片对污水中重金属的吸附行为,发现在323K,pH=5.8~6.2下,该材料对Pb(Ⅱ)的最大吸附容量可达140mg g-1(Q.Peng et al,J.Am.Chem.Soc.,2014,136,4113);MXenes也可作为Pt纳米粒子的载体材料在燃料电池起催化作用(Y.P.Gao et al,Solid State Sciences,2014,35,62.),它同Cu2O的复合材料可以促进高氯酸铵的分解(X.H.Xie et al,Chem.Commun.,2013,49,10112.);此外,本课题组拓展MXenes在高分子领域中的应用,发现将聚甲基丙烯酸N,N-二甲基氨基乙酯(PDMAEMA)枝连到V2CTz纳米片上,可以获得具有CO2温度双重刺激响应性能的杂化材料(Chen,J.,et al.,Chem.Commun.,2015,51,314)。In other application fields, Zhou Aiguo and others took the lead in studying the adsorption behavior of Ti 3 C 2 Tz nanosheets activated by NaOH on heavy metals in sewage, and found that at 323K, pH = 5.8-6.2, the material’s adsorption to Pb(Ⅱ) The maximum adsorption capacity can reach 140mg g -1 (Q.Peng et al, J.Am.Chem.Soc., 2014, 136, 4113); MXenes can also be used as a carrier material for Pt nanoparticles to play a catalytic role in fuel cells (YPGao et al, Solid State Sciences, 2014, 35, 62.), its composite material with Cu 2 O can promote the decomposition of ammonium perchlorate (XHXie et al, Chem.Commun., 2013, 49, 10112.); In addition , our research group expanded the application of MXenes in the field of polymers, and found that poly N,N-dimethylaminoethyl methacrylate (PDMAEMA) branches were connected to V 2 CT z nanosheets, which can obtain dual Hybrid materials with stimuli-responsive properties (Chen, J., et al., Chem. Commun., 2015, 51, 314).
另一方面,同石墨烯相比,由于MXenes的片层结构中不止包含碳一种元素,因此使得MXenes比Graphene具有更加灵活可调的结构和丰富多样的性能。通过目前对Graphene的研发而提高其性能、拓宽其应用等,人们期望对MXenes材料的结构等进行研发以提高其性能、拓宽其应用等。但是,目前这方面的研发较少,已报道的研发结果仅是O.Mashtalir等发现小分子二甲基亚砜(DMSO)可以自发插入到Ti3C2Tz层间,经过超声处理对MXenes具有很好的剥离效果,可以得到如同石墨烯般的几层甚至是单层的Ti3C2Tz纳米片(d-Ti3C2Tz),利用该单层Ti3C2Tz纳米片作为锂离子电池负极活性材料的储能密度达到410mAh g-1@1C、110mAh g-1@36C,且具有良好的循环稳定性能(O.Mashtalir,et al.,Nat.Commun.,2013,4,1716)。On the other hand, compared with graphene, since the sheet structure of MXenes contains more than one element of carbon, MXenes has a more flexible and adjustable structure and richer and more diverse properties than Graphene. Through the current research and development of Graphene to improve its performance and broaden its applications, it is expected that research and development on the structure of MXenes materials will improve its performance and broaden its applications. However, at present, there are few researches and developments in this area, and the reported research results are only O. Mashtalir et al. found that small molecule dimethyl sulfoxide (DMSO) can spontaneously insert into the interlayer of Ti 3 C 2 T z , and after ultrasonic treatment, the MXenes It has a good exfoliation effect, and several layers or even a single layer of Ti 3 C 2 T z nanosheets (d-Ti 3 C 2 T z ) like graphene can be obtained. Using the single layer Ti 3 C 2 T z The energy storage density of nanosheets as the negative electrode active material of lithium-ion batteries reaches 410mAh g -1 @1C, 110mAh g -1 @36C, and has good cycle stability (O.Mashtalir, et al., Nat.Commun., 2013 ,4,1716).
发明内容Contents of the invention
本发明提供一种MXenes材料,该材料包含过渡族金属元素与碳元素,具有片层结构,并且其片层结构具有若干孔洞,即为多孔MXenes材料,因而有利于提高MXenes的比表面积,以及吸附和传输粒子的能力。The present invention provides a kind of MXenes material, and this material comprises transition group metal element and carbon element, has lamellar structure, and its lamellar structure has several holes, is porous MXenes material, thus helps to improve the specific surface area of MXenes, and adsorption and the ability to transport particles.
所述的多孔MXenes材料中部分过渡金属元素可以被Cr元素取代,化学式为(M1-xCrx)2C,其中M为过渡金属元素,包括但不限于Ti、V*******等,并且0≤x≤0.5。Part of the transition metal elements in the porous MXenes material can be replaced by Cr elements, the chemical formula is (M 1-x Cr x ) 2 C, where M is a transition metal element, including but not limited to Ti, V****** * etc., and 0≤x≤0.5.
另外,所述的多孔MXenes材料中部分碳元素能够被N元素取代。In addition, some carbon elements in the porous MXenes material can be replaced by N elements.
所述的多孔MXenes材料中,孔径优选为20nm-300nm。In the porous MXenes material, the pore diameter is preferably 20nm-300nm.
