CN106130286A - Single-phase external rotor motor and rotor thereof - Google Patents

Single-phase external rotor motor and rotor thereof Download PDF

Info

Publication number
CN106130286A
CN106130286A CN201510628775.8A CN201510628775A CN106130286A CN 106130286 A CN106130286 A CN 106130286A CN 201510628775 A CN201510628775 A CN 201510628775A CN 106130286 A CN106130286 A CN 106130286A
Authority
CN
China
Prior art keywords
rotor
magnetic
stator
permanent magnet
crown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201510628775.8A
Other languages
Chinese (zh)
Inventor
李越
周垂有
王勇
李勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Electric Shenzhen Co Ltd
Original Assignee
Johnson Electric Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Electric Shenzhen Co Ltd filed Critical Johnson Electric Shenzhen Co Ltd
Priority to DE102016108429.8A priority Critical patent/DE102016108429A1/en
Priority to US15/148,802 priority patent/US20160329789A1/en
Priority to MX2016005938A priority patent/MX2016005938A/en
Priority to BR102016010296A priority patent/BR102016010296A2/en
Priority to KR1020160056463A priority patent/KR20160131958A/en
Priority to JP2016093957A priority patent/JP2016226267A/en
Publication of CN106130286A publication Critical patent/CN106130286A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/304Arrangements or adaptations of electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • H02K1/27915Magnets shaped to vary the mechanical air gap between the magnets and the stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Abstract

A kind of single-phase external rotor motor, including stator and around the rotor of described stator, described rotor includes housing and the some permanent magnets being attached in housing, the circumferentially spaced setting of described permanent magnet, described stator includes magnetic core and the winding being set around on magnetic core, described magnetic core includes yoke and the some teeth stretched radially outward by the outer rim of yoke, the end of each tooth forms crown, described crown has one towards the outside wall surface of rotor, described permanent magnet circumferentially magnetizes, the polarised direction of two adjacent permanent magnets is contrary, the polarity on adjacent permanent magnet surface in opposite directions is identical, it is additionally provided with a magnetic between two adjacent Magnet.

