CN106128518A - A kind of method obtaining the few group cross-section of high-precision fast neutron reaction pile component - Google Patents
A kind of method obtaining the few group cross-section of high-precision fast neutron reaction pile component Download PDFInfo
- Publication number
- CN106128518A CN106128518A CN201610472890.5A CN201610472890A CN106128518A CN 106128518 A CN106128518 A CN 106128518A CN 201610472890 A CN201610472890 A CN 201610472890A CN 106128518 A CN106128518 A CN 106128518A
- Authority
- CN
- China
- Prior art keywords
- section
- group
- cross
- formula
- scattering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 title claims description 8
- 230000004907 flux Effects 0.000 claims abstract description 21
- 239000011159 matrix material Substances 0.000 claims description 40
- 230000004992 fission Effects 0.000 claims description 23
- 239000012895 dilution Substances 0.000 claims description 20
- 238000010790 dilution Methods 0.000 claims description 20
- 238000001228 spectrum Methods 0.000 claims description 7
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 3
- 238000004364 calculation method Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 3
- 238000000342 Monte Carlo simulation Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000012088 reference solution Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C5/00—Moderator or core structure; Selection of materials for use as moderator
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactor types
- G21C1/02—Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
一种获取高精度的快中子反应堆组件少群截面的方法,通过使用点截面数据及多群数据相结合的方式计算快中子堆组件的细群截面,在线计算弹性散射矩阵,并使用细群截面求解中子输运方程获得细群中子通量密度,并以此归并能群从而得到快堆组件的少群参数;由于该方法直接使用点截面数据,中等质量核素所具有的弹性散射共振效应以及所有核素的共振干涉效应被精确考虑;能群归并的过程中使用了真实系统的中子通量密度,归并结果更为精确;本发明方法计算得到的快中子反应堆组件少群参数与参考值相比,误差整体在1%以内,具有较高的精度。
A method for obtaining high-precision few-group cross-sections of fast neutron reactor components, by combining point-section data and multi-group data to calculate the fine-group cross-sections of fast neutron reactor components, calculating elastic scattering matrices online, and using fine Solve the neutron transport equation of the group cross-section to obtain the neutron flux density of the fine group, and then merge the energy group to obtain the few-group parameters of the fast reactor components; since this method directly uses the point cross-section data, the elasticity of the medium-mass nuclides The scattering resonance effect and the resonance interference effect of all nuclides are accurately considered; the neutron flux density of the real system is used in the process of energy group merging, and the merging result is more accurate; the method of the present invention calculates fewer fast neutron reactor components Compared with the reference value, the error of the group parameter is within 1% as a whole, which has a high precision.
Description
技术领域technical field
本发明涉及核反应堆堆芯设计和核反应堆物理计算领域,具体涉及一种获取高精度的快中子反应堆组件少群截面的方法。The invention relates to the fields of nuclear reactor core design and nuclear reactor physical calculation, in particular to a method for obtaining high-precision fast neutron reactor component few-group section.
背景技术Background technique
目前快堆的发展处于预设计及实验阶段,为了快速、精确地求解堆芯中子学参数,基于“两步法”的方法成为快堆工程计算的主要方法。所谓“两步法”,第一步是对堆芯内各种组件材料进行多群中子输运计算,获得组件内的中子通量密度分布从而归并出少群均匀化群截面;第二步是由前一步计算得到的均匀化参数对堆芯进行少群中子输运方程的求解,获取堆芯有效增殖因子、堆芯功率分布等物理量。At present, the development of fast reactors is in the pre-design and experimental stage. In order to quickly and accurately solve the neutronics parameters of the core, the method based on the "two-step method" has become the main method for fast reactor engineering calculations. The so-called "two-step method", the first step is to carry out multi-group neutron transport calculations for various component materials in the core, obtain the neutron flux density distribution in the components, and then merge the few-group homogenization group cross-section; the second The first step is to solve the minority group neutron transport equation for the core with the homogenization parameters calculated in the previous step, and obtain physical quantities such as the effective multiplication factor of the core and the power distribution of the core.