本发明还提供了一种制备上述多孔MXenes材料的方法,该方法采用M位掺杂Cr元素的MAX相固溶体材料作为前驱体,该前驱体材料的分子式为(M1-xCrx)n+1AlCn,其中M为过渡金属、0<x≤0.5,n=1-3;选择腐蚀剂,在腐蚀剂作用下,Al原子从该前驱体中脱出形成MXenes片层结构,同时至少部分Cr原子从MAX相固溶体中脱出,形成孔洞。The present invention also provides a method for preparing the above-mentioned porous MXenes material. The method uses a MAX phase solid solution material doped with Cr at the M site as a precursor, and the molecular formula of the precursor material is (M 1-x Cr x ) n+ 1 AlC n , where M is a transition metal, 0<x≤0.5, n=1-3; select etchant, under the action of etchant, Al atoms are detached from the precursor to form MXenes sheet structure, and at least part of Cr atoms are removed from out of the MAX phase solid solution, forming holes.
所述的M元素为过渡金属元素,包括但不限于Ti、V等。The M element is a transition metal element, including but not limited to Ti, V and the like.
所述的前驱体材料(M1-xCrx)n+1AlCn中至少部分碳元素能够被N元素取代,形成前驱体材料(M1-xCrx)n+1Al(C1-yNy)n,其中0≤y≤1。At least part of the carbon elements in the precursor material (M 1-x Cr x ) n+1 AlC n can be replaced by N elements to form the precursor material (M 1-x Cr x ) n+1 Al(C 1- y N y ) n , where 0≤y≤1.
所述的前驱体材料包括但不限于(Ti1-xCrx)2AlC、(V1-xCrx)2AlC、(Ti1-xCrx)2Al(C0.5N0.5)、(Ti1-xCrx)3AlC2、(V1-xCrx)3AlC2、(Ti1-xCrx)4AlC3、(V1-xCrx)4AlC3中的一种或者几种的组合。The precursor materials include but are not limited to (Ti 1-x Cr x ) 2 AlC, (V 1-x Cr x ) 2 AlC, (Ti 1-x Cr x ) 2 Al(C 0.5 N 0.5 ), ( One of Ti 1-x Cr x ) 3 AlC 2 , (V 1-x Cr x ) 3 AlC 2 , (Ti 1-x Cr x ) 4 AlC 3 , (V 1-x Cr x ) 4 AlC 3 or a combination of several.
所述的刻蚀剂不限,可以是单一腐蚀剂,例如HF水溶液、NH4HF2水溶液等,也可以是氟化物盐与常见酸所组成的复合腐蚀剂。所述的氟化物盐包括但不限于LiF、NaF、KF、NH4F等中的一种或者几种的组合。所述的酸包括但不限于盐酸、硫酸等。所述的复合腐蚀剂包括但不限于LiF与HCl水溶液组成的复合腐蚀剂等。The etchant is not limited, and may be a single etchant, such as HF aqueous solution, NH 4 HF 2 aqueous solution, etc., or a composite etchant composed of fluoride salts and common acids. The fluoride salts include, but are not limited to, one or a combination of LiF, NaF, KF, NH 4 F and the like. The acid includes but not limited to hydrochloric acid, sulfuric acid and the like. The composite etchant includes but not limited to the composite etchant composed of LiF and HCl aqueous solution.
当腐蚀剂为HF水溶液时,该腐蚀剂的质量百分比浓度优选为10%-50%。When the etchant is HF aqueous solution, the mass percent concentration of the etchant is preferably 10%-50%.
当腐蚀剂为NH4HF2水溶液时,该腐蚀剂的摩尔浓度优选为1-10M。When the etchant is NH 4 HF 2 aqueous solution, the molar concentration of the etchant is preferably 1-10M.
通过调控刻蚀时间能够控制所述孔洞的数目和孔径。The number and diameter of the holes can be controlled by adjusting the etching time.
通过调控Cr元素的掺杂量能够调控所述孔洞的数目。The number of the pores can be adjusted by adjusting the doping amount of the Cr element.
由于刻蚀反应过程剧烈,作为优选,将刻蚀剂逐滴缓慢地滴加到前驱体粉末中。进一步优选,所述反应容器放置在冰水浴中,以降低反应中产生的热量。Since the etching reaction process is violent, preferably, the etchant is slowly added to the precursor powder drop by drop. Further preferably, the reaction vessel is placed in an ice-water bath to reduce the heat generated during the reaction.
综上所述,本发明通过在MXenes材料中设置孔洞,以提高MXenes材料的比表面积,同时孔洞也可以成为粒子穿梭的通道或贮存的空间,因此有利于提高MXenes材料的电导率以及吸附性能等,在电子学、储能等领域具有良好的应用前景。另外,本发明采用在M位掺杂Cr元素的MAX相固溶体材料作为前驱体,通过选择性刻蚀,在Al原子从MAX相固溶体中刻蚀脱出形成MXenes片层结构的同时将至少部分Cr原子也从MAX相固溶体中刻蚀脱出的方法形成孔洞结构,该方法简单易行,一步制得具有孔洞结构的MXenes片层材料,并且孔洞的数目与孔径能够通过刻蚀时间、Cr元素的掺杂量而调控。In summary, the present invention increases the specific surface area of the MXenes material by setting holes in the MXenes material, and at the same time, the holes can also become a channel for particles to shuttle or store space, so it is beneficial to improve the conductivity and adsorption performance of the MXenes material. , has good application prospects in electronics, energy storage and other fields. In addition, the present invention uses the MAX phase solid solution material doped with Cr at the M site as a precursor, and through selective etching, Al atoms are etched out from the MAX phase solid solution to form an MXenes sheet structure while at least part of the Cr atoms The pore structure is also formed by etching and detaching from the MAX phase solid solution. This method is simple and easy, and the MXenes sheet material with a pore structure can be prepared in one step, and the number and pore size of the pores can be determined by the etching time and the doping of Cr elements. controlled by quantity.