Description

Single-phase external rotor motor and rotor thereof
Technical field
The present invention relates to monophase machine, particularly relate to single-phase external rotor motor.
Background technology
Monophase machine is usually used in the low power electric appliances such as washing machine, dish-washing machine, refrigerator, air-conditioning.Position according to stator Yu rotor Difference, is generally divided into internal rotor and outer rotor two kinds, as the term suggests, single-phase external rotor motor i.e. stator is around at interior, rotor ring Outside stator, load elements can directly be embedded on rotor.The rotor of existing single-phase external rotor motor generally includes some spaced Permanent magnet, each permanent magnet forms a magnetic pole.The present invention provides a kind of novel single-phase external rotor motor and rotor thereof.
Summary of the invention
On the one hand, the present invention provides the rotor of a kind of single-phase external rotor motor, include housing and be attached in housing some Permanent magnet, the circumferentially spaced setting of described permanent magnet, it is provided with a magnetic between two adjacent Magnet, described permanent magnet is circumferentially Magnetizing, the polarised direction of two adjacent permanent magnets is contrary, and the polarity on adjacent permanent magnet surface in opposite directions is identical.
It is preferred that the distance between the internal face of described magnetic and the axle center of rotor is by the lateral central authorities of circumference two of magnetic gradually Change.
It is preferred that described magnetic is made up of soft magnetic materials.
It is preferred that described magnetic is axially symmetric structure, the distance between internal face and the axle center of rotor of magnetic is by permanent magnet The lateral central authorities of circumference two be gradually reduced.
It is preferred that the internal face of described magnetic is plane.
It is preferred that the width that described magnetic is in the circumferential is more than permanent magnet.
It is preferred that the internal face of described magnetic and permanent magnet is plane, the internal face of described magnetic and permanent magnet is altogether With surrounding a polygon.
A kind of single-phase external rotor motor, including stator and above-mentioned rotor, forms air gap heterogeneous between described rotor and stator.
It is preferred that the width of described crown is more than coiling arm, the circumferential both sides of crown form both wings outside extending out to coiling arm respectively Portion, forms notch described between the alar part in opposite directions of two adjacent crowns, adjacent two alar parts of each notch at least one Outwards tilting before winding winding, the alar part tilted after winding winding curves inwardly and deforms and magnetic core described in molding.
It is preferred that be formed with joint-cutting on the alar part of described outside tilting, the alar part deformation that curves inwardly tilted after winding winding makes Described joint-cutting reduces or disappears.
A kind of single-phase external rotor motor, including stator and around the rotor of described stator, described rotor includes housing and patch The some permanent magnets being located in housing, the circumferentially spaced setting of described permanent magnet, described stator includes magnetic core and is set around magnetic core On winding, described magnetic core includes yoke and the some teeth stretched radially outward by the outer rim of yoke, and the end of each tooth forms tooth Hat, described crown has one towards the outside wall surface of rotor, and described permanent magnet circumferentially magnetizes, the polarization side of two adjacent permanent magnets To on the contrary, the polarity on adjacent permanent magnet surface in opposite directions is identical, is additionally provided with a magnetic between two adjacent Magnet.
It is preferred that the distance that the outside wall surface of the crown of the internal face of described magnetic and stator is diametrically is by the circumference two of magnetic Lateral central authorities gradually change, and form non-homogeneous air gap between stator and rotor.
It is preferred that described air gap is gradually reduced from the lateral central authorities of circumference two of magnetic.
It is preferred that described air gap is symmetrical non-homogeneous air gap.
It is preferred that the width that all magnetics are in the circumferential is more than permanent magnet.
It is preferred that described magnetic is axially symmetric structure, inner wall surface thereof is plane.
It is preferred that the width of described crown is more than coiling arm, the circumferential both sides of crown form both wings outside extending out to coiling arm respectively Portion, forms a notch between the alar part in opposite directions of two adjacent crowns, described notch width in the circumferential is less than or equal to described 5 times of the minimum widith of air gap.
It is preferred that the width that described notch is in the circumferential is less than or equal to 3 times of the minimum widith of described air gap.
It is preferred that adjacent two alar parts of each notch both sides at least one outwards tilted before winding winding, described outwards Tilt alar part on be formed with joint-cutting, after winding winding tilt alar part curve inwardly deformation make described joint-cutting reduce or disappear And magnetic core described in molding.
It is preferred that the ratio of the Breadth Maximum of described air gap and minimum widith is more than 2.
Compared to prior art, formed between the internal face of the outside wall surface of the crown of the stator of motor of the present invention and the magnetic of rotor Non-homogeneous air gap, it is to avoid rotor is parked in dead-centre position, it is ensured that during electrical power, rotor starts smoothly.
Accompanying drawing explanation
Fig. 1 is the schematic diagram of an embodiment of the stator of external rotor electric machine of the present invention.
Fig. 2 is the top view of Fig. 1.
Fig. 3 is the schematic diagram of the magnetic core of stator shown in Fig. 1.
Fig. 4 is the top view of Fig. 3.
Fig. 5 is the schematic diagram before form forming magnetic core shown in Fig. 3.
Fig. 6 is the top view of Fig. 5.
Fig. 7 is the schematic diagram of the second embodiment of the magnetic core of stator.
Fig. 8 is the schematic diagram before form forming magnetic core shown in Fig. 7.
Fig. 9 is the schematic diagram of the 3rd embodiment of the magnetic core of stator.
Figure 10 is the schematic diagram before form forming magnetic core shown in Fig. 9.
Figure 11 is the schematic diagram of the 4th embodiment of the magnetic core of stator.
Figure 12 is the schematic diagram before form forming magnetic core shown in Figure 11.
Figure 13 is the schematic diagram of the 5th embodiment of the magnetic core of stator.
Figure 14 is the schematic diagram before form forming magnetic core shown in Figure 13.
Figure 15 is the schematic diagram of the sixth embodiment of the magnetic core of stator.
Figure 16 is the schematic diagram of the 7th embodiment of the magnetic core of stator.
Figure 17 is the schematic diagram of an embodiment of the rotor of external rotor electric machine of the present invention.
Figure 18 is the schematic diagram of the second embodiment of rotor.
Figure 19 is the schematic diagram of the 3rd embodiment of rotor.
Figure 20 is the schematic diagram of the 4th embodiment of rotor.
Figure 21 is the schematic diagram of the 5th embodiment of rotor.
Figure 22 is that stator described in Fig. 1-4 is arranged in pairs or groups the schematic diagram of motor that rotor shown in Figure 18 constitutes.
Figure 23 is the enlarged drawing of square frame X in Figure 22, for clearly illustrating other structures, eliminates the magnetic line of force in figure.
Figure 24 is position relationship schematic diagram when being positioned at dead point of the motor shown in Figure 22.
Figure 25 is that stator described in Fig. 1-4 is arranged in pairs or groups the schematic diagram of motor that rotor shown in Figure 19 constitutes.
Figure 26 is that stator shown in Fig. 9-10 is arranged in pairs or groups the schematic diagram of motor that rotor shown in Figure 20 constitutes.
Figure 27 is that stator shown in Fig. 9-10 is arranged in pairs or groups the schematic diagram of motor that rotor shown in Figure 21 constitutes.
Figure 28 is that stator shown in Figure 16 is arranged in pairs or groups the schematic diagram of motor that rotor shown in Figure 17 constitutes.
Figure 29 is that stator shown in Figure 15 is arranged in pairs or groups the schematic diagram of motor that rotor shown in Figure 18 constitutes.
Detailed description of the invention
Below in conjunction with the accompanying drawings, by the detailed description of the invention of the present invention is described in detail, will make technical scheme and other Beneficial effect is apparent.
Single-phase external rotor motor of the present invention includes stator and the rotor around described stator.Described stator, rotor can have many Planting different structures, different stator, rotor can the most suitably be arranged in pairs or groups, and form the motor of various different qualities.This Bright accompanying drawing 1-16 shows multiple specific embodiments of stator, and accompanying drawing 17-21 shows multiple specific embodiments of rotor, Figure 22-28 Exemplarily illustrate the motor that several said stator is constituted with rotor collocation.It is appreciated that accompanying drawing only provides reference and explanation use, Stator of the present invention, rotor are not limited to the embodiment of diagram, and the motor that its collocation is constituted is also not limited to the embodiment of diagram.