在快堆中,不锈钢、液态金属钠等材料是较为常见并且大量存在的材料,这些核素的弹性散射截面具有极强的弹性散射共振效应。由于存在弹性散射共振的能量区域正是快中子反应堆中子通量密度分布集中的区域,必须精确考虑此效应。此外,由于引起裂变反应的为快中子,并且阈能反应具有与弹性散射截面相同量级的截面值,阈能反应也应重视;最后,不仅重核素有共振效应,中等原子质量的核素也具有共振效应,材料内多核素的共振干涉效应也应重点考虑。所谓共振干涉效应,指的是两个或两个以上具有共振效应的核素,其共振峰相互重叠造成的影响。In fast reactors, materials such as stainless steel and liquid metal sodium are relatively common and exist in large quantities. The elastic scattering cross sections of these nuclides have extremely strong elastic scattering resonance effects. Since the energy region where the elastic scattering resonance exists is exactly the region where the neutron flux density distribution of the fast neutron reactor is concentrated, this effect must be accurately considered. In addition, since the fission reaction is caused by fast neutrons, and the threshold energy reaction has a cross-section value of the same order as the elastic scattering cross-section, the threshold energy reaction should also be paid attention to; finally, not only heavy nuclides have resonance effects, but also nuclei with medium atomic mass Nuclides also have a resonance effect, and the resonance interference effect of multiple nuclides in the material should also be considered. The so-called resonance interference effect refers to the influence caused by the overlap of resonance peaks of two or more nuclides with resonance effect.
另一方面,快中子具有较长的平均自由程,其局部非均匀效应很弱,在组件的能谱计算中考虑均匀问题就可以获得足够高的精度。所谓非均匀效应,是指由于空间内不同介质如燃料和冷却剂的截面值不同,不同介质内中子通量分布具有显著的差异。On the other hand, fast neutrons have a longer mean free path, and their local inhomogeneity effects are weak, and high enough accuracy can be obtained by considering the uniformity problem in the energy spectrum calculation of components. The so-called non-uniform effect means that due to the different cross-sectional values of different media such as fuel and coolant in the space, the distribution of neutron flux in different media has significant differences.
目前,“两步法”在热堆(如压水堆)已被广泛应用并得到工业界的认可,并有非常成熟的计算软件。但由于快堆与热堆在中子特性上存在极大区别,这些程序所采用的方法是不适于快中子反应堆的计算的,因此需要开发一种可以获取高精度的快中子反应堆少群截面的方法。At present, the "two-step method" has been widely used in thermal reactors (such as pressurized water reactors) and has been recognized by the industry, and there are very mature calculation software. However, due to the great difference in neutron characteristics between fast reactors and thermal reactors, the methods used by these programs are not suitable for the calculation of fast neutron reactors. Therefore, it is necessary to develop a fast neutron reactor with high precision section method.
发明内容Contents of the invention
为了克服上述现有技术存在的问题,本发明的目的在于提供一种获取高精度的快中子反应堆组件少群截面的方法,为了获得精确的快中子堆组件少群截面,本发明方法将基于点截面信息计算组件内中子通量密度分布,以此进行能群归并获得少群截面参数,它能够高效、精准地计算出组件少群截面的参数,为堆芯中子学计算提供可靠的数据。In order to overcome the problems existing in the above-mentioned prior art, the object of the present invention is to provide a method for obtaining a high-precision fast neutron reactor component few-group section. In order to obtain an accurate fast neutron reactor component few-group section, the method of the present invention Calculate the neutron flux density distribution in the module based on point section information, and then perform energy group merger to obtain the parameters of the minority group section. The data.
为了实现以上目的,本发明采取如下的技术方案:In order to achieve the above object, the present invention takes the following technical solutions:
一种获取高精度的快中子反应堆组件少群截面的方法,包括如下步骤:A method for obtaining a high-precision fast neutron reactor component few-group section, comprising the steps of:
步骤1:针对所需计算的任一快堆组件,读取多群数据库中信息,包括总截面、非弹性散射截面矩阵、中子裂变谱、每次裂变释放中子数,利用公式(2)计算组件的宏观非弹性散射矩阵,利用公式(3)计算各个核素的稀释截面值;Step 1: For any fast reactor component to be calculated, read the information in the multi-group database, including the total cross section, inelastic scattering cross section matrix, neutron fission spectrum, and the number of neutrons released by each fission, using the formula (2) Calculate the macroscopic inelastic scattering matrix of the component, and use the formula (3) to calculate the dilution cross-section value of each nuclide;
式中:In the formula:
——第g群到第g’群的宏观非弹性散射截面矩阵 ——macroscopic inelastic scattering cross-section matrix of the gth group to the g'th group
Ni——第种核素的核子密度N i ——nucleon density of the first nuclide
——第种核素第g群到第g’群的非弹性散射截面矩阵 ——Inelastic scattering cross-section matrix of the first nuclide group g to g'
g g′——细群能群标识号g g′—— fine group energy group identification number
式中:In the formula:
——核素的稀释截面 - Dilution cross section of the nuclide
——核素微观总截面 ——Nuclide microscopic total cross-section
Nj——核素的核子密度N j —— nucleon density of the nuclide
步骤2:针对所需计算的任一快堆组件,读取点截面数据库信息,包括总截面、弹性散射截面、裂变截面及不可分辨共振区的插值表,利用公式(5)计算出细群的微观平均总截面、微观平均总弹性散射截面、微观平均裂变截面,利用步骤1中计算得到的每个核素的稀释截面按照数据库提供的插值表进行插值;Step 2: For any fast reactor component to be calculated, read the point section database information, including the interpolation table of total section, elastic scattering section, fission section and indistinguishable resonance region, and use formula (5) to calculate the fine group The microscopic average total cross section, microscopic average total elastic scattering cross section, and microscopic average fission cross section are interpolated using the dilution cross section of each nuclide calculated in step 1 according to the interpolation table provided by the database;
式中:In the formula:
——第g群的平均截面,x为反应类型 ——the average cross section of group g, x is the type of reaction
Σt——系统的宏观总截面Σ t ——The macroscopic total cross-section of the system
ΔEg——第g群的能群区间ΔE g ——the energy group interval of the gth group
步骤3:由步骤2提供的各个核素的微观平均总弹性散射截面,利用公式(8)计算各个核素的弹性散射截面矩阵,利用公式(10)计算宏观弹性散射截面矩阵,并与步骤1计算得到的宏观非弹性散射截面矩阵加和,利用公式(11)计算宏观散射截面矩阵;Step 3: From the microcosmic average total elastic scattering cross section of each nuclide provided in step 2, calculate the elastic scattering cross section matrix of each nuclide by using formula (8), calculate the macroscopic elastic scattering cross section matrix by using formula (10), and compare with step 1 The calculated macroscopic inelastic scattering cross-section matrix is summed, and the macroscopic scattering cross-section matrix is calculated by formula (11);
式中:In the formula:
——第l阶由第g群散射到第g’群的弹性散射截面 ——the elastic scattering cross-section of the l-th order from the g-th group to the g'-th group
σs,g——第g群的弹性散射截面σ s,g ——Elastic scattering cross section of group g
α——(A-1)2/(A+1)2,A为核素的原子质量α——(A-1) 2 /(A+1) 2 , A is the atomic mass of the nuclide
μc——质心坐标系下的散射角余弦值μ c —cosine value of scattering angle in centroid coordinate system
f(E,μc)——散射概率函数f(E,μ c )——scattering probability function
Pl(μs)——关于μs的阶勒让德多项式P l (μ s )——Legendre polynomial of order μ s
μs——实验室坐标系下的散射角余弦值μ s —cosine value of scattering angle in laboratory coordinate system
式中:In the formula:
——第l阶第g群到第g’群的宏观弹性散射截面矩阵 ——The macroscopic elastic scattering cross-section matrix of the first-order group g to g'
——第l阶第种核素第g群到第g’群的弹性散射截面矩阵 ——Elastic scattering cross-section matrix of the l-th nuclide from group g to group g'
式中:In the formula:
——第l阶第g群到第g’群的宏观散射截面矩阵 ——The macroscopic scattering cross-section matrix of the first-order group g to g'
步骤4:由步骤2及步骤3获得快堆组件的微观平均总截面、宏观散射截面矩阵、微观平均裂变截面,利用公式(12)进行中子输运方程的求解,获得细群的中子通量分布,利用求得的中子通量分布使用公式(13)及(14)进行截面的能群归并,获得具有高精度的少群截面值;Step 4: Obtain the microcosmic average total cross section, macroscopic scattering cross section matrix, and microcosmic average fission cross section of the fast reactor components from step 2 and step 3, use formula (12) to solve the neutron transport equation, and obtain the neutron flux of the fine group Quantity distribution, use formula (13) and (14) to carry out energy group merging of the section by using the obtained neutron flux distribution, obtain the low-group section value with high precision;
式中:In the formula:
B——系统的临界曲率B - the critical curvature of the system
χg——第g群的中子裂变谱χ g ——neutron fission spectrum of group g
υ——每次裂变释放中子数υ - the number of neutrons released per fission
keff——系统的有效增殖因子k eff - the effective proliferation factor of the system
——第g群的阶中子通量密度分布 ——The order neutron flux density distribution of group g
式中:In the formula:
G——少群能群标识号G - the identification number of the minority group energy group
——属于第G少群的细群g。 ——The thin group g belonging to the Gth minority group.