附图说明Description of drawings
图1a是本发明实施例1中(V1-xCrx)2AlC(x=0、0.01、0.10)固溶体在质量分数为40%的氢氟酸中刻蚀前的XRD衍射图;Figure 1a is the XRD diffraction pattern of (V 1-x Cr x ) 2 AlC (x=0, 0.01, 0.10) solid solution in Example 1 of the present invention before etching in hydrofluoric acid with a mass fraction of 40%;
图1b是本发明实施例1中(V1-xCrx)2AlC(x=0、0.01、0.10)固溶体在质量分数为40%的氢氟酸中刻蚀7天后的XRD衍射图;Figure 1b is the XRD diffraction pattern of (V 1-x Cr x ) 2 AlC (x=0, 0.01, 0.10) solid solution etched in 40% hydrofluoric acid for 7 days in Example 1 of the present invention;
图2是本发明实施例1中(V1-xCrx)2AlC(x=0、0.01、0.10)固溶体分别在质量分数为40%的氢氟酸中刻蚀7天后的SEM图;Fig. 2 is an SEM image of (V 1-x Cr x ) 2 AlC (x=0, 0.01, 0.10) solid solution in Example 1 of the present invention etched in hydrofluoric acid with a mass fraction of 40% for 7 days;
图3是本发明实施例2中(V0.90Cr0.10)2AlC固溶体在质量分数为40%的氢氟酸中刻蚀不同时间后的XRD衍射图;Fig. 3 is an XRD diffraction pattern of (V 0.90 Cr 0.10 ) 2 AlC solid solution etched in hydrofluoric acid with a mass fraction of 40% for different times in Example 2 of the present invention;
图4是本发明实施例2中(V0.90Cr0.10)2AlC固溶体在质量分数为40%的氢氟酸中刻蚀不同时间后的SEM图;Fig. 4 is an SEM image of (V 0.90 Cr 0.10 ) 2 AlC solid solution etched in hydrofluoric acid with a mass fraction of 40% for different times in Example 2 of the present invention;
图5是本发明实施例3中(V1-xCrx)2AlC(x=0、0.01、0.10)固溶体在质量分数为40%的氢氟酸中刻蚀5天后得到的片层材料作为原料制得的超级电容器在扫描速率为100mV/s时的循环伏安曲线。Fig. 5 is the sheet material obtained after etching 5 days of (V 1-x Cr x ) 2 AlC (x=0, 0.01, 0.10) solid solution in 40% hydrofluoric acid in Example 3 of the present invention as Cyclic voltammetry curves of supercapacitors made of raw materials at a scan rate of 100mV/s.
具体实施方式detailed description
下面结合附图实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。The present invention will be further described in detail below with reference to the embodiments of the accompanying drawings. It should be noted that the following embodiments are intended to facilitate the understanding of the present invention, but have no limiting effect on it.
实施例1:Example 1:
本实施例中,二维过渡金属碳化物为(V1-xCrx)2C,0≤x<0.1,并且该金属碳化物片层结构上具有若干孔洞,呈多孔结构。In this embodiment, the two-dimensional transition metal carbide is (V 1-x Cr x ) 2 C, 0≦x<0.1, and the metal carbide has several holes in its lamellar structure, showing a porous structure.
该具有多孔结构的二维过渡金属碳化物的制备步骤如下:The preparation steps of the two-dimensional transition metal carbide with porous structure are as follows:
(1)选择MAX相固溶体材料(V1-xCrx)2AlC作为前驱体,其中x分别为0、0.01、0.10,该前驱体的制备方法与文献:Chen,J.,et al.,Chem.Commun.,2015,51,314中所述V2AlC的制备方法相同,制备前驱体的原料比例和烧结温度如下表1所示,制得三种不同的前驱体材料;表1:(V1-xCrx)2AlC(x=0、0.01或0.10)固溶体的原料配比和烧结温度(1) Select the MAX phase solid solution material (V 1-x Cr x ) 2 AlC as the precursor, where x is 0, 0.01, 0.10 respectively. The preparation method and literature of the precursor: Chen, J., et al., The preparation method of V 2 AlC described in Chem.Commun., 2015,51,314 is the same, and the raw material ratio and sintering temperature of the preparation precursor are shown in Table 1 below, and three different precursor materials are prepared; Table 1: (V 1 Raw material ratio and sintering temperature of -x Cr x ) 2 AlC (x=0, 0.01 or 0.10) solid solution
(2)将步骤(1)制得的三种前驱体材料分别破碎,研磨至300目,得到三种粒度分布均匀的前驱体粉体;(2) Breaking the three kinds of precursor materials prepared in step (1) respectively, grinding them to 300 mesh, and obtaining three kinds of precursor powders with uniform particle size distribution;
(3)选择浓度为40wt.%的氢氟酸水溶液作为腐蚀剂;对比起见,每种前驱体粉体称量1g分别置于三个塑料容器中,将各塑料容器浸泡在水中,将腐蚀剂逐滴缓慢加入各前驱体粉体中;对每种前驱体粉体而言,腐蚀剂的滴加时间大于或等于5分钟,并且各腐蚀剂的滴加速率、滴加时间以及滴加量相同;滴加完毕后均匀混合、静置7天,并且每过12h轻轻地充分搅拌;(3) A hydrofluoric acid aqueous solution with a concentration of 40wt.% is selected as the corrosive agent; for comparison, 1 g of each precursor powder is placed in three plastic containers respectively, and each plastic container is soaked in water, and the corrosive agent is added drop by drop Slowly add to each precursor powder; for each precursor powder, the dropping time of the corrosive agent is greater than or equal to 5 minutes, and the dropping rate, dropping time and dropping amount of each corrosive agent are the same; the dropping is completed After that, mix evenly, let it stand for 7 days, and stir gently and fully every 12 hours;
(4)采用聚偏氟乙稀微孔滤膜(PVDF,孔径为0.45μm)作为分离膜,过滤经步骤(3)得到的产物,以分离每种前驱体粉体与氢氟酸水溶液,然后用去离子水充分清洗,再经乙醇清洗后室温真空烘干。(4) adopt polyvinylidene fluoride microporous filter membrane (PVDF, pore diameter is 0.45 μ m) as separation membrane, filter the product obtained through step (3), to separate each kind of precursor powder and hydrofluoric acid aqueous solution, then Wash thoroughly with deionized water, then wash with ethanol, and dry in vacuum at room temperature.