Fig. 1-4 show the first embodiment of stator 10, and in the present embodiment, described stator 10 includes magnetic core 12, is coated on magnetic Insulating frame 14 on core 12 and be set around the winding 16 on described insulating frame 14.
Described magnetic core 12 is formed by permeability magnetic material, the such as stackings such as silicon steel sheet.Magnetic core 12 includes the yoke 18 of annular and by yoke 18 Outer rim radially one extend some teeth 20.Described tooth 20 is arranged along the circumferential uniform intervals of yoke 18, each tooth 20 Including the coiling arm 22 being connected with yoke 18 and the crown 24 of the end that is formed at coiling arm 22.Described coiling arm 22 is linearly Extend, between adjacent coiling arm 22, form winding slot 26.Described winding slot 26 substantially in sector, width by yoke 18 along footpath To being outwards gradually increased.Described crown 24 is overall curved, and it substantially circumferentially extends, and relative to coiling arm 22 substantially in It is symmetrical arranged.Preferably, each crown 24 is symmetrical about the radius at coiling arm 22 center by this tooth 20 of motor.In week Upwards, the width of described crown 24 is more than coiling arm 22, and the circumferential both sides of crown 24 extend out to outside coiling arm 22, respectively Form an alar part 28.In the present embodiment, between the corresponding alar part 28 of adjacent crown 24, form narrow notch 30.
Each crown 24 has the internal face 32 towards coiling arm 22 and the outside wall surface 34 towards rotor 50.Described outer wall Face 34 is arc surface, and the outside wall surface 34 of all crowns 24, as the outer surface of stator 10, is located substantially at a common face of cylinder On, the described face of cylinder is coaxially disposed with stator 10.It is formed with joint-cutting 36, the present embodiment on the internal face 32 of described crown 24 In, described joint-cutting 36 is 2, is symmetrically distributed on two alar parts 28, near coiling arm 22 with coiling arm 22 separately. Each joint-cutting 36 radially, i.e. the thickness direction of crown 24, the internal face 32 of crown 24 cut, its degree of depth substantially tooth Hat 24 is in the half of the thickness of the position of joint-cutting 36, to ensure not cause magnetic circuit big impact.
Described winding 16 is set around on coiling arm 22 and is positioned at inside crown 24.Winding 16 and coiling arm 22 and crown 24 Internal face 32 between separated by insulating frame 14.Described insulating frame 14 usually ambroin, it is to avoid winding 16 short circuit.As Shown in Fig. 5-6, time before magnetic core 12 molding, the part that crown 24 is positioned at outside joint-cutting 36 tilts out against, adjacent tooth Interval between hat 24 is relatively big, and such winding 16 can be wound on coiling arm 22 easily.It is completed in winding 16 winding After, the outside wall surface 34 of crown 24 is applied power and brings it about and deform inwardly coiling arm 22 and bend, form the outer wall of circular arc Face 34.In the process, the interval between crown 24 reduces and forms narrow notch 30, and joint-cutting 36 diminishes even in thin gap-like. It is preferred that described crown 24 outside joint-cutting 36 part deformation before and deform after between angle, i.e. deformation angle, for 15°-60°.Optimally, described crown 24 is positioned at the deformation angle of the part outside joint-cutting 36 is 20 °-45 °.
For the stator 10 of same size, the crown 24 of the magnetic core 12 of said stator 10 the most outwards tilts, side Just coiling;Bending deformation in crown 24 after coiling, compared to the existing magnetic constituted through one time punching molded silicon steel sheet stacking Cored structure has bigger width in the circumferential, and the width of the notch 30 between crown 24 the most significantly reduces, and is preferably about For the half or less of width of the notch 30 of existing core structure, effectively reduce cogging torque.It is to be appreciated that described joint-cutting The setting of 36 is to deform inflection for convenience of crown 24, and in certain embodiments, crown 24 material itself has certain deformable Ability, described joint-cutting 36 can also omit.
Fig. 7 show the second embodiment of the magnetic core 12 of stator 10, and its difference essentially consists in, each tooth in the present embodiment Hat 24 is only formed with joint-cutting 36 on one alar part 28, and as a example by direction as shown, joint-cutting 36 is both formed in coiling arm 22 Counterclockwise on the alar part 28 of side.Before magnetic core 12 molding, as shown in Figure 8, described crown 24 is positioned at the inverse of coiling arm 22 The monolateral tilting of alar part 28 of hour hands side.Owing to the alar part 28 of each crown 24 the same side all tilts, the alar part of each tilting 28 alar parts 28 not tilted with adjacent crown 24 stagger, and still can form bigger interval between the most adjacent alar part 28, Facilitate coiling.After coiling, the alar part 28 inflection shaping of tilting, make the interval between adjacent alar part 28 reduce formation narrow Notch 30, reduce cogging torque.
Fig. 9 show the 3rd embodiment of the magnetic core 12 of stator 10, and relative to previous embodiment, its difference is, institute Stating joint-cutting 36 and be formed at the junction of alar part 28 and coiling arm 22, alar part 28 is monolateral tilting before coiling, as shown in Figure 10. So, the degree of depth of joint-cutting 36 incision can be bigger, and the angle that crown 24 tilts is bigger, and crown 24 has before the forming Bigger interval, convenient coiling.Furthermore it is possible to understand ground, it is possible in the junction of each alar part 28 with coiling arm 22 Forming described joint-cutting 36, alar part 28 is bilateral tilting before coiling.
Figure 11-14 illustrates other two embodiments of the magnetic core 12 of stator 10, and its difference is, part crown 24 is formed Having joint-cutting 36 not have joint-cutting 36 on part crown 24, the crown 24 having joint-cutting 36 and the crown 24 not having joint-cutting 36 are along week To being arranged alternately.It is preferred that the crown 24 being formed with joint-cutting 36 is respectively formed with joint-cutting 36, molding on its two alar part 28 Front two alar parts 28 are all upturned so that the adjacent crown 24 not having joint-cutting 36 in itself and both sides forms bigger interval respectively, Facilitate coiling.Described joint-cutting 36 can be respectively formed in the junction of two alar parts 28 and winding section, as depicted in figs. 11-12, also The central authorities of two alar parts 28 can be formed at, with coiling arm 22 separately, as illustrated in figs. 13-14.
In above-described embodiment, the alar part 28 of the crown 24 of magnetic core 12 the most outwards tilts, and curve inwardly deformation after shaping, So facilitate winding winding 16 before the forming, can have bigger width after shaping in the circumferential, form less notch 30, Reduce cogging torque.As long as it practice, two alar parts 28 of each notch 30 both sides one of them can outwards tilt, same magnetic Each crown 24 of core 12, can have monolateral tilting, bilateral tilting and bilateral not tilt, as long as collocation suitably can be real Existing above-mentioned purpose, is not limited with the embodiment of diagram.In each embodiment illustrated above, the crown 24 of magnetic core 12 is in the circumferential Disconnect, be formed with narrow notch 30.In other embodiment, described crown 24 circumference can also connect as one, So reduce cogging torque to greatest extent.
As Figure 15 a and Figure 15 b show other two embodiments of magnetic core 12, in described two embodiments, adjacent crown Being formed with magnetic bridge 38 between 24, crown 24 one is connected by described magnetic bridge 38, is collectively forming the rim of closing.It is preferred that institute The rim stating closing has the radial thickness of minimum in magnetic bridge 38 position.More preferably, the inwall of described magnetic bridge 38 is formed Groove 40, described groove 40 axially extends, and can be single or multiple.In diagram, each magnetic bridge 38 is formed multiple Groove 40, the plurality of groove 40 is the most uniformly arranged.In order to realize coiling, can be in the connection of coiling arm 22 with crown Place disconnects (as shown in fig. 15 a), and so, the rim that crown 24 is collectively forming is sheathed on coiling after coiling completes the most vertically The periphery of arm 22, is assembled into magnetic core 12.In the embodiment shown in Figure 15 b, coiling arm 22 breaks with the junction in yoke portion 18 Open, thus yoke portion 18 refills after coiling completes and is fitted on coiling arm 22 central authorities, is assembled into magnetic core 12.
Figure 16 a and Figure 16 b show two other embodiment of magnetic core 12, and it is real with Figure 15 a and Figure 15 b the most respectively Executing example roughly the same, difference is that crown 24 is formed with locating slot 42, described locating slot 42 in its outside wall surface 34 On alar part 28, the center of deviation crown 24 so that crown 24 is relative to coiling arm 22 center by this tooth 20 of motor Radius be unsymmetric structure.