与现有技术相比,本发明有如下突出的优点:Compared with the prior art, the present invention has the following prominent advantages:
1.利用点截面数据库制作快堆组件的细群截面的流程,精细考虑了中等质量核素在中高能量区间存在的非常强烈的弹性散射共振效应以及所有核素在全能量段具有的共振干涉效应。1. The process of making fine-group cross-sections of fast reactor components using the point-section database carefully considers the very strong elastic scattering resonance effect of medium-mass nuclides in the medium-to-high energy range and the resonance interference effect of all nuclides in the full-energy range .
2.在由点截面归并为细群截面时,提供了该问题真实的中子通量密度分布。2. When the point section is merged into fine group section, the real neutron flux density distribution of the problem is provided.
3.计算快堆组件的细群中子通量密度分布并以此归并截面,即节省计算时间,又具有足够的精度。3. Calculate the fine-group neutron flux density distribution of the fast reactor components and merge the cross-sections accordingly, which not only saves calculation time, but also has sufficient accuracy.
附图说明Description of drawings
图1是利用点截面计算少群截面的流程图。Figure 1 is a flow chart of computing the minority-group cross-section using point cross-sections.
图2是迭代求解核素稀释截面示意图。Fig. 2 is a schematic diagram of iteratively solving nuclide dilution cross section.
图3是26群宏观总截面及其误差。Figure 3 is the macroscopic total section of 26 groups and their errors.
具体实施方式detailed description
下面结合附图和具体实施方式对本发明作进一步详细说明:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:
本发明通过直接使用点截面文件,精细考虑快堆组件中存在的共振效应,进行均匀问题中子输运方程的求解,获得组件的真实中子通量分布,以此进行能群归并,从而获得精确的少群截面参数,如图1所示,该发明包括如下步骤:In the present invention, by directly using the point section file, carefully considering the resonance effect existing in the fast reactor components, solving the neutron transport equation of the uniform problem, obtaining the real neutron flux distribution of the components, and then merging the energy groups to obtain Accurate minority group section parameter, as shown in Figure 1, this invention comprises the following steps:
步骤1:针对所需计算的任一快堆组件,读取多群数据库中信息,包括总截面、非弹性散射截面、中子裂变谱、每次裂变释放中子数,随后首先对截面进行温度插值,其中,截面的温度插值遵循规律,如公式(1)所示:Step 1: For any fast reactor component that needs to be calculated, read the information in the multi-group database, including the total cross section, inelastic scattering cross section, neutron fission spectrum, and the number of neutrons released by each fission, and then firstly calculate the temperature of the cross section Interpolation, where the temperature interpolation of the section follows the law, as shown in formula (1):
式中:In the formula:
σ——截面σ——section
x——反应类型,如总截面x—response type, such as total cross section
T——温度T - temperature
下标3——被插值温度点Subscript 3——Interpolated temperature point
下标1、2——插值温度点Subscript 1, 2——interpolation temperature point
利用插值得到的特定温度下各核素的非弹性散射矩阵,利用公式(2)计算得到组件的宏观非弹性散射矩阵。The inelastic scattering matrix of each nuclide at a specific temperature obtained by interpolation is used to calculate the macroscopic inelastic scattering matrix of the component by formula (2).
式中:In the formula:
——第g群到第g’群的宏观非弹性散射截面矩阵 ——macroscopic inelastic scattering cross-section matrix of the gth group to the g'th group
Ni——第种核素的核子密度N i ——nucleon density of the first nuclide
——第种核素第g群到第g’群的非弹性散射截面矩阵 ——Inelastic scattering cross-section matrix of the first nuclide group g to g'
随后,计算各个核素的稀释截面值,对于核素,其稀释截面由公式(3)定义。Subsequently, the dilution cross section value of each nuclide is calculated, and for the nuclide, its dilution cross section is defined by formula (3).
式中:In the formula:
——核素的稀释截面 - Dilution cross section of the nuclide
——核素微观总截面 ——Nuclide microscopic total cross-section
Nj——核素的核子密度N j —— nucleon density of the nuclide
公式(3)中稀释截面是由其它核素的总截面决定的,而该核素的稀释截面确定后又会重新得到该稀释截面下的总截面值,整个过程需要进行迭代计算,当最终该问题的总宏观截面几乎不变化时认为迭代收敛。稀释截面计算的迭代流程如图2所示:The dilution cross-section in formula (3) is determined by the total cross-section of other nuclides, and after the dilution cross-section of this nuclide is determined, the total cross-section value under this dilution cross-section will be obtained again. The whole process needs to be iteratively calculated. When the final An iteration is considered convergent when the total macroscopic cross-section of the problem hardly changes. The iterative process of dilution section calculation is shown in Figure 2:
1)初始化所有核素的稀释截面的初始值,按照此初始稀释截面值按照公式(4)进行插值计算,得到每个核素的总截面值;1) Initialize the initial value of the dilution cross section of all nuclides, and perform interpolation calculation according to formula (4) according to the initial dilution cross section value, to obtain the total cross section value of each nuclide;
2)根据每个核素的新的总截面值,再利用公式(3)计算所有核素新的稀释截面值;2) According to the new total cross-section value of each nuclide, use formula (3) to calculate the new dilution cross-section value of all nuclides;
3)再由新产生的稀释截面之按照公式(4)计算总截面值;3) Calculate the total cross-section value according to formula (4) from the newly generated dilution cross-section;
4)当两次计算的总截面相对偏差小于0.000001时即认为计算收敛,否则继续进行计算。4) When the relative deviation of the total cross-section of the two calculations is less than 0.000001, the calculation is considered to be converged, otherwise the calculation continues.