利用X射线衍射谱(XRD)分别检测经步骤(3)腐蚀前后每种前驱体粉体的物相及晶体结构的变化,图1a为经步骤(3)腐蚀前的每种前驱体粉体的XRD图,图1b为经步骤(3)腐蚀后的每种前驱体粉体的XRD图,从,图1a与图1b中可以看出:Use X-ray diffraction spectrum (XRD) to detect the change of the phase and crystal structure of each precursor powder before and after step (3) corrosion respectively, Fig. 1 a is the phase of each precursor powder before step (3) corrosion XRD diagram, Fig. 1b is the XRD diagram of each precursor powder corroded by step (3), as can be seen from Fig. 1a and Fig. 1b:
(1)对于每种前驱体粉体而言,在腐蚀剂的选择性腐蚀作用下,Al原子从MAX相固溶体中脱出形成MXenes片层结构;(1) For each precursor powder, under the selective corrosion action of the etchant, Al atoms are released from the MAX phase solid solution to form a MXenes sheet structure;
(2)对比三种不同Cr掺杂量腐蚀后的粉体,MXenes对应的特征峰都在约7.4°,因此Cr的掺杂量对最后形成的MXenes片层的间距没有影响。(2) Comparing the etched powders with three different Cr doping amounts, the characteristic peaks corresponding to MXenes are all at about 7.4°, so the Cr doping amount has no effect on the spacing of the final formed MXenes sheets.
根据上述XRD图谱变化计算MXenes的晶格常数c值变化如下表2所示。The change of the lattice constant c value of MXenes calculated according to the change of the above XRD pattern is shown in Table 2 below.
表2:(V1-xCrx)2AlC(x=0,0.01,0.10)固溶体经刻蚀后的晶格常数c值的变化Table 2: Changes of the lattice constant c value of (V 1-x Cr x ) 2 AlC (x=0, 0.01, 0.10) solid solution after etching
从表2中也可以看出三种不同Cr掺杂量腐蚀后的粉体中MXenes的间距基本是相同的。即,掺Cr腐蚀后得到的MXenes片层与不掺Cr腐蚀后得到的片层总体是一致的。It can also be seen from Table 2 that the spacing of MXenes in the powders corroded by three different Cr doping amounts is basically the same. That is, the MXenes lamella obtained after corrosion doped with Cr is generally consistent with the lamella obtained after corrosion without doping Cr.
利用扫描电子显微镜(SEM)观察各前驱体粉体经步骤(3)腐蚀后得到的粉体的形貌图,如图2所示,显示利用上述方法均得到了二维层状纳米片;通过图2中(a)、(b)、(c)图对比发现,当x>0,即前驱体中掺杂Cr时,各纳米片层结构具有孔洞出现,大小在200nm左右;并且,在相同刻蚀条件下,Cr掺杂量越大得到的孔洞越多。Use a scanning electron microscope (SEM) to observe the topography of each precursor powder obtained after step (3) corrosion, as shown in Figure 2, it shows that two-dimensional layered nanosheets have been obtained by using the above method; The comparison of (a), (b) and (c) in Figure 2 shows that when x>0, that is, when the precursor is doped with Cr, each nanosheet structure has holes with a size of about 200nm; and, in the same Under the etching conditions, the larger the Cr doping amount, the more holes will be obtained.
实施例2:Example 2:
本实施例中,与实施例1完全相同,二维过渡金属碳化物为(V1-xCrx)2C,0≤x<0.1,并且该金属碳化物片层结构上具有若干孔洞,呈多孔结构。In this embodiment, exactly the same as in Embodiment 1, the two-dimensional transition metal carbide is (V 1-x Cr x ) 2 C, 0≤x<0.1, and the metal carbide sheet structure has several holes in the form of porous structure.