Figure 17-21 is the specific embodiment of rotor 50 of the present invention.Described rotor 50 is outer rotor, including housing 52 and be sticked Permanent magnet 54 in housing 52.The outside wall surface of described permanent magnet 54 fits with housing 52, can be fixed by gluing, Can also be connected by integrated through injection molding.The internal face 56 of described permanent magnet 54 defines space for installing stator 10, described sky Between slightly larger than the size of stator 10 so that forming air gap between stator 10 and rotor 50.
Figure 17 show the first embodiment of rotor 50, and in the present embodiment, described permanent magnet 54 is fraction block structure, along housing The circumferential uniform intervals arrangement of 52, is formed with gap between adjacent permanent magnet 54.Each permanent magnet 54 is as rotor 50 One magnetic pole, adjacent permanent magnet 54 has contrary polarity.In the present embodiment, each permanent magnet 54 is a part for annulus, It is arc surface towards the internal face 56 of stator 10, and the internal face 56 of all permanent magnets 54 is as the inner surface of rotor 50, position On a common face of cylinder, the setting coaxial with rotor 50 of the described face of cylinder.As any of the above-described stator 10 is loaded this rotor 50 In, the spaced radial between the internal face 56 of the outside wall surface 34 of the crown 24 of stator 10 and the permanent magnet 54 of rotor 50 is along week To constant, substantially homogeneous air gap between rotor 10,50, will be formed.
It is preferred that the pole embrace of described each piece of permanent magnet 54, the i.e. number of degrees α and 360 of the central angle of permanent magnet 54 correspondence Spending the ratio of the business divided by rotor number of poles N, i.e. α: 360/N is more than 0.7, so can improve the torque characteristics of motor and improve electricity The efficiency of machine.In the stator 10 of motor of the present invention and each embodiment of rotor 50, the quantity of permanent magnet 54 and the quantity of tooth 20 Identical, i.e. stator 10 is identical with the number of magnetic poles of rotor 50.In diagram, permanent magnet 54 and tooth 20 are 8, eight permanent magnetism Body 54 constitutes eight magnetic poles of rotor 50, forms 8 winding slots 26, collectively form 8 pole 8 groove motors between eight teeth 20. In other embodiments, the tooth 20 of stator 10 can also become multiple proportion with the quantity of the permanent magnet 54 of rotor 50, such as tooth 20 Quantity be 2 times of permanent magnet 54,3 times etc..Preferably, the winding 16 of described stator 10 electrically connects and straight by brushless single phase Stream motor driver is provided with blow-up inversion of direct current electricity, thus forms single-phase DC brushless motor.In other embodiments, the present invention Design can also be used in single-phase permanent-magnet synchronous motor.
In other several embodiments of rotor 50 shown in Figure 18-21, the internal face 56 of permanent magnet 54 is not cylinder arc surface, Non-homogeneous air gap will be formed between rotor 10,50 after loading stator 10.Specifically:
Figure 18 show the second embodiment of rotor 50, wherein permanent magnet 54 structure axisymmetricly, the thickness of permanent magnet 54 by The mediad both sides of circumference are gradually reduced.Each permanent magnet 54 is plane towards the internal face 56 of stator 10, and described plane is along flat Row extends in the tangential direction of stator radially-outer surface.In axial cross section as shown in figure 18, the interior table of described permanent magnet 54 Face lay respectively at a regular polygon limit on.So, symmetry is formed between the outer surface of permanent magnet 54 and stator 10 non-homogeneous Air gap, described air gap has a minima in the circumferential center of corresponding permanent magnet 54, and at this minima to circumference both sides gradually Increase.Rotor 50 is beneficially positioned by being provided with of the non-homogeneous air gap of described symmetry when motor power-off, makes rotor 50 be stopped Dead-centre position is avoided in position, thus rotor 50 can start smoothly when electrical power.
Figure 19 show the 3rd embodiment of rotor 50, and it with the permanent magnet 54 that differs primarily in that of embodiment illustrated in fig. 18 is Integrative-structure, ring-type for close in the circumferential.Described annular permanent magnets 54 is circumferentially divided into multistage, and each section as rotor One magnetic pole of 50, adjacent each section has different polarity.It is similar to each piece of permanent magnet 54 of rotor 50 shown in Figure 18, this reality Executing the thickness of each section of permanent magnet 54 in example to be gradually reduced by the mediad both sides of circumference, the internal face 56 towards stator 10 is flat Face, in the axial, cross-sectional view shown in Figure 19, each section of described permanent magnet 54 surrounds the interior table of the rotor 50 of regular polygon jointly Face.Similar to embodiment illustrated in fig. 18, each magnetic pole of the permanent magnet 54 in the present embodiment and the outer surface of stator 10 form symmetry Non-homogeneous air gap.
Figure 20 show the 4th embodiment of rotor 50, and it is similar to embodiment illustrated in fig. 18 structure, rotor 50 circumferentially between Every multiple permanent magnets 54 of arranging, each permanent magnet 54 has a plane internal face 56.Except for the difference that, in the present embodiment, Described permanent magnet 54 is unsymmetric structure, and its thickness is gradually increased along by the side of circumference to opposite side, in the position near the other end The place of putting is gradually reduced again, the center in the position of the maximum gauge of permanent magnet 54 deviation permanent magnet 54 circumference, and permanent magnet 54 weeks Thickness to both sides is different.The both sides of the internal face 56 of permanent magnet 54 are non-isosceles triangle shape with the line in the axle center of rotor 50. So, after assembling with stator 10, air gap non-homogeneous, asymmetrical between rotor 10,50, is formed.Described asymmetric non- Rotor 50 is beneficially positioned by being provided with of even air gap when motor power-off, and dead-centre position is avoided in the position making rotor 50 be stopped, Thus rotor 50 can start smoothly when electrical power.
Figure 21 is the schematic diagram of the 5th embodiment of rotor 50.In the present embodiment, described rotor 50 includes housing 52, is sticked Some permanent magnets 54 in housing 52 and magnetic 58, described magnetic 58 can be that hard magnetic material is made, such as magnetic Ferrum etc., it can also be made up of soft magnetic materials, such as ferrum etc..Circumferentially direction, described permanent magnet 54 and magnetic 58 are spaced It is arranged alternately, between two the most adjacent permanent magnets 54, is inserted with a magnetic 58.In the present embodiment, described permanent magnet 54 is in post Shape, its cross section is substantially square, and forms bigger space, described space width in the circumferential between adjacent permanent magnet 54 Degree is much larger than permanent magnet 54, and such magnetic 58 has bigger circumferential width relative to permanent magnet 54, can be permanent magnet 54 Several times.
Described magnetic 58 is axially symmetric structure, and its thickness is gradually reduced by the mediad both sides of circumference, the minimum of magnetic 58 Thickness, the i.e. thickness at its circumference two ends are suitable with the thickness of permanent magnet 54.Magnetic 58 is towards the internal face 60 of stator 10 For plane, extend along the tangential direction being parallel to stator 10 outer surface.So, the internal face 56 of described permanent magnet 54 and magnetic The internal face 60 of body 58 is collectively forming the inner surface of rotor 50, and described inner surface is symmetrical in the axial cross section of rotor 50 Polygon, after proceeding to stator 10, forms the non-homogeneous air gap of symmetry between rotor 10,50.It is preferred that described permanent magnetism Body 54 circumferentially magnetizes, i.e. the peripheral side wall of permanent magnet 54 is polarized and have corresponding polarity.Two adjacent permanent magnets 54 Polarised direction is contrary.In other words, the polarity on two adjacent permanent magnets 54 surface in opposite directions is identical.So, adjacent permanent magnet Magnetic 58 between 54 is polarized into respective poles, and two adjacent magnetics 58 have opposed polarity.
Said stator 10 is carried out different permutation and combination from rotor 50 and can form the motor of different qualities, be exemplified below several Schematically illustrate.
As shown in figure 22 the stator 10 for first embodiment shown in Fig. 1-4 arrange in pairs or groups rotor 50 shown in Figure 18 constitute motor, its In: the crown 24 of stator 10 is spaced formation notch 30 in the circumferential, and the outside wall surface 34 of crown 24 is positioned on the common face of cylinder, The whole outer surface making stator 10 is rounded;The most separately, permanent magnet 54 is towards fixed for the permanent magnet 54 of rotor 50 The internal face 56 of son 10 is plane so that the whole inner surface of rotor 50 is substantially in regular polygon.Outside rotor 10,50 Wall 34 with internal face 56 the most separately, forms air gap 62.The radial width of described air gap 62 is along permanent magnet 54 Circumference change, for symmetrical non-homogeneous air gap 62.The radial width of described air gap 62 is by the circumference of the internal face 56 of permanent magnet 54 In in, position becomes larger towards circumference two ends.