公式(4)给出log-log插值律。Equation (4) gives the log-log interpolation law.
式中:In the formula:
σx——某一反应的截面,如总截面σ x —the cross-section of a certain reaction, such as the total cross-section
σ0——稀释截面σ 0 ——Dilution cross section
下标3——被插值点Subscript 3——Interpolated point
下标1、2——插值点Subscript 1, 2——interpolation point
步骤2:针对所需计算的任一快堆组件,读取点截面数据库信息,包括总截面、弹性散射截面、裂变截面及不可分辨共振区的插值表;对于位于不可分辨共振区的截面,利用步骤1计算收敛后得到的各核素的稀释截面,可以通过插值的方式计算出每个核素在不可分辨共振区的总截面、裂变截面、弹性散射截面,从而得到所有核素全能量段的点截面信息。由于各核素点截面中能量点的个数不相同,因此将每个核素的点截面在全能量段进行线性插值计算,得到相等能量点下的点截面值。基于窄共振近似,各核素的多群截面可由公式(5)确定。所谓窄共振近似,是指共振峰的宽度足够窄,窄到小于中子发生弹性散射后损失的能量宽度。Step 2: For any fast reactor component to be calculated, read the point section database information, including the interpolation table of the total section, elastic scattering section, fission section and indistinguishable resonance region; for the section located in the indistinguishable resonance region, use Step 1 calculates the dilution cross section of each nuclide obtained after convergence, and the total cross section, fission cross section, and elastic scattering cross section of each nuclide in the indistinguishable resonance region can be calculated by interpolation, so as to obtain the full energy range of all nuclides Point section information. Since the number of energy points in the cross-section of each nuclide is different, the point cross-section of each nuclide is calculated by linear interpolation in the full energy segment to obtain the value of the point cross-section under equal energy points. Based on the narrow resonance approximation, the multigroup cross section of each nuclide can be determined by formula (5). The so-called narrow resonance approximation means that the width of the resonance peak is narrow enough to be smaller than the width of energy lost after elastic scattering of neutrons.
式中:In the formula:
——第g群的平均截面,x为反应类型,如总截面等 ——the average cross section of group g, x is the reaction type, such as the total cross section, etc.
Σt——系统的宏观总截面Σ t ——The macroscopic total cross-section of the system
ΔEg——第g群的能群区间ΔE g ——the energy group interval of the gth group
利用公式(5)即可计算出细群的平均总截面、平均总弹性散射截面、平均裂变截面;The average total cross-section, average total elastic scattering cross-section, and average fission cross-section of fine groups can be calculated by using formula (5);
步骤3:由步骤2提供的各个核素的微观平均总弹性散射截面值,利用公式(8)计算各个核素的弹性散射截面矩阵,利用公式(10)计算该问题的宏观弹性散射截面矩阵,并与步骤1计算得到的宏观非弹性散射截面矩阵加和,利用公式(11)计算宏观散射截面矩阵;Step 3: the microcosmic average total elastic scattering cross-section value of each nuclide provided by step 2, use the formula (8) to calculate the elastic scattering cross-section matrix of each nuclide, and use the formula (10) to calculate the macroscopic elastic scattering cross-section matrix of the problem, And add up with the macroscopic inelastic scattering cross-section matrix that step 1 calculates, utilize formula (11) to calculate macroscopical scattering cross-section matrix;
一般的,入射能量为的中子发生弹性散射反应后,出射中子能量为时散射截面可由下式确定:In general, after the elastic scattering reaction of neutrons with incident energy , the scattering cross section of outgoing neutrons with energy can be determined by the following formula:
式中:In the formula:
σs(E→E′)——由能量点E散射到能量点E’的弹性散射截面σ s (E→E′)——the elastic scattering cross section from energy point E to energy point E'
α——(A-1)2/(A+1)2,A为核素的原子质量α——(A-1) 2 /(A+1) 2 , A is the atomic mass of the nuclide
μc——质心坐标系下的散射角余弦值μ c —cosine value of scattering angle in centroid coordinate system
f(E,μc)——散射概率函数f(E,μ c )——scattering probability function