该具有多孔结构的二维片层材料的制备与实施例1中的制备方法完全相同,所不同的是本实施例关注对于相同的前驱体粉体,刻蚀时间对其刻蚀效果的影响,该制备方法如下:The preparation of the two-dimensional sheet material with a porous structure is exactly the same as the preparation method in Example 1, the difference is that this example focuses on the effect of etching time on the etching effect of the same precursor powder, The preparation method is as follows:
(1)选择MAX相固溶体材料(V0.90Cr0.10)2AlC作为前驱体,该前驱体的制备方法与文献:Chen,J.,et al.,Chem.Commun.,2015,51,314中所述V2AlC的制备方法相同,其中制备前驱体的原料比例和烧结温度与表1中的x=0.10的对应参数相同;(1) Select the MAX phase solid solution material (V 0.90 Cr 0.10 ) 2 AlC as the precursor. The preparation method of the precursor is as described in the literature: Chen, J., et al., Chem.Commun., 2015, 51, 314 V 2 The preparation method of AlC is the same, and the raw material ratio and sintering temperature for preparing the precursor are the same as the corresponding parameters of x=0.10 in Table 1;
(2)将步骤(1)制得的前驱体材料分别破碎,研磨至300目,得到粒度分布均匀的前驱体粉体;(2) Breaking the precursor materials prepared in step (1) respectively, and grinding them to 300 mesh to obtain precursor powders with uniform particle size distribution;
(3)选择浓度为40wt.%的氢氟酸水溶液作为腐蚀剂;对比起见,称量1g的前驱体粉体四份,将每份分别置于四个相同的塑料容器中作为样品一、二、三、四;然后,将各塑料容器浸泡在水中,将腐蚀剂逐滴缓慢加入各样品中;对各样品而言,腐蚀剂的滴加时间大于或等于5分钟,并且滴入各样品中的腐蚀剂的滴加速率、滴加时间以及滴加量相同;滴加完毕后均匀混合,分别静置1d、3d、5d、7d,并且每过12h轻轻地充分搅拌,即,滴加后的样品一静置1d,滴加后的样品而静置3d,滴加后的样品三静置5d,滴加后的样品四静置7d;(3) A hydrofluoric acid aqueous solution with a concentration of 40wt.% is selected as the corrosive agent; for comparison, four parts of the precursor powder of 1 g are weighed, and each part is placed in four identical plastic containers as samples 1, 2, and 4. Three, four; Then, soak each plastic container in water, and slowly add the corrosive agent dropwise to each sample; for each sample, the dropping time of the corrosive agent is greater than or equal to 5 minutes, and the amount of the corrosive agent dropped into each sample The dropping rate, dropping time and dropping amount are the same; after the dropping is completed, mix evenly, let stand for 1d, 3d, 5d, 7d respectively, and stir gently and fully every 12h, that is, the sample after dropping Set aside for 1d, the dropwise sample left standstill for 3d, dropwise sample three for 5d, dropwise dropwise sample four for 7d;
(4)采用聚偏氟乙稀微孔滤膜(PVDF,孔径为0.45μm)作为分离膜,过滤经步骤(3)得到的产物,以分离每种样品与氢氟酸水溶液,然后用去离子水充分清洗,再经乙醇清洗后室温真空烘干。(4) Using polyvinylidene fluoride microporous membrane (PVDF, 0.45 μm in pore size) as the separation membrane, filter the product obtained in step (3) to separate each sample from hydrofluoric acid aqueous solution, and then use deionized Fully rinsed with water, then rinsed with ethanol, and dried under vacuum at room temperature.
利用X射线衍射谱(XRD)分别检测经步骤(3)腐蚀前后各样品的物相及晶体结构的变化从图3中可以看出:Utilize X-ray diffraction spectrum (XRD) to detect the change of phase and crystal structure of each sample before and after step (3) corrosion respectively as can be seen from Fig. 3:
(1)对于各前驱体粉体而言,在腐蚀剂的选择性腐蚀作用下,Al原子从MAX相固溶体中脱出形成MXenes片层结构;(1) For each precursor powder, under the selective corrosion action of the etchant, Al atoms are released from the MAX phase solid solution to form a MXenes sheet structure;
(2)浸蚀时间的延长有助于更多的前驱体粉体转变成MXenes。(2) Prolonging the etching time helps more precursor powders to transform into MXenes.
利用扫描电子显微镜(SEM)观察各样品经步骤(3)腐蚀后得到的粉体的形貌图,如图4所示,显示利用上述方法均得到了二维层状纳米片,并且各纳米片层结构均具有孔洞出现,孔径大小随着时间的增加而增加,分别为浸蚀1天39nm,3天50nm,5天85nm,7天140nm。通过图2中(a)、(b)、(c)、(d)图对比也能够发现,在相同刻蚀条件下,随着刻蚀时间的增加得到的孔洞增多。Use a scanning electron microscope (SEM) to observe the topography of the powder obtained after the corrosion of each sample in step (3), as shown in Figure 4, it shows that two-dimensional layered nanosheets have been obtained using the above methods, and each nanosheet There are holes in the layer structure, and the pore size increases with time, which are 39nm in 1 day, 50nm in 3 days, 85nm in 5 days, and 140nm in 7 days. It can also be found from the comparison of (a), (b), (c) and (d) in Figure 2 that under the same etching conditions, the number of holes obtained increases with the increase of etching time.
实施例3:Example 3:
本实施例中,与实施例1完全相同,二维过渡金属碳化物为(V1-xCrx)2C,0≤x<0.1,并且该金属碳化物片层结构上具有若干孔洞,呈多孔结构。In this embodiment, exactly the same as in Embodiment 1, the two-dimensional transition metal carbide is (V 1-x Cr x ) 2 C, 0≤x<0.1, and the metal carbide sheet structure has several holes in the form of porous structure.