Please refer to Figure 23, the radial direction between circumferential midpoint and the outside wall surface 34 of crown 24 of the internal face 56 of permanent magnet 54 Interval width is the minimum widith Gmin of air gap 62;The circumferential end points of the internal face 56 of permanent magnet 54 and the outer wall of crown 24 Spaced radial width between face 34 is the Breadth Maximum Gmax of air gap 6262.Preferably, described air gap 62 is maximum wide The ratio of degree Gmax and minimum widith Gmin is more than 1.5, i.e. Gmax:Gmin > 1.5.More preferably, Gmax:Gmin > 2. The width D of described notch 30 is advisable with 5 times of the minimum widith Gmin of no more than air gap 62, i.e. D≤5Gmin.Preferably Ground, the width D of notch 30 is more than or equal to the minimum widith Gmin of air gap 62, and is less than or equal to the minimum widith of air gap 62 3 times of Gmin, i.e. Gmin≤D≤3Gmin.
Such as Figure 22, shown in 24, when motor is not powered on, the permanent magnet 54 of rotor 50 produces captivation to the tooth 20 of stator 10, Figure 22 and Figure 24 shows the rotor 50 schematic diagram when diverse location.Specifically, Figure 24 shows that rotor 50 is positioned at dead point Position (i.e. the pole center of rotor 50 just center to stator 10 crown 24).At the beginning of Figure 22 shows that rotor 50 is positioned at Beginning position (i.e. motor be not powered on or power-off state lower rotor part 50 stop position).As shown in Figure 22 and Figure 24, rotor 50 When being positioned at dead-centre position, the magnetic field that the magnetic pole of rotor 50 produces is Φ 1 through the magnetic flux of stator 10, and rotor 50 is positioned at initial bit When putting, the magnetic field that the magnetic pole of rotor 50 produces is Φ 2 through the magnetic flux of stator 10, due to Φ 2 > Φ 1, so that rotor 50 can be positioned initial position as shown in figure 22 when motor is not powered on, and avoid the dead-centre position shown in Figure 24, And then the problem of rotor 50 fail to start when avoiding electrical power.
As shown in figure 22, at initial position, the centrage of the coiling arm 22 of the tooth 20 of stator 10 just adjacent to rotor 50 Centrage between two permanent magnets 54, this deviation dead-centre position, position is farthest, rotor fail to start when being prevented effectively from electrical power Problem.Owing to there is the other factorses such as friction under practical situation, the centrage of coiling arm 22 may deviate two permanent magnets 54 it Between centrage certain angle, such as positive and negative 0~30 degree of deviation, but still away from dead-centre position.The above embodiment of the present invention In, produce magnetic field by the permanent magnet 54 of rotor 50 self and the initial position of rotor 50 can be positioned and make its initial bit Put deviation dead-centre position.Its cogging torque of single-phase permanent brushless motor with this kind of setting can be suppressed effectively, thus Motor is made to have higher efficiency and better performance.Experiment show shows, a kind of according to above-mentioned thinking design single-phase outside Rotor brushless DC motor (nominal torque 1Nm, rated speed 1000rpm, stator core stack thickness 30mm), its teeth groove The peak value of torque is less than 80mNm.
Figure 25 is that the stator 10 of first embodiment shown in Fig. 1-4 is arranged in pairs or groups the electricity that the rotor 50 of the 3rd embodiment shown in Figure 19 constitutes Machine, wherein: the crown 24 of stator 10 is spaced formation notch 30 in the circumferential, and the outside wall surface 34 of crown 24 is positioned at common circle On cylinder;The permanent magnet 54 of rotor 50 is the multi-segment structure connected as one in circumference, and each section of permanent magnet 54 is as rotor One magnetic pole of 50, the internal face 56 of described magnetic pole is plane so that the inner surface of whole rotor 50 is regular polygon.Stator Forming the non-homogeneous air gap 62 of symmetry between 10 and rotor 50, the width of air gap 62 is by the circumference two of each magnetic pole of rotor 50 Lateral central authorities are gradually increased, and have Breadth Maximum Gmax at the circumferential midpoint of magnetic pole, and circumference both sides have minimum widith Gmin. Rotor 50 when static, the central authorities of each crown 24 just junction to two sections of the permanent magnet 54 of rotor 50, avoid dead point Position, it is simple to being again started up of rotor 50.
Figure 26 be the stator 10 of the 3rd embodiment shown in Fig. 9-10 arrange in pairs or groups the 4th embodiment shown in Figure 20 rotor 50 constitute electricity Machine, wherein: the crown 24 of stator 10 is spaced formation notch 30 in the circumferential, and the outside wall surface 34 of crown 24 is positioned at common circle On cylinder;The permanent magnet 54 of rotor 50 is unsymmetric structure, and thickness is in the circumferential in non-homogeneous;The permanent magnet 54 of rotor 50 The tangential tilt certain angle of outside wall surface 34 of the relative crown 24 of internal face 56, the internal face 56 of permanent magnet 54 and crown Air gap 62 non-homogeneous, asymmetrical is formed between the outside wall surface 34 of 24.The width of described air gap 62 is by the circumference of permanent magnet 54 Side is first gradually reduced to opposite side, is then gradually increased.Schematically as a example by direction, at clockwise the one of permanent magnet 54 Side air gap 62 has Breadth Maximum Gmax, and the minimum widith Gmin position of air gap 62 is close but deviates permanent magnet 54 Anticlockwise side.
Figure 27 be the stator 10 of the 3rd embodiment shown in Fig. 9-10 arrange in pairs or groups the 5th embodiment shown in Figure 21 rotor 50 constitute electricity Machine, wherein: the crown 24 of stator 10 is spaced formation notch 30 in the circumferential, and the outside wall surface 34 of crown 24 is positioned at common circle On cylinder;Rotor 50 includes spaced permanent magnet 54 and magnetic 58, permanent magnet 54 and magnetic 58 in the circumferential Internal face 56,60 jointly surround the inner surface of polygonal rotor 50.Air gap 62 between rotor 10,50 is symmetrically Non-homogeneous, the circumferential midpoint of magnetic 58 it is gradually reduced circumference both sides mutually, the position air gap at corresponding permanent magnet 54 has Big width G max.Rotor 50 is the central authorities of its permanent magnet 54 the most just central permanent magnet 54 to crown 24 when static Stator 10 is formed the active force in circumference, it is simple to rotor 50 starts.
The motor of the composition of rotor 50 shown in Figure 17 of arranging in pairs or groups for the stator 10 shown in Figure 16 a as shown in figure 28, wherein: stator 10 Crown 24 connect as one in the circumferential, the outside wall surface 34 of the whole outer surface of stator 10, i.e. crown 24 is the face of cylinder; The internal face 56 of the inner surface of rotor 50, i.e. permanent magnet 54 is positioned on the face of cylinder coaxial with the outside wall surface 34 of stator 10;Fixed Uniform air gap 62 is formed between outside wall surface 34 and the internal face 56 of rotor 50 of son 10.Shape in the outside wall surface 34 of crown 24 Become to have locating slot 42 to make crown 24 in unsymmetric structure, so ensure that rotor 50 is when static between its two permanent magnet 54 Centrage deflects certain angle relative to the centrage of the coiling arm 22 of the tooth 20 of stator 10.It is preferred that rotor 50 is static Time, the locating slot 42 on stator 10 is just to the centrage between the two adjacent permanent magnets 54 of rotor 50, it is allowed to motor is often During secondary energising, rotor 50 can start smoothly.
Figure 29 is that the stator 10 of sixth embodiment shown in Figure 15 a is arranged in pairs or groups the electricity that the rotor 50 of the second embodiment shown in Figure 18 constitutes Machine, wherein: the crown 24 of stator 10 connects as one in the circumferential, the whole outer surface of stator 10 is the face of cylinder;Rotor The internal face 56 of the permanent magnet 54 of 50 is plane, extends along the tangential direction being parallel to stator 10 outer surface;Permanent magnet 54 Forming the air gap heterogeneous 62 of symmetry between the outside wall surface 34 of internal face 56 and crown 24, the width of air gap 62 is by permanent magnet The lateral central authorities of circumference two of 54 are gradually reduced, and have minimum widith Gmin, in circumference at the circumferential point midway of permanent magnet 54 Both sides then have Breadth Maximum Gmax.
It is to be appreciated that the stator 10 shown in Fig. 1-14 is essentially identical in structure with characteristic, it is respectively formed narrow notch even There is no notch, can mutually replace when it is arranged in pairs or groups with rotor 50, all can realize identical function.It addition, between according to rotor The difference of the air gap formed, according to symmetry and the asymmetry of rotor 50 structure, can design corresponding circuit, make motor When energising, rotor 50 can start smoothly.It is to be appreciated that described stator 10 is the most above-mentioned exemplary with the collocation of rotor 50 Several ways, according to the creative spirit of the present invention, those skilled in the art make other change, all should be included in the present invention Within the scope of claimed.