对公式(6)进行能群上的积分,即可得到群到群的弹性散射截面,如下式:Integrating the formula (6) over the energy group, the elastic scattering cross section from group to group can be obtained, as follows:
式中:In the formula:
φg——第g群的中子通量密度分布φ g ——neutron flux density distribution of group g
严格求解公式(7)将消耗较多的时间,在细群多群结构的基础上,可引入近似,认为中子通量密度及截面在某一能群上是常数,那么公式(7)可简化为:Strictly solving formula (7) will consume a lot of time. On the basis of fine group and multi-group structure, an approximation can be introduced. It is considered that the neutron flux density and cross section are constant on a certain energy group, then formula (7) can be Simplifies to:
式中:In the formula:
σs(g→g′)——由第g群散射到第g’群的弹性散射截面σ s (g→g′)—the elastic scattering cross section from the g-th group to the g’-th group
σs,g——第g群的弹性散射截面σ s,g ——Elastic scattering cross section of group g
当弹性散射截面按照勒让德多项式展开后,其各阶的散射截面可表示为:When the elastic scattering cross section is expanded according to the Legendre polynomial, the scattering cross section of each order can be expressed as:
式中:In the formula:
——第阶散射截面 - the first order scattering cross section
Pl(μs)——关于μs的阶勒让德多项式P l (μ s )——Legendre polynomial of order μ s
μs——实验室坐标系下的散射角余弦值μ s —cosine value of scattering angle in laboratory coordinate system
最终根据公式(9),可得到所有核素的各阶弹性散射截面矩阵,由此利用公式(10)计算出系统的各阶宏观弹性散射截面矩阵,再加上由步骤2计算得到的宏观非弹性散射截面矩阵,利用公式(11)即可得到系统的宏观散射截面矩阵。Finally, according to the formula (9), the elastic scattering cross-section matrices of all nuclides can be obtained, and the macroscopic elastic scattering cross-section matrix of the system can be calculated by using the formula (10). The elastic scattering cross-section matrix, the macroscopic scattering cross-section matrix of the system can be obtained by using the formula (11).
式中:In the formula:
——第l阶第g群到第g’群的宏观弹性散射截面矩阵 ——The macroscopic elastic scattering cross-section matrix of the first-order group g to g'
——第l阶第种核素第g群到第g’群的弹性散射截面矩阵 ——Elastic scattering cross-section matrix of the l-th nuclide from group g to group g'
式中:In the formula:
——第l阶第g群到第g’群的宏观散射截面矩阵 ——The macroscopic scattering cross-section matrix of the first-order group g to g'
步骤4:由步骤2及步骤3获得快堆组件的微观平均总截面、宏观散射截面矩阵、微观平均裂变截面,针对所计算的快堆组件,利用公式(12)求解多群中子输运方程即可得到该问题的细群多群中子通量密度分布:Step 4: Obtain the microscopic average total section, macroscopic scattering cross section matrix, and microscopic average fission section of the fast reactor components from step 2 and step 3, and use formula (12) to solve the multi-group neutron transport equation for the calculated fast reactor components The fine-group and multi-group neutron flux density distribution of this problem can be obtained:
式中:In the formula:
B——系统的临界曲率B - the critical curvature of the system
χg——第g群的中子裂变谱χ g ——neutron fission spectrum of group g
υ——每次裂变释放中子数υ - the number of neutrons released per fission
keff——系统的有效增殖因子k eff - the effective proliferation factor of the system
——第g群的阶中子通量密度分布 ——The order neutron flux density distribution of group g
获得中子通量密度分布后,再经过能群归并,最终可得到该快堆组件的少群组件截面参数。利用中子通量密度作为权重归并少群截面参数的计算可由公式(13)、(14)得出。其中,公式(13)用来归并总截面、中子产生截面,公式(14)用来归并阶的散射矩阵。After the neutron flux density distribution is obtained, the energy group merging is performed to finally obtain the cross-sectional parameters of the few-group component of the fast reactor component. Using the neutron flux density as the weight to merge the calculation of the minority group cross-section parameters can be obtained by formulas (13) and (14). Among them, the formula (13) is used to merge the total cross section and the neutron generation cross section, and the formula (14) is used to merge the order scattering matrix.
式中:In the formula:
G——少群能群标识号G - the identification number of the minority group energy group
——属于第G少群的细群g ——a thin group g belonging to the Gth minority group
图3展示了利用本发明计算得到的一快堆组件26群宏观总截面与使用蒙特卡洛方法计算出的26群截面以及两者之间的误差。初步的计算结果表明,利用本发明计算得到的少群截面与参考解相比,几乎全部能群的截面相对误差在1%以内,在能量较低的个别能群,误差控制在3%以内。由于能量较低处的中子通量密度分布也很低,这个误差是可接受的。利用准确的少群截面,就可以进行快堆堆芯的各种中子学计算,如稳态计算、燃耗计算、瞬态计算等。本发明既可得到很高的精度,同时计算效率要远远高于蒙卡方法,可应用于实际的工程计算当中。Fig. 3 shows the macro total section of 26 groups of fast reactor components calculated by the present invention and the cross section of 26 groups calculated by Monte Carlo method and the error between the two. Preliminary calculation results show that, compared with the reference solution, the relative error of the cross section of almost all energy groups is within 1%, and the error is controlled within 3% for individual energy groups with lower energy. Since the neutron flux density distribution at lower energies is also lower, this error is acceptable. Various neutronics calculations of the fast reactor core, such as steady-state calculations, burnup calculations, and transient calculations, can be performed using accurate minority-group cross-sections. The invention can obtain very high precision, and at the same time, the calculation efficiency is far higher than that of the Monte Carlo method, and can be applied to actual engineering calculations.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610472890.5A CN106128518A (en) | 2016-06-24 | 2016-06-24 | A kind of method obtaining the few group cross-section of high-precision fast neutron reaction pile component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610472890.5A CN106128518A (en) | 2016-06-24 | 2016-06-24 | A kind of method obtaining the few group cross-section of high-precision fast neutron reaction pile component |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106128518A true CN106128518A (en) | 2016-11-16 |
Family
ID=57265786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610472890.5A Pending CN106128518A (en) | 2016-06-24 | 2016-06-24 | A kind of method obtaining the few group cross-section of high-precision fast neutron reaction pile component |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106128518A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106844208A (en) * | 2017-01-17 | 2017-06-13 | 西安交通大学 | For the method for reactor physics calculation procedure applicability checking |
CN106991272A (en) * | 2017-03-08 | 2017-07-28 | 西安交通大学 | A kind of accurate method for calculating nucleic atom cuclear density in calculating for burnup |
CN107122564A (en) * | 2017-05-12 | 2017-09-01 | 西安交通大学 | A kind of presurized water reactor pin by pin calculate few group constant parametric method |
CN107145721A (en) * | 2017-04-20 | 2017-09-08 | 西安交通大学 | A Hybrid Calculation Method for Obtaining Few Group Section Parameters of Fast Neutron Reactor |
CN109493924A (en) * | 2018-11-13 | 2019-03-19 | 西安交通大学 | A method of obtaining the effective multigroup cross section of FCM fuel |
CN113111566A (en) * | 2021-04-12 | 2021-07-13 | 西安交通大学 | Method for constructing continuous energy cross section of explicit indistinguishable resonance region |
CN113326648A (en) * | 2021-06-17 | 2021-08-31 | 中国核动力研究设计院 | Cell homogenization constant calculation method and system considering environmental effect and terminal |
CN113868591A (en) * | 2021-09-28 | 2021-12-31 | 西安交通大学 | Method for obtaining high-precision total reaction section of indistinguishable resonance region |
CN117150829A (en) * | 2023-10-31 | 2023-12-01 | 西安交通大学 | Method for generating minority group cross-section energy group structure for reactor use in intermediate energy spectrum neutronics analysis |
-
2016
- 2016-06-24 CN CN201610472890.5A patent/CN106128518A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106844208A (en) * | 2017-01-17 | 2017-06-13 | 西安交通大学 | For the method for reactor physics calculation procedure applicability checking |
CN106844208B (en) * | 2017-01-17 | 2020-01-14 | 西安交通大学 | Method for verifying applicability of reactor physical computing program |
CN106991272A (en) * | 2017-03-08 | 2017-07-28 | 西安交通大学 | A kind of accurate method for calculating nucleic atom cuclear density in calculating for burnup |
CN107145721A (en) * | 2017-04-20 | 2017-09-08 | 西安交通大学 | A Hybrid Calculation Method for Obtaining Few Group Section Parameters of Fast Neutron Reactor |
CN107145721B (en) * | 2017-04-20 | 2019-08-09 | 西安交通大学 | A Hybrid Calculation Method for Obtaining Few Group Section Parameters of Fast Neutron Reactor |
CN107122564A (en) * | 2017-05-12 | 2017-09-01 | 西安交通大学 | A kind of presurized water reactor pin by pin calculate few group constant parametric method |
CN107122564B (en) * | 2017-05-12 | 2020-01-24 | 西安交通大学 | A PWR pin-by-pin parameterization method for calculating minority group constants |
CN109493924A (en) * | 2018-11-13 | 2019-03-19 | 西安交通大学 | A method of obtaining the effective multigroup cross section of FCM fuel |
CN113111566A (en) * | 2021-04-12 | 2021-07-13 | 西安交通大学 | Method for constructing continuous energy cross section of explicit indistinguishable resonance region |
CN113111566B (en) * | 2021-04-12 | 2022-08-05 | 西安交通大学 | An Explicit Method for Constructing Continuous Energy Sections in Indistinguishable Resonance Regions |
CN113326648A (en) * | 2021-06-17 | 2021-08-31 | 中国核动力研究设计院 | Cell homogenization constant calculation method and system considering environmental effect and terminal |
CN113868591A (en) * | 2021-09-28 | 2021-12-31 | 西安交通大学 | Method for obtaining high-precision total reaction section of indistinguishable resonance region |
CN113868591B (en) * | 2021-09-28 | 2022-12-09 | 西安交通大学 | Method for obtaining high-precision total reaction cross section of unresolved resonance region |
CN117150829A (en) * | 2023-10-31 | 2023-12-01 | 西安交通大学 | Method for generating minority group cross-section energy group structure for reactor use in intermediate energy spectrum neutronics analysis |
CN117150829B (en) * | 2023-10-31 | 2024-01-23 | 西安交通大学 | Method for generating stack-used few-group cross-section energy group structure for neutron analysis of intermediate energy spectrum |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106128518A (en) | A kind of method obtaining the few group cross-section of high-precision fast neutron reaction pile component | |
Kochunas et al. | VERA core simulator methodology for pressurized water reactor cycle depletion | |
Jung et al. | Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers | |
Zhu et al. | An optimally diffusive Coarse Mesh Finite Difference method to accelerate neutron transport calculations | |
Wang et al. | RMC–A Monte Carlo code for reactor core analysis | |
Ryu et al. | Solution of the BEAVRS benchmark using the nTRACER direct whole core calculation code | |
CN105404723B (en) | Method for precisely calculating power distribution of fuel assembly rod | |
Gill et al. | Numerical methods in coupled Monte Carlo and thermal-hydraulic calculations | |
CN107145721B (en) | A Hybrid Calculation Method for Obtaining Few Group Section Parameters of Fast Neutron Reactor | |
Bennett et al. | Coupled MCNP6/CTF code: Development, testing, and application | |
Wolters et al. | Hybrid monte carlo-cmfd methods for accelerating fission source convergence | |
Aufiero et al. | Monte Carlo/CFD coupling for accurate modeling of the delayed neutron precursors and compressibility effects in molten salt reactors | |
CN106126928B (en) | Obtain solid-state and the method and database of liquid villiaumite thermal neutron scattering database | |
Lemaire et al. | For a better estimation of gamma heating in nuclear material-testing reactors and associated devices: status and work plan from calculation methods to nuclear data | |
Choi et al. | A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel—II: Verifications | |
Zu et al. | Accurate resonance calculation method coupling simplified embedded self-shielding method and ultra-fine group method | |
Kim et al. | Deterministic truncation of the Monte Carlo transport solution for reactor eigenvalue and pinwise power distribution | |
Liu et al. | Reaction rate tally and depletion calculation with on-the-fly temperature treatment | |
Connolly et al. | A coarse mesh radiation transport method for 2-D hexagonal geometry | |
Heo et al. | Feasibility of a Monte Carlo-deterministic hybrid method for fast reactor analysis | |
Kim et al. | High-Performance and High-Fidelity GPU-Based Monte Carlo Solutions to the BEAVRS Benchmark | |
Li et al. | Development and verification of the transient fission matrix combination method for the efficient neutron kinetic simulations | |
Bilodid et al. | Spectral history model in DYN3D: Verification against coupled Monte-Carlo thermal-hydraulic code BGCore | |
Jiménez et al. | Whole core pin-by-pin coupled neutronic-thermal-hydraulic steady state and transient calculations using COBAYA3 code | |
Gorodkov et al. | Monte Carlo calculation of the diffusion coefficient of nuclear reactor cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161116 |
|
RJ01 | Rejection of invention patent application after publication |