该具有多孔结构的二维片层材料的制备与实施例1中的制备方法完全相同,所不同的是本实施例中刻蚀时间选择为5天,该制备方法如下:The preparation of the two-dimensional sheet material with a porous structure is exactly the same as the preparation method in Example 1, the difference is that the etching time in this example is selected as 5 days, and the preparation method is as follows:
(1)选择MAX相固溶体材料(V1-xCrx)2AlC作为前驱体,其中x分别为0、0.01、0.10,该前驱体的制备方法与文献:Chen,J.,et al.,Chem.Commun.,2015,51,314中所述V2AlC的制备方法相同,其中制备前驱体的原料比例和烧结温度如表1所示,制得三种不同的前驱体材料。(1) Select the MAX phase solid solution material (V 1-x Cr x ) 2 AlC as the precursor, where x is 0, 0.01, 0.10 respectively. The preparation method and literature of the precursor: Chen, J., et al., The preparation method of V 2 AlC described in Chem.Commun., 2015, 51, 314 is the same, wherein the raw material ratio and sintering temperature for preparing the precursor are shown in Table 1, and three different precursor materials are prepared.
(2将步骤(1)制得的三种前驱体材料分别破碎,研磨至300目,得到三种粒度分布均匀的前驱体粉体;(2) crushing the three kinds of precursor materials prepared in step (1) respectively, grinding to 300 mesh, and obtaining three kinds of precursor powders with uniform particle size distribution;
(3)选择浓度为40wt.%的氢氟酸水溶液作为腐蚀剂;对比起见,每种前驱体粉体称量1g分别置于三个塑料容器中,将各塑料容器浸泡在水中,将腐蚀剂逐滴缓慢加入各前驱体粉体中;对每种前驱体粉体而言,腐蚀剂的滴加时间大于或等于5分钟,并且各腐蚀剂的滴加速率、滴加时间以及滴加量相同;滴加完毕后均匀混合、静置5天,并且每过12h轻轻地充分搅拌;(3) A hydrofluoric acid aqueous solution with a concentration of 40wt.% is selected as the corrosive agent; for comparison, 1 g of each precursor powder is placed in three plastic containers respectively, and each plastic container is soaked in water, and the corrosive agent is added drop by drop Slowly add to each precursor powder; for each precursor powder, the dropping time of the corrosive agent is greater than or equal to 5 minutes, and the dropping rate, dropping time and dropping amount of each corrosive agent are the same; the dropping is completed After that, mix evenly, let it stand for 5 days, and stir gently and fully every 12 hours;
(4)采用聚偏氟乙稀微孔滤膜(PVDF,孔径为0.45μm)作为分离膜,过滤经步骤(3)得到的产物,以分离每种前驱体粉体与氢氟酸水溶液,然后用去离子水充分清洗,再经乙醇清洗后室温真空烘干,得到三种二维过渡金属碳化物。(4) adopt polyvinylidene fluoride microporous filter membrane (PVDF, pore diameter is 0.45 μ m) as separation membrane, filter the product obtained through step (3), to separate each kind of precursor powder and hydrofluoric acid aqueous solution, then Fully wash with deionized water, and then wash with ethanol, and then vacuum-dry at room temperature to obtain three kinds of two-dimensional transition metal carbides.
与实施例1相同,利用X射线衍射谱(XRD)分别检测经步骤(3)腐蚀前后每种前驱体粉体中的物相及晶体结构的变化,利用扫描电子显微镜(SEM)观察各前驱体粉体经步骤(3)腐蚀后得到的粉体的形貌图。发现,对于每种前驱体粉体而言,在腐蚀剂的选择性腐蚀作用下,Al原子从MAX相固溶体中脱出形成MXenes片层结构,同时当x>0时至少部分Cr原子从MAX相固溶体中脱出,形成孔洞,并且随着x的增加孔洞数目增多。Same as Example 1, use X-ray diffraction spectrum (XRD) to detect the change of phase and crystal structure in each precursor powder before and after step (3) corrosion respectively, utilize scanning electron microscope (SEM) to observe each precursor The topography diagram of the powder obtained after the powder is corroded in step (3). It is found that for each precursor powder, under the selective corrosion of etchant, Al atoms are released from the MAX phase solid solution to form MXenes sheet structure, and at least part of the Cr atoms are removed from the MAX phase solid solution when x>0 Protrusion, forming holes, and the number of holes increases with the increase of x.
分别利用上述制得的每种二维过渡金属碳化物为原料制作超级电容器的电极片,具体如下:Each of the two-dimensional transition metal carbides prepared above is used as a raw material to make electrode sheets for supercapacitors, as follows:
将上述制得的每种二维过渡金属碳化物、超级碳(Super P)、聚偏氟乙烯(PVDF)按质量比8.5:1.0:0.5的比例在N-甲基-2-吡咯烷酮中混合后涂抹在泡沫镍上,干燥后压制成电极片,具体制备方法如文献(Cao,H.L.et al.,Carbon,2013,56,218.)所述。After mixing each of the above-mentioned two-dimensional transition metal carbides, super carbon (Super P), and polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone at a mass ratio of 8.5:1.0:0.5 Apply it on the nickel foam, dry it and press it into an electrode sheet. The specific preparation method is as described in the literature (Cao, H.L. et al., Carbon, 2013, 56, 218.).
采用与上述相同的方法制备活性炭电极片,将该活性炭电极片作为对电极,参比电极选用Ag/AgCl,其标准电极电势为0.2224V。The activated carbon electrode sheet was prepared by the same method as above, and the activated carbon electrode sheet was used as a counter electrode. The reference electrode was Ag/AgCl, and its standard electrode potential was 0.2224V.