Claims (21)

1. a rotor for single-phase external rotor motor, includes housing and the some permanent magnets being attached in housing, described permanent magnetism The circumferentially spaced setting of body, it is characterised in that: being provided with a magnetic between two adjacent Magnet, described permanent magnet circumferentially magnetizes, The polarised direction of two adjacent permanent magnets is contrary, and the polarity on adjacent permanent magnet surface in opposite directions is identical.
The rotor of single-phase peripheral sub-motor the most as claimed in claim 1, it is characterised in that the internal face of described magnetic with turn Distance between the axle center of son is gradually changed by the lateral central authorities of circumference two of magnetic.
3. the rotor of single-phase external rotor motor as claimed in claim 1, it is characterised in that described magnetic is by soft magnetic materials system Become.
4. the rotor of single-phase external rotor motor as claimed in claim 3, it is characterised in that described magnetic is axially symmetric structure, Distance between internal face and the axle center of rotor of magnetic is gradually reduced by the lateral central authorities of circumference two of permanent magnet.
5. the rotor of single-phase external rotor motor as claimed in claim 3, it is characterised in that the internal face of described magnetic is flat Face.
6. the rotor of single-phase external rotor motor as claimed in claim 1, it is characterised in that described magnetic width in the circumferential Degree is more than permanent magnet.
7. the rotor of single-phase external rotor motor as claimed in claim 1, it is characterised in that described magnetic and permanent magnet Internal face is plane, and the internal face of described magnetic and permanent magnet surrounds a polygon jointly.
8. a single-phase external rotor motor, including stator and around the rotor of described stator, it is characterised in that: described rotor is Rotor described in any one of claim 1-7, forms air gap heterogeneous between described rotor and stator.
9. single-phase external rotor motor as claimed in claim 8, it is characterised in that described stator includes including magnetic core and twining The winding being around on magnetic core, described magnetic core includes the yoke of annular and some by the radially one extension of the outer rim of yoke Tooth, each tooth includes the crown of the coiling arm being connected with yoke and the end that is formed at coiling arm, forms groove between adjacent crown Mouthful, rotor its permanent magnet when static is diametrically opposed with the crown of stator.
10. single-phase external rotor motor as claimed in claim 9, it is characterised in that the width of described crown is more than coiling arm, The circumferential both sides of crown form two alar parts respectively outside extending out to coiling arm, form one between the alar part in opposite directions of two adjacent crowns Described notch, adjacent two alar parts of each notch at least one outwards tilted before winding winding, after winding winding The alar part tilted curves inwardly and deforms and magnetic core described in molding.
11. single-phase external rotor motors as claimed in claim 10, it is characterised in that be formed on the alar part of described outside tilting Joint-cutting, after winding winding tilt alar part curve inwardly deformation make described joint-cutting reduce or disappear.
12. 1 kinds of single-phase external rotor motors, including stator and around the rotor of described stator, described rotor include housing with And the some permanent magnets being attached in housing, the circumferentially spaced setting of described permanent magnet, described stator includes magnetic core and is set around Winding on magnetic core, described magnetic core includes yoke and the some teeth stretched radially outward by the outer rim of yoke, the end shape of each tooth Becoming crown, described crown has one towards the outside wall surface of rotor, it is characterised in that: described permanent magnet circumferentially magnetizes, adjacent The polarised direction of two permanent magnets is contrary, and is additionally provided with a magnetic between two adjacent Magnet.
13. single-phase external rotor motors as claimed in claim 12, it is characterised in that the internal face of described magnetic and stator The outside wall surface of crown distance diametrically is gradually changed by the lateral central authorities of circumference two of magnetic, is formed non-between stator and rotor Even air gap.
14. single-phase external rotor motors as claimed in claim 13, it is characterised in that described air gap is from the circumferential both sides of magnetic It is gradually reduced to central authorities.
15. single-phase external rotor motors as claimed in claim 13, it is characterised in that described air gap is symmetrical non-homogeneous air gap.
16. single-phase external rotor motors as claimed in claim 12, it is characterised in that all magnetics width in the circumferential is big In permanent magnet.
17. single-phase external rotor motors as claimed in claim 16, it is characterised in that described magnetic is axially symmetric structure, its Internal face is plane.
18. single-phase external rotor motors as claimed in claim 12, it is characterised in that the width of described crown is more than coiling arm, The circumferential both sides of crown form two alar parts respectively outside extending out to coiling arm, form one between the alar part in opposite directions of two adjacent crowns Notch, described notch width in the circumferential is less than or equal to 5 times of the minimum widith of described air gap.
19. single-phase external rotor motors as claimed in claim 18, it is characterised in that described notch width in the circumferential is less than Or 3 times of the minimum widith equal to described air gap.
20. single-phase external rotor motors as claimed in claim 18, it is characterised in that adjacent two alar parts of each notch both sides are extremely One of them outwards tilted before winding winding less, the alar part of described outside tilting was formed with joint-cutting, after winding winding Tilt alar part curve inwardly deformation make described joint-cutting reduce or disappear and molding described in magnetic core.
21. single-phase external rotor motors as claimed in claim 12, it is characterised in that the Breadth Maximum of described air gap and minimum width The ratio of degree is more than 2.
CN201510628775.8A 2015-05-08 2015-09-28 Single-phase external rotor motor and rotor thereof Withdrawn CN106130286A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102016108429.8A DE102016108429A1 (en) 2015-05-08 2016-05-06 Single-phase external rotor motor and rotor thereof
US15/148,802 US20160329789A1 (en) 2015-05-08 2016-05-06 Single-phase Outer-rotor Motor And Rotor Thereof
MX2016005938A MX2016005938A (en) 2015-05-08 2016-05-06 Single-phase outer-rotor motor and rotor thereof.
BR102016010296A BR102016010296A2 (en) 2015-05-08 2016-05-06 rotor, single phase external rotor motor and electrical appliance
KR1020160056463A KR20160131958A (en) 2015-05-08 2016-05-09 Single-phase outer-rotor motor and rotor thereof
JP2016093957A JP2016226267A (en) 2015-05-08 2016-05-09 Single-phase outer-rotor motor and rotor thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015102332186 2015-05-08
CN201510233218 2015-05-08

Publications (1)

Publication Number Publication Date
CN106130286A true CN106130286A (en) 2016-11-16

Family

ID=55742742

Family Applications (15)

Application Number Title Priority Date Filing Date
CN201510502469.XA Withdrawn CN106130291A (en) 2015-05-08 2015-08-14 Blower fan and single-phase external rotor brushless electric machine thereof
CN201520616855.7U Expired - Fee Related CN205178812U (en) 2015-05-08 2015-08-14 Fan and single -phase external rotor brushless motor thereof
CN201520760241.6U Expired - Fee Related CN205283355U (en) 2015-05-08 2015-09-28 Single -phase external rotor electric machine and rotor thereof
CN201520760145.1U Expired - Fee Related CN205283360U (en) 2015-05-08 2015-09-28 Single -phase external rotor electric machine and stator thereof
CN201510629630.XA Pending CN106130293A (en) 2015-05-08 2015-09-28 Single-phase external rotor motor and stator thereof
CN201520759403.4U Expired - Fee Related CN205283359U (en) 2015-05-08 2015-09-28 Single -phase external rotor electric machine and stator thereof
CN201520758800.XU Expired - Fee Related CN205283353U (en) 2015-05-08 2015-09-28 Single -phase external rotor electric machine and rotor thereof
CN201510628775.8A Withdrawn CN106130286A (en) 2015-05-08 2015-09-28 Single-phase external rotor motor and rotor thereof
CN201520761992.XU Expired - Fee Related CN205283361U (en) 2015-05-08 2015-09-28 Single -phase external rotor electric machine and stator thereof
CN201510627364.7A Pending CN106130216A (en) 2015-05-08 2015-09-28 Single-phase external rotor motor and rotor thereof
CN201510629616.XA Withdrawn CN106130292A (en) 2015-05-08 2015-09-28 Single-phase external rotor motor and stator thereof
CN201510631428.0A Withdrawn CN106130206A (en) 2015-05-08 2015-09-28 Single-phase external rotor motor and stator thereof
CN201520759303.1U Expired - Fee Related CN205283354U (en) 2015-05-08 2015-09-28 Single -phase external rotor electric machine and rotor thereof
CN201510628361.5A Withdrawn CN106130285A (en) 2015-05-08 2015-09-28 Single-phase external rotor motor and rotor thereof
CN201510684071.2A Withdrawn CN106120248A (en) 2015-05-08 2015-10-20 Use in washing machine driving means

Family Applications Before (7)

Application Number Title Priority Date Filing Date
CN201510502469.XA Withdrawn CN106130291A (en) 2015-05-08 2015-08-14 Blower fan and single-phase external rotor brushless electric machine thereof
CN201520616855.7U Expired - Fee Related CN205178812U (en) 2015-05-08 2015-08-14 Fan and single -phase external rotor brushless motor thereof
CN201520760241.6U Expired - Fee Related CN205283355U (en) 2015-05-08 2015-09-28 Single -phase external rotor electric machine and rotor thereof
CN201520760145.1U Expired - Fee Related CN205283360U (en) 2015-05-08 2015-09-28 Single -phase external rotor electric machine and stator thereof
CN201510629630.XA Pending CN106130293A (en) 2015-05-08 2015-09-28 Single-phase external rotor motor and stator thereof
CN201520759403.4U Expired - Fee Related CN205283359U (en) 2015-05-08 2015-09-28 Single -phase external rotor electric machine and stator thereof
CN201520758800.XU Expired - Fee Related CN205283353U (en) 2015-05-08 2015-09-28 Single -phase external rotor electric machine and rotor thereof

Family Applications After (7)

Application Number Title Priority Date Filing Date
CN201520761992.XU Expired - Fee Related CN205283361U (en) 2015-05-08 2015-09-28 Single -phase external rotor electric machine and stator thereof
CN201510627364.7A Pending CN106130216A (en) 2015-05-08 2015-09-28 Single-phase external rotor motor and rotor thereof
CN201510629616.XA Withdrawn CN106130292A (en) 2015-05-08 2015-09-28 Single-phase external rotor motor and stator thereof
CN201510631428.0A Withdrawn CN106130206A (en) 2015-05-08 2015-09-28 Single-phase external rotor motor and stator thereof
CN201520759303.1U Expired - Fee Related CN205283354U (en) 2015-05-08 2015-09-28 Single -phase external rotor electric machine and rotor thereof
CN201510628361.5A Withdrawn CN106130285A (en) 2015-05-08 2015-09-28 Single-phase external rotor motor and rotor thereof
CN201510684071.2A Withdrawn CN106120248A (en) 2015-05-08 2015-10-20 Use in washing machine driving means

Country Status (5)

Country Link
JP (5) JP2016226267A (en)
KR (6) KR20160131946A (en)
CN (15) CN106130291A (en)
BR (5) BR102016010245A2 (en)
MX (8) MX364407B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702657A (en) * 2016-11-18 2017-05-24 珠海格力电器股份有限公司 Drum washing machine
CN109286250A (en) * 2018-09-18 2019-01-29 深圳市歌尔泰克科技有限公司 A kind of stator core, motor stator and motor

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106130291A (en) * 2015-05-08 2016-11-16 德昌电机(深圳)有限公司 Blower fan and single-phase external rotor brushless electric machine thereof
CN107404160A (en) * 2016-05-18 2017-11-28 德昌电机(深圳)有限公司 Motor
CN106108599A (en) * 2016-08-31 2016-11-16 江门市恒通高科有限公司 A kind of vacuum PTC heated type quiet breaking cellular wall cooking machine
CN106108596A (en) * 2016-08-31 2016-11-16 江门市恒通高科有限公司 Multifunctional vacuum heats quiet wall-breaking machine
CN106108595A (en) * 2016-08-31 2016-11-16 江门市恒通高科有限公司 A kind of quiet juice extractor of band evacuation function
CN106108597A (en) * 2016-08-31 2016-11-16 江门市恒通高科有限公司 A kind of vacuum juicer with wifi module
CN107968499A (en) * 2016-10-20 2018-04-27 广东德昌电机有限公司 A kind of external rotor electric machine
CN108075583B (en) * 2016-11-17 2022-10-04 德昌电机(深圳)有限公司 External rotor motor and rolling brush dust collector using same
TWI596866B (en) 2016-12-02 2017-08-21 財團法人工業技術研究院 External rotor motor
CN106787366A (en) * 2017-01-13 2017-05-31 佛山市威灵洗涤电机制造有限公司 Motor and washing machine
JPWO2018180448A1 (en) * 2017-03-31 2020-02-06 日本電産株式会社 Stator, motor, electric power steering device
US11831211B2 (en) 2017-06-05 2023-11-28 E-Circuit Motors, Inc. Stator and rotor design for periodic torque requirements
CN107237839B (en) * 2017-07-10 2023-04-25 苏州华铭威智能科技有限公司 Turbine bearing support
CN107196427B (en) * 2017-07-10 2023-06-27 苏州华铭威智能科技有限公司 Brushless turbine
JP6616362B2 (en) * 2017-09-04 2019-12-04 シナノケンシ株式会社 Brushless motor and stator winding method
JP7025175B2 (en) * 2017-10-17 2022-02-24 Ntn株式会社 Vehicle power unit
TWI699943B (en) * 2018-06-19 2020-07-21 建準電機工業股份有限公司 Rotor of outer rotor motor
CN111130232A (en) * 2018-10-30 2020-05-08 广东威灵电机制造有限公司 Stator core, motor stator and motor
WO2020092470A1 (en) * 2018-11-01 2020-05-07 E-Circuit Motors, Inc. Stator and rotor design for periodic torque requirements
CN109660034A (en) * 2019-01-29 2019-04-19 艾博金电气制造(深圳)有限公司 Magnetic core and motor with the magnetic core
CN111509884A (en) * 2019-01-31 2020-08-07 广东威灵电机制造有限公司 Rotor and motor with same
CN110350680A (en) * 2019-08-07 2019-10-18 中山市昊嘉机电科技有限公司 A kind of super bath of low noise
CN111355315B (en) * 2020-03-11 2020-12-15 珠海格力电器股份有限公司 Stator structure, permanent magnet motor and electric appliance
KR102286878B1 (en) 2021-02-10 2021-08-09 이만홍 EC motor with driver control function improved
CN113364240A (en) * 2021-04-28 2021-09-07 宁波赛嘉机电有限公司 Outer rotor motor and assembling method thereof
DE102022208376A1 (en) * 2022-08-11 2024-02-22 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Brushless electric motor for a radiator fan

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762084A (en) * 2003-03-31 2006-04-19 勒鲁瓦-索梅尔发动机公司 Synchronous electrical machine comprising a stator and at least one rotor, and associated control device
CN101222153A (en) * 2007-01-12 2008-07-16 台达电子工业股份有限公司 Rotation structure of permanent magnet motor and method determining its rotation structure
CN102130521A (en) * 2010-01-19 2011-07-20 株式会社日立制作所 Rotating electrical machine and manufacturing method of a stator thereof
CN103988399A (en) * 2011-12-23 2014-08-13 三菱电机株式会社 Permanent magnet motor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2118785B (en) * 1982-03-10 1986-08-13 Japan Servo Direct-current brushless motor
JPH11252832A (en) * 1998-03-06 1999-09-17 Asmo Co Ltd Core sheet, core and manufacture of armature
JP2002125336A (en) * 2000-10-16 2002-04-26 Matsushita Electric Ind Co Ltd Spindle motor
CN2452202Y (en) * 2000-11-16 2001-10-03 沈阳工业大学 Sinusoidal permanent magnetic magnetodensi wave-shape permasyn motor
JP2004023842A (en) * 2002-06-13 2004-01-22 Aisan Ind Co Ltd Motor
CN1520005A (en) * 2003-01-23 2004-08-11 万德鸿 Wheel hub electric motor in frequency conversion mode
CN2609272Y (en) * 2003-04-15 2004-03-31 刘家祥 Permanent-magnet brushless motor
JP2005094901A (en) * 2003-09-17 2005-04-07 Asmo Co Ltd Brushless motor
CN104348268B (en) * 2013-08-09 2019-07-23 德昌电机(深圳)有限公司 Brushless single phase motor
CN106130291A (en) * 2015-05-08 2016-11-16 德昌电机(深圳)有限公司 Blower fan and single-phase external rotor brushless electric machine thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762084A (en) * 2003-03-31 2006-04-19 勒鲁瓦-索梅尔发动机公司 Synchronous electrical machine comprising a stator and at least one rotor, and associated control device
CN101222153A (en) * 2007-01-12 2008-07-16 台达电子工业股份有限公司 Rotation structure of permanent magnet motor and method determining its rotation structure
CN102130521A (en) * 2010-01-19 2011-07-20 株式会社日立制作所 Rotating electrical machine and manufacturing method of a stator thereof
CN103988399A (en) * 2011-12-23 2014-08-13 三菱电机株式会社 Permanent magnet motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702657A (en) * 2016-11-18 2017-05-24 珠海格力电器股份有限公司 Drum washing machine
CN106702657B (en) * 2016-11-18 2023-07-14 珠海格力电器股份有限公司 Drum washing machine
CN109286250A (en) * 2018-09-18 2019-01-29 深圳市歌尔泰克科技有限公司 A kind of stator core, motor stator and motor

Also Published As

Publication number Publication date
KR20160131942A (en) 2016-11-16
KR20160131958A (en) 2016-11-16
MX2016005935A (en) 2016-12-15
JP2016214070A (en) 2016-12-15
CN106120248A (en) 2016-11-16
CN106130291A (en) 2016-11-16
CN106130292A (en) 2016-11-16
MX2016005938A (en) 2016-12-15
KR20160131945A (en) 2016-11-16
BR102016010234A2 (en) 2016-11-29
CN106130206A (en) 2016-11-16
KR20160131940A (en) 2016-11-16
JP2017022970A (en) 2017-01-26
CN205283359U (en) 2016-06-01
BR102016010296A2 (en) 2016-11-29
CN205283361U (en) 2016-06-01
MX2016005934A (en) 2016-12-15
CN205283353U (en) 2016-06-01
CN106130216A (en) 2016-11-16
BR102016010245A2 (en) 2016-11-29
KR20160131946A (en) 2016-11-16
MX364407B (en) 2019-04-24
CN205283355U (en) 2016-06-01
BR102016010297A2 (en) 2016-11-29
CN106130293A (en) 2016-11-16
CN106130285A (en) 2016-11-16
CN205283354U (en) 2016-06-01
BR102016010295A2 (en) 2016-12-27
JP2016214071A (en) 2016-12-15
MX2016005772A (en) 2017-01-05
JP2016226267A (en) 2016-12-28
KR20160131960A (en) 2016-11-16
CN205283360U (en) 2016-06-01
MX361394B (en) 2018-12-04
MX2016005773A (en) 2017-01-05
MX2016005933A (en) 2016-12-15
MX2016005939A (en) 2016-12-15
MX2016005937A (en) 2016-12-15
JP2016226266A (en) 2016-12-28
CN205178812U (en) 2016-04-20

Similar Documents

Publication Publication Date Title
CN205283354U (en) Single -phase external rotor electric machine and rotor thereof
KR102097940B1 (en) Rotating electric machine and manufacturing method of rotor core
US20130038161A1 (en) Permanent magnet rotor
US10141797B2 (en) Electric motor having a polygon stator
KR102001954B1 (en) The spoke type motor
US20210175786A1 (en) Permanent magnet motor
US9225209B2 (en) Permanent magnet rotor and electric motor incorporating the rotor
EP3101790B1 (en) Single-phase outer-rotor motor and rotor thereof
JP3207654U (en) Single phase permanent magnet motor
EP3101789B1 (en) Single-phase outer-rotor motor and stator thereof
JP2012210033A (en) Brushless motor
US20180323667A1 (en) Rotor core, rotor, and motor including same
TW201528657A (en) Stator with radial winding
CN103918160A (en) Synchronous motor
CN106487111A (en) Electric machine
US20150340913A1 (en) Low-cog permanent magnet motor
US10461590B2 (en) Single phase permanent magnet motor
KR101163982B1 (en) Step motor for reduction of detent torque
JP6012046B2 (en) Brushless motor
KR102207482B1 (en) The stator improving the asymmetry of magnetic flux density in the unipolar type and step motor comprising the same
US20180159384A1 (en) Motor
US20160329792A1 (en) Single-phase Outer-rotor Motor And Stator Thereof
CN205212570U (en) Stator is towards piece and plastic envelope stator and external rotor electric machine used thereof
CN205195449U (en) Single -Phase permanent -Magnet motor
JP2019176738A (en) Rotary electric machine and method of manufacturing rotor core

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20161116