对上述三电极构成的超级电容器的电化学性能进行测试:采用1470E型电池测试系统(Solartron analytical,USA)测试其循环伏安曲线,所设置的扫描速率100mV/s,电压窗口以开路电压为上限,以防止超级电容器在实验过程中被氧化。比电容的计算公式是C=S/(V×U×m),其中C是比电容,S是循环伏安曲线的积分面积,V是扫描速率,U是电压窗口,m是活性物质的质量。The electrochemical performance of the supercapacitor composed of the above-mentioned three electrodes is tested: the cyclic voltammetry curve is tested by a 1470E battery test system (Solartron analytical, USA), the set scan rate is 100mV/s, and the voltage window is the upper limit of the open circuit voltage , to prevent the supercapacitor from being oxidized during the experiment. The formula for calculating the specific capacitance is C=S/(V×U×m), where C is the specific capacitance, S is the integral area of the cyclic voltammetry curve, V is the scan rate, U is the voltage window, and m is the mass of the active material .
图5是扫描速率是100mV/s时,该超级电容器的循环伏安曲线。从图5中可以看出,当x=0.10时(即含孔洞量最多时)超级电容器具有的比电容要明显高于另外两种;而x=0时(即不含孔洞时)超级电容器的比电容最小。经计算x=0、0.01、0.10时得到的三种电容器的比电容分别为16.2F/g,18.3F/g和22.1F/g。由此可以看出具有孔洞结构的MXenes具有更高的电导率,在提升超级电容器比电容的领域中具备优势。Figure 5 is the cyclic voltammetry curve of the supercapacitor when the scan rate is 100mV/s. As can be seen from Figure 5, when x=0.10 (that is, when the amount of holes is the most) the supercapacitor has a specific capacitance that is significantly higher than the other two; and when x=0 (that is, when there are no holes) the supercapacitor The specific capacitance is the smallest. The specific capacitances of the three capacitors obtained by calculating x=0, 0.01, and 0.10 are 16.2F/g, 18.3F/g, and 22.1F/g, respectively. It can be seen from this that MXenes with a porous structure have higher conductivity and have advantages in the field of improving the specific capacitance of supercapacitors.
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改和改进等,均应包含在本发明的保护范围之内。The embodiments described above have described the technical solutions of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. All done within the principle scope of the present invention Any modification and improvement should be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510164821.3A CN106145951B (en) | 2015-04-08 | 2015-04-08 | Porous two-dimentional transition metal carbide of one kind and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510164821.3A CN106145951B (en) | 2015-04-08 | 2015-04-08 | Porous two-dimentional transition metal carbide of one kind and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106145951A true CN106145951A (en) | 2016-11-23 |
CN106145951B CN106145951B (en) | 2019-01-08 |
Family
ID=57336693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510164821.3A Active CN106145951B (en) | 2015-04-08 | 2015-04-08 | Porous two-dimentional transition metal carbide of one kind and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106145951B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107058851A (en) * | 2016-12-29 | 2017-08-18 | 上海大学 | A kind of metal-base composites of two-dimensional slice Material reinforcement |
CN108793166A (en) * | 2018-07-10 | 2018-11-13 | 中国科学院宁波材料技术与工程研究所 | Composite material, its preparation method and the application of the compound MXenes of B metal |
CN109650391A (en) * | 2019-01-29 | 2019-04-19 | 武汉科技大学 | The preparation method of two-dimentional vanadium carbide MXene |
CN109928393A (en) * | 2019-03-12 | 2019-06-25 | 郜明文 | A kind of preparation method and applications of porous two-dimentional transition metal carbide |
CN110357666A (en) * | 2018-10-08 | 2019-10-22 | 湖南德智新材料有限公司 | A kind of ceramic composite coating and preparation method thereof |
CN110394449A (en) * | 2019-08-27 | 2019-11-01 | 西安交通大学 | A kind of quaternary MAX phase reinforced nickel-based high-temperature anti-oxidation composite material and its synthesis method |
CN110698204A (en) * | 2019-11-12 | 2020-01-17 | 中国工程物理研究院核物理与化学研究所 | Preparation method of MAX phase ceramic |
CN111634914A (en) * | 2020-06-12 | 2020-09-08 | 陕西科技大学 | A kind of preparation method of M site doped vanadium MXene |
CN112225221A (en) * | 2020-06-05 | 2021-01-15 | 上海大学 | i-MAX phase material with core-shell structure and preparation method thereof |
CN113115581A (en) * | 2021-04-13 | 2021-07-13 | 郑州大学 | Ti3C2Tx composite and preparation method thereof |
CN114408873A (en) * | 2021-12-08 | 2022-04-29 | 中国科学院宁波材料技术与工程研究所 | A kind of etching method of MXene material |
US11554961B2 (en) * | 2017-12-22 | 2023-01-17 | Drexel University | Crumpled mesoporous MXene powders synthesized by acid-, base-, or salt-induced crumpling |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102815698A (en) * | 2012-07-12 | 2012-12-12 | 同济大学 | Method for synthesizing two-dimensional carbide through template restriction |
CN103137957A (en) * | 2013-02-27 | 2013-06-05 | 中国石油大学(北京) | Porous graphene-metal oxide composite material and its preparation method |
CN104528721A (en) * | 2014-12-23 | 2015-04-22 | 陕西科技大学 | Preparation method of flaky two-dimensional nano-titanium carbide nanometre material |
-
2015
- 2015-04-08 CN CN201510164821.3A patent/CN106145951B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102815698A (en) * | 2012-07-12 | 2012-12-12 | 同济大学 | Method for synthesizing two-dimensional carbide through template restriction |
CN103137957A (en) * | 2013-02-27 | 2013-06-05 | 中国石油大学(北京) | Porous graphene-metal oxide composite material and its preparation method |
CN104528721A (en) * | 2014-12-23 | 2015-04-22 | 陕西科技大学 | Preparation method of flaky two-dimensional nano-titanium carbide nanometre material |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107058851B (en) * | 2016-12-29 | 2020-03-06 | 上海大学 | A two-dimensional sheet material reinforced metal matrix composite |
CN107058851A (en) * | 2016-12-29 | 2017-08-18 | 上海大学 | A kind of metal-base composites of two-dimensional slice Material reinforcement |
US11866339B2 (en) * | 2017-12-22 | 2024-01-09 | Drexel University | Anodes crumpled MXene compositions, composites, and devices |
US11554961B2 (en) * | 2017-12-22 | 2023-01-17 | Drexel University | Crumpled mesoporous MXene powders synthesized by acid-, base-, or salt-induced crumpling |
CN108793166A (en) * | 2018-07-10 | 2018-11-13 | 中国科学院宁波材料技术与工程研究所 | Composite material, its preparation method and the application of the compound MXenes of B metal |
CN110357666A (en) * | 2018-10-08 | 2019-10-22 | 湖南德智新材料有限公司 | A kind of ceramic composite coating and preparation method thereof |
CN110357666B (en) * | 2018-10-08 | 2021-12-28 | 湖南德智新材料有限公司 | Ceramic composite coating and preparation method thereof |
CN109650391A (en) * | 2019-01-29 | 2019-04-19 | 武汉科技大学 | The preparation method of two-dimentional vanadium carbide MXene |
CN109928393A (en) * | 2019-03-12 | 2019-06-25 | 郜明文 | A kind of preparation method and applications of porous two-dimentional transition metal carbide |
CN110394449A (en) * | 2019-08-27 | 2019-11-01 | 西安交通大学 | A kind of quaternary MAX phase reinforced nickel-based high-temperature anti-oxidation composite material and its synthesis method |
CN110698204A (en) * | 2019-11-12 | 2020-01-17 | 中国工程物理研究院核物理与化学研究所 | Preparation method of MAX phase ceramic |
CN110698204B (en) * | 2019-11-12 | 2022-06-07 | 中国工程物理研究院核物理与化学研究所 | Preparation method of MAX phase ceramic |
CN112225221A (en) * | 2020-06-05 | 2021-01-15 | 上海大学 | i-MAX phase material with core-shell structure and preparation method thereof |
CN111634914A (en) * | 2020-06-12 | 2020-09-08 | 陕西科技大学 | A kind of preparation method of M site doped vanadium MXene |
CN113115581A (en) * | 2021-04-13 | 2021-07-13 | 郑州大学 | Ti3C2Tx composite and preparation method thereof |
CN114408873A (en) * | 2021-12-08 | 2022-04-29 | 中国科学院宁波材料技术与工程研究所 | A kind of etching method of MXene material |
CN114408873B (en) * | 2021-12-08 | 2023-09-26 | 中国科学院宁波材料技术与工程研究所 | An etching method for MXene materials |
Also Published As
Publication number | Publication date |
---|---|
CN106145951B (en) | 2019-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106145951A (en) | A kind of porous two dimension transition metal carbide and preparation method thereof | |
Zhu et al. | Structural engineering of 2D nanomaterials for energy storage and catalysis | |
Tang et al. | Carbon–metal compound composite electrodes for capacitive deionization: synthesis, development and applications | |
Min et al. | Self-assembly of parallelly aligned NiO hierarchical nanostructures with ultrathin nanosheet subunits for electrochemical supercapacitor applications | |
Sajedi-Moghaddam et al. | Two-dimensional transition metal dichalcogenide/conducting polymer composites: synthesis and applications | |
Mehrez et al. | Hierarchical MnCo 2 O 4@ NiMoO 4 as free-standing core–shell nanowire arrays with synergistic effect for enhanced supercapacitor performance | |
Abouali et al. | Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors | |
Tang et al. | Synthesis of capsule-like porous hollow nanonickel cobalt sulfides via cation exchange based on the Kirkendall effect for high-performance supercapacitors | |
Tang et al. | The perfect matching between the low-cost Fe 2 O 3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors | |
Li et al. | The facile synthesis of hierarchical porous flower-like NiCo 2 O 4 with superior lithium storage properties | |
Wang et al. | Controllable synthesis of 3D Ni χ Co 1− χ oxides with different morphologies for high-capacity supercapacitors | |
Xing et al. | Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors | |
Guo et al. | Hierarchical tubular structures composed of Mn‐based mixed metal oxide nanoflakes with enhanced electrochemical properties | |
Cai et al. | Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors | |
Cai et al. | Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors | |
Zhao et al. | Ni 3+ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors | |
Yan et al. | Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density | |
EP3394868B1 (en) | Cellular graphene films | |
Xia et al. | Hierarchical TiO 2-B nanowire@ α-Fe 2 O 3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries | |
Zhu et al. | 3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors | |
CN106463276B (en) | Metal oxide anchored graphene and carbon nanotube hybrid foam | |
Hou et al. | Hierarchical core–shell structure of ZnO nanorod@ NiO/MoO2 composite nanosheet arrays for high-performance supercapacitors | |
Xu et al. | Understanding the effect of polypyrrole and poly (3, 4-ethylenedioxythiophene) on enhancing the supercapacitor performance of NiCo 2 O 4 electrodes | |
Dubal et al. | Asymmetric supercapacitors based on hybrid CuO@ reduced graphene oxide@ sponge versus reduced graphene oxide@ sponge electrodes | |
Kim et al. | Redox deposition of birnessite-type manganese oxide on silicon carbide microspheres for use as supercapacitor electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |