CN106127349B - 并联供电系统最优点确定方法 - Google Patents

并联供电系统最优点确定方法 Download PDF

Info

Publication number
CN106127349B
CN106127349B CN201610514617.4A CN201610514617A CN106127349B CN 106127349 B CN106127349 B CN 106127349B CN 201610514617 A CN201610514617 A CN 201610514617A CN 106127349 B CN106127349 B CN 106127349B
Authority
CN
China
Prior art keywords
power module
current
parallel operation
operation system
serial number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610514617.4A
Other languages
English (en)
Other versions
CN106127349A (zh
Inventor
朱德华
彭志辉
潘晓铭
张健
潘敏辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN201610514617.4A priority Critical patent/CN106127349B/zh
Publication of CN106127349A publication Critical patent/CN106127349A/zh
Application granted granted Critical
Publication of CN106127349B publication Critical patent/CN106127349B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Power Engineering (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及基于效率和均流性能黄金分割的并联供电系统最优点确定方法,本发明在分别获得标准偏差S与电源模块负载电流i之间的表达式S=Ψ(i)及效率η与电源模块负载电流i之间的表达式η=Φ(i)对应最优点的基础上,应用几何学中黄金分割原理,得出电源模块运行综合最优负载电流Iref,该值表征了并联供电系统均流过程中效率和均流响应集中度综合性能指标最优及其对应的在线模块负载电流值,为并联供电系统效率和均流优化控制提供依据,且本发明具有可靠性高,实用性强、数据处理简单易行等特点;可有效确定并联供电系统效率和均流综合指标最优对应的工作点,为并联供电系统安全、高效、可靠运行提供可靠保证。

Description

并联供电系统最优点确定方法
技术领域
本发明涉及基于效率和均流性能黄金分割的并联供电系统最优点确定方法,能快速确定并联供电系统的效率和均流综合性能指标最优工作点,为并联供电系统实现高的效率和均流性能综合指标优化控制提供支撑,该方法同样适用于其他电子设备并联运行时效率和均流综合性能指标最优工作点的确定。
背景技术
大功率并联供电电源其为多个电源模块并联输出结构,由于具备兼容性强、可N+m冗余备份、可靠性强、性价比高、设计难度较低、易于管理等一系列优势,成为解决大功率输出电源设计的首选方案之一,均流技术已成为并联供电的核心技术。均流技术是指在多个电源模块并联供电时,在满足输出电压稳态精度和动态响应的前提下,有较高精度的均匀分配各个电源模块负载电流。所以,并联供电系统均流性能的高低直接关系到整机系统的安全、可靠和高性能工作。
由于并联供电系统负载电流具有时变性和随机性,导致采用传统均流控制方案(即在线运行电源模块数量不变,通过均流控制算法调节每个电源模块的输出电流达到均流目标和负荷匹配目标的方案)的并联供电系统中电源模块工作范围涵盖轻载,半载,额定负载及过载等工况。一方面,不同负载工况下并联供电系统运行时其系统均流性能存在一定差异,不能确保系统在不同负载电流情况下都具有较高的均流性能;另一方面,电源模块在不同负载情况下,其工作效率也不同,也不能确保系统在不同负载工况下均具有较高效率。所以,需要一种方法来确定并联供电系统效率和均流性能综合指标最优工作点。
现有的并联供电系统均流控制策略能保证并联供电系统负载电流在所有在线工作电源模块进行平均分配。但是存在以下两个问题:一、不能实现并联供电系统均流性能处于较好状态;二、并联供电系统不能实现较高的效率。为了实现并联供电系统在不同负载情况下效率和均流效果综合性能指标,首要先决条件是必须确定并联供电系统效率和均流效果综合性能指标最优情况下的工作点,其为并联供电系统效率和均流综合性能优化控制的前提。
然而,通过检索现有的论文和专利发现,尚未发现一种可靠和实用的并联供电系统最优工作点确定方法用于确定效率和均流综合性能最优时系统工作点。因而要实现并联供电系统效率和均流性能的优化控制,一种兼顾效率和均流性能并且可靠和实用的并联供电系统最优工作点确定方法就显得尤为重要,其对于并联供电系统的优化可靠运行具有重要的影响。
发明内容
本发明的目的在于克服上述不足之处,提出了基于效率和均流性能黄金分割的并联供电系统最优点确定方法。
本发明的技术方案是:一种基于效率和均流性能黄金分割的并联供电系统最优点确定方法,其步骤如下:
(1)以周期T为间隔时间对K个电源模块组成的并联供电系统负载电流Iout按照步进量为等增量调节;将第i次程控电子负载电流值标记为对应的第i次电源模块均流目标值标记为i为当前电子负载次数;
(2)以周期Ts为间隔对并联供电系统电源模块输出电流、输出电压和输入功率进行采集;
(3)建立由K×U×V个元素构成的并联供电系统电源模块输出电流数组{Datacurr(m)(i)(j)},电源模块输出电压数组{Datavolt(m)(i)(j)}和电源模块输入功率数组{P(m)(i)(j)},其中m=1,2,...K,i=1,2,...U,j=1,2,...V;K为并联供电系统电源模块数量,其为大于1的正整数;U为程控电子负载工作电流的调节次数;V为每一次电子负载情况下需采集电源模块输出电流、输出电压和输入功率的次数,其为大于1的正整数;m为当前电源模块序号,i为当前电子负载次数,j为当前采集次数;
(4)获取序号为m的电源模块在均流期望电流为Iref(i)时的相对偏差其中m=1,2,...K,i=1,2,...U,j=1,2,...V;
(5)获取序号为m的电源模块在均流期望电流为Iref(i)时的δ(m)(i)(j)的期望
(6)获取序号为m的电源模块δ(m)(i)(j)的标准偏差
(7)获取K个电源模块在均流期望电流为Iref(i)时的平均标准偏差
(8)对U个数据点进行处理得出平均标准偏差Si与电源模块负载电流i'之间的关系Si=Ψ(i');
(9)在允许输出电流范围内,获得满足最小的
(10)获取序号为m的电源模块效率其中m=1,2,...K,i=1,2,...U,j=1,2,...V;
(11)获取序号为m的电源模块η(m)(i)(j)的数学期望其中m=1,2,...K,i=1,2,...U;(η(m)(i)(j),K≥m≥1,U≥i≥1,V≥j≥1);
(12)对U个数据点进行处理得出效率ηi与电源模块负载电流i'之间的关系ηi=Φ(i');
(13)在允许输出电流范围内,获得满足最大的
(14)应用几何学黄金分割原理,通过获得电源模块运行最优负载电流Iref,并通过该Iref值确定并联供电系统的效率和均流综合性能指标最优工作点。
步骤(2)中将第m个序号的电源模块在第i次电子负载电流情况下采样的第j个电流数据标记为Datacurr(m)(i)(j);将第m个序号的电源模块在第i次电子负载电流情况下采样的第j个电压数据标记为Datavolt(m)(i)(j);将第m个序号的电源模块在第i次电子负载电流情况下采样的第j个输入功率数据标记为P(m)(i)(j);将第m个序号的电源模块在第i次电子负载电流情况下计算的第j个效率记为η(m)(i)(j);将第m个序号的电源模块在第i次电子负载电流情况下效率平均值标记为ηmi;将第m个序号的电源模块在第i次电子负载电流情况下采样的第j个电流数据与电源模块均流目标值Iref(i)相对偏差标记为δ(m)(i)(j);将第m个序号的电源模块在第i次电子负载电流情况下的电流数据与电源模块均流目标值相对偏差的数学期望标记为Emi;将第m个序号的电源模块在第i次电子负载电流情况下的电流数据与电源模块均流目标值相对偏差的标准偏差标记为Smi
步骤(8)中应用多项式拟合、曲线拟合或插补方法对U个数据点进行处理。
步骤(12)中应用多项式拟合、曲线拟合或插补方法对U个数据点进行处理。
本发明的原理主要包含以下部分:首先,在允许输出电流范围内,获取并联供电系统电源模块效率最优时对应的负载电流其次,在允许输出电流范围内,获取并联供电系统所有电源模块均流标准偏差平均值最小时对应的负载电流其中:Sj为第j个电源模块均流标准偏差;最后,依据几何学黄金分割原理,求取最优电流Iref满足Iref即为并联供电系统效率和均流综合性能最优工作点模块输出电流。由于相同规格的电源模块其特性总体保持一致,因而通过测量K(K的大小可由用户确定,本发明K暂定为10)个电源模块组成的并联供电系统效率和均流综合性能最优工作点即可获得任意N个电源模块组成的并联供电系统效率和均流综合性能最优工作点。
本发明具有以下优势:
(1)本发明覆盖了负载电流全工作范围工况,具有广泛的适用性;
(2)本发明能综合兼顾并联供电系统效率和均流性能指标,具有显著的经济性和系统可靠性;
(3)本发明在分别获得标准偏差S与电源模块负载电流i之间的表达式S=Ψ(i)及效率η与电源模块负载电流i之间的表达式η=Φ(i)对应最优点的基础上,应用几何学中黄金分割原理,得出电源模块运行综合最优负载电流Iref。该值表征了并联供电系统均流过程中效率和均流响应集中度综合性能指标最优及其对应的在线模块负载电流值,为并联供电系统效率和均流优化控制提供依据。
(4)本发明所述的基于效率和均流性能黄金分割的并联供电系统最优点确定方法具有可靠性高,实用性强、数据处理简单易行等特点;可有效确定并联供电系统效率和均流综合指标最优对应的工作点,为并联供电系统安全、高效、可靠运行提供可靠保证。
附图说明
图1为并联供电系统效率和均流综合性能最优工作点测试系统结构图。
具体实施方式
下面针对附图对本发明的实施例作进一步说明:
本发明提供了基于效率和均流性能黄金分割的并联供电系统最优点确定方法。图1所示为并联供电系统效率和均流综合性能最优工作点测试系统结构图。图1功能是在获取并联供电系统在不同负载条件下电源模块效率与输出电流及均流性能与输出电流之间的表达式,并得出对应的最优值基础上,应用几何中黄金分割原理确定并联供电系统系统最优工作点。主要包括上位机(PC机)、程控电子负载、电源模块、功率计等。上位机(PC机)主要功能为获取在线模块IP地址、输入功率、模块输出电流、输出功率、控制程控电子负载工作电流、计算电源模块效率与输出电流及均流性能与输出电流之间的表达式,并应用几何黄金分割原理得出对应的最优点;程控电子负载用于调节并联供电系统的负载电流;电源模块主要实现接收IP设定、接收上位机命令数据和上传输出电流、输出功率给上位机;功率计主要用于测量在线模块的输入功率。均流调节功能的实现有无通信总线自主均流方式和有通信总线均流方式,由专门的均流功能模块实现,本发明不赘述。
并联供电系统效率和均流性能最优工作点测试系统变量说明如下:K为并联供电测试系统电源模块数量,K的具体值可根据实际情况设定。IN为电源模块额定电流;为并联供电系统额定输出电流,满足U为负载电流点数量,即并联供电系统负载电流Iout按照间隔为等间距变化到(涵盖轻载、半载、额定载及过载工况,U必须为不小于20的正整数,由用户可根据系统工作的最大负载电流值确定);为电子负载在第i点时输出电流,其中:U≥i≥1;m为电源模块序号,满足:K个模块的IP按照从小到大的次序映射为m=1,2,…K,即m=1为IP最小的模块序号,m=2为IP次最小模块序号,…,以此类推m=K为IP最大的模块序号;V为并联供电系统处于某一负载电流点时需对当单个在线电源模块输出电流、输出电压和输入功率数据采样数量,V可根据实际需要设定大小。Datacurr(m)(i)(j),(K≥m≥1,U≥i≥1,V≥j≥1)为序号为m的电源模块在条件下第j个电流采样数据;Datavolt(m)(i)(j),(K≥m≥1,U≥i≥1,V≥j≥1)为序号为m的电源模块在条件下第j个输出电压采样数据;P(m)(i)(j),(K≥m≥1,U≥i≥1,V≥j≥1)为序号为m的电源模块在条件下第j个输入功率采样数据;η(m)(i)(j),(K≥m≥1,U≥i≥1,V≥j≥1)为序号为m的电源模块在条件下计算出来的第j个效率数据,满足:ηmi为序号为m的电源模块在条件下V个η(m)(i)(j)的数学期望,满足:Iref(i)为模块在条件下均流目标参考值,满足:其中:U≥i≥1;δ(m)(i)(j)为序号为m的电源模块在条件下第j个采样电流与均流参考目标电流的相对偏差值,满足:Emi为序号为m的电源模块在条件下V个δ(m)(i)(j)的数学期望,满足:Smi为序号为m的电源模块在条件下V个δ(m)(i)(j)的标准偏差,满足:
定义t=0为并联供电系统空载运行的最后时刻;T为相邻两个负载电流间隔时间;则t∈((i-1)T,iT],(U≥i≥1)为并联供电系统负载电流的运行时间。由于在运行过程中需要对每个电源模块采集3V个样本数据,因而,上位机共需采集3×K×V个数据。假设上位机采集一个数据的时间为T1,则系统工作于状态需要Ttotal=3×K×V×T1时间,因而必须满足T≥Ttotal。又由于均流性能数据可靠性与采样点数和采样时间T1相关,因而需根据实际需求综合考虑T和T1大小,确保均流性能指标的可靠性。
首先,由控制工程知识可知,评价系统的性能可通过系统阶跃响应的超调量,调整时间和稳态偏差指标来衡量。因而,并联供电系统在电子负载由阶跃为时,我们同样可以通过测量电源模块的电流输出与均流目标参考值之间的动态响应来评价电源模块的均流性能。由数理统计知识可知,并联系统均流标准偏差表征的是系统均流动态响应过程相对超调量大小,体现其均流阶跃响应过程中的输出电流的集中度,可反映电源模块均流性能指标;其次,并联供电系统在满足均流性能指标的同时,应该兼顾系统运行的经济效益;最后,通过求取标准偏差S与电源模块负载电流i之间的表达式S=Ψ(i)及效率η与电源模块负载电流i之间的表达式η=Φ(i)及其对应的最优负载电流的基础上,应用几何学黄金分割原理确定效率和均流综合性能最优负载电流Iref,其物理意义表明并联供电系统处在何种负载电流下效率和均流综合性能最好。
在t∈((i-1)T,iT],(U≥i≥1),电子负载电流为则电源模块的均流目标参考电流为:
获取序号为m的电源模块输出电流采样数据数据:Datacurr(m)(i)(j),(K≥m≥1,U≥i≥1,V≥j≥1),因而,其均流相对偏差δ(m)(i)(j)为:
求取序号为m的电源模块在条件下相对偏差δ(m)(i)(j)关于j的数学期望Emi为:
求取序号为m的电源模块在条件下相对偏差δ(m)(i)(j)关于j的标准偏差Smi为:
Smi的物理意义为:序号为m的电源模块在条件下的相对偏差的标准偏差,Smi越小表明电源模块的在条件下均流集中度性能越好。
计算K个电源模块在均流期望电流为时的平均标准偏差:
应用相关计算方法(诸如多项式拟合、曲线拟合、插补方法等)对U个数据点进行处理得出平均标准偏差S与电源模块负载电流i之间的表达式:
S=Ψ(i), (6)
在允许输出电流范围内,求解负载电流满足:
求取序号为m的电源模块在条件效率η(m)(i)(j)为:
求取序号为m的电源模块在条件下η(m)(i)(j)关于j的数学期望ηmi为:
ηmi的物理意义为:序号为m的电源模块在条件下的效率的平均值,ηmi越大表明电源模块的在条件下经济性能越好,越节能;
计算K个电源模块在均流期望电流为的工况下平均效率:
应用相关计算方法(诸如多项式拟合、曲线拟合、插补方法等)对U个数据点进行处理得出效率η与电源模块负载电流i之间的表达式:
η=Φ(i), (11)
在允许输出电流范围内,求解负载电流满足:
应用几何学中黄金分割原理,计算最优负载电流Iref,满足:
Iref的物理意义为:由K个电源模块组成的并联供电系统效率和均流综合性能最优时负载电流。
本发明提供了基于效率和均流性能黄金分割的并联供电系统最优点确定方法,包括如下步骤:
(1)以周期T为间隔时间对K个电源模块组成的并联供电系统负载电流Iout按照步进量为等增量调节;将第一次程控电子负载电流值标记为对应的第一次电源模块均流目标值标记为当前电子负载次数为i,令i=1;
(2)以周期Ts为间隔对并联供电系统电源模块输出电流、输出电压和输入功率进行采集。将第一个序号的电源模块在第一次电子负载电流情况下采样的第一个电流数据标记为Datacurr(1)(1)(1);将第一个序号的电源模块在第一次电子负载电流情况下采样的第一个电压数据标记为Datavolt(1)(1)(1);将第一个序号的电源模块在第一次电子负载电流情况下采样的第一个输入功率数据标记为P(1)(1)(1);将第一个序号的电源模块在第一次电子负载电流情况下计算的第一个效率记为η(1)(1)(1);将第一个序号的电源模块在第一次电子负载电流情况下效率平均值标记为η11;将第一个序号的电源模块在第一次电子负载电流情况下采样的第一个电流数据与模块均流目标值Iref(1)相对偏差标记为δ(1)(1)(1);将第一个序号的电源模块在第一次电子负载电流情况下的电流数据与模块均流目标值相对偏差的数学期望标记为E11;将第一个序号的电源模块在第一次电子负载电流情况下的电流数据与模块均流目标值相对偏差的标准偏差标记为S11;当前电源模块序号为m,令m=1;当前电子负载次数为i,令i=1;当前采集电流次数为j,令j=1;
(3)建立由K×U×V个元素构成的并联供电系统模块输出电流数组{Datacurr(m)(i)(j)},电源模块输出电压数组{Datavolt(m)(i)(j)}和电源模块输入功率数组{P(m)(i)(j)},其中m=1,2,...K,i=1,2,...U,j=1,2,...V;K为并联供电系统电源模块数量,其为大于1的正整数;U为程控电子负载工作电流的调节次数,为满足评价覆盖轻载、半载、额定负载和过载情况,U的值大于20;V为每一次电子负载情况下需采集电源模块输出电流、输出电压和输入功率的次数,其为大于1的正整数;m为当前电源模块序号,i为当前电子负载次数,j为当前采集次数。
(4)求解序号为m的电源模块在均流期望电流为Iref(i)时相对偏差其中m=1,2,...K,i=1,2,...U,j=1,2,...V;
(5)求解序号为m的电源模块在均流期望电流为Iref(i)时δ(m)(i)(j)的期望
(6)求解序号为m的电源模块δ(m)(i)(j)的标准偏差
(7)计算K个电源模块在均流期望电流为Iref(i)时的平均标准偏差
(8)应用相关计算方法(诸如多项式拟合、曲线拟合、插补方法等)对U个数据点进行处理得出平均标准偏差S与电源模块负载电流i之间的表达式S=Ψ(i);
(9)在允许输出电流范围内,求解满足最小;
(10)求解序号为m的电源模块效率
其中m=1,2,...K,i=1,2,...U,j=1,2,...V;
(11)求解序号为m的电源模块η(m)(i)(j)的数学期望其中m=1,2,...K,i=1,2,...U;η(m)(i)(j),ηmi越大表明模块的效率性能越好;
(12)应用相关计算方法(诸如多项式拟合、曲线拟合、插补方法等)对U个数据点进行处理得出效率η与电源模块负载电流i之间的表达式η=Φ(i);
(13)在允许输出电流范围内,求解满足最大;
(14)应用几何学黄金分割原理,求解电源模块运行最优负载电流Iref,满足该Iref值即为并联供电系统的效率和均流综合性能指标最优工作点;
(15)并联供电系统最优点确定结束。
实施例不应视为对发明的限制,但任何基于本发明的精神所作的改进,都应在本发明的保护范围之内。

Claims (3)

1.一种并联供电系统最优点确定方法,其特征在于:其步骤如下:
(1)以周期T为间隔时间对K个电源模块组成的并联供电系统负载电流Iout按照步进量为等增量调节;将第i次程控电子负载电流值标记为对应的第i次电源模块均流目标值标记为i为当前电子负载次数;
(2)以周期Ts为间隔对并联供电系统电源模块输出电流、输出电压和输入功率进行采集;
(3)建立由K×U×V个元素构成的并联供电系统电源模块输出电流数组{Datacurr(m)(i)(j)},电源模块输出电压数组{Datavolt(m)(i)(j)}和电源模块输入功率数组{P(m)(i)(j)},其中m=1,2,...K,i=1,2,...U,j=1,2,...V;K为并联供电系统电源模块数量,其为大于1的正整数;U为程控电子负载工作电流的调节次数;V为每一次电子负载情况下需采集电源模块输出电流、输出电压和输入功率的次数,其为大于1的正整数;m为当前电源模块序号,i为当前电子负载次数,j为当前采集次数;
(4)获取序号为m的电源模块在均流期望电流为Iref(i)时的相对偏差其中m=1,2,...K,i=1,2,...U,j=1,2,...V;
(5)获取序号为m的电源模块在均流期望电流为Iref(i)时的δ(m)(i)(j)的期望
(6)获取序号为m的电源模块δ(m)(i)(j)的标准偏差
(7)获取K个电源模块在均流期望电流为Iref(i)时的平均标准偏差
(8)对U个数据点i∈[1,U]进行处理得出平均标准偏差Si与电源模块负载电流i′之间的关系Si=Ψ(i′);
(9)在允许输出电流范围内,获得满足最小的为标准偏差S与电源模块负载电流i'之间的最优负载电流;
(10)获取序号为m的电源模块效率其中m=1,2,...K,i=1,2,...U,j=1,2,...V;
(11)获取序号为m的电源模块η(m)(i)(j)的数学期望其中m=1,2,...K,i=1,2,...U;
(12)对U个数据点i∈[1,U]进行处理得出效率ηi与电源模块负载电流i'之间的关系ηi=Φ(i');
(13)在允许输出电流范围内,获得满足最大的为效率ηi与电源模块负载电流i'之间的最优负载电流;
(14)应用几何学黄金分割原理,通过获得电源模块运行最优负载电流Iref,并通过该Iref值确定并联供电系统的效率和均流综合性能指标最优工作点,步骤(2)中将第m个序号的电源模块在第i次电子负载电流情况下采样的第j个电流数据标记为Datacurr(m)(i)(j);将第m个序号的电源模块在第i次电子负载电流情况下采样的第j个电压数据标记为Datavolt(m)(i)(j);将第m个序号的电源模块在第i次电子负载电流情况下采样的第j个输入功率数据标记为P(m)(i)(j);将第m个序号的电源模块在第i次电子负载电流情况下计算的第j个效率记为η(m)(i)(j);将第m个序号的电源模块在第i次电子负载电流情况下效率平均值标记为ηmi;将第m个序号的电源模块在第i次电子负载电流情况下采样的第j个电流数据与电源模块均流目标值Iref(i)相对偏差标记为δ(m)(i)(j);将第m个序号的电源模块在第i次电子负载电流情况下的电流数据与电源模块均流目标值相对偏差的数学期望标记为Emi;将第m个序号的电源模块在第i次电子负载电流情况下的电流数据与电源模块均流目标值相对偏差的标准偏差标记为Smi
2.根据权利要求1所述的并联供电系统最优点确定方法,其特征在于:步骤(8)中应用多项式拟合、曲线拟合或插补方法对U个数据点i∈[1,U]进行处理。
3.根据权利要求1所述的并联供电系统最优点确定方法,其特征在于:步骤(12)中应用多项式拟合、曲线拟合或插补方法对U个数据点i∈[1,U]进行处理。
CN201610514617.4A 2016-06-30 2016-06-30 并联供电系统最优点确定方法 Expired - Fee Related CN106127349B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610514617.4A CN106127349B (zh) 2016-06-30 2016-06-30 并联供电系统最优点确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610514617.4A CN106127349B (zh) 2016-06-30 2016-06-30 并联供电系统最优点确定方法

Publications (2)

Publication Number Publication Date
CN106127349A CN106127349A (zh) 2016-11-16
CN106127349B true CN106127349B (zh) 2019-10-18

Family

ID=57468176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610514617.4A Expired - Fee Related CN106127349B (zh) 2016-06-30 2016-06-30 并联供电系统最优点确定方法

Country Status (1)

Country Link
CN (1) CN106127349B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369733A (zh) * 2008-06-25 2009-02-18 艾默生网络能源系统北美公司 一种电源系统
CN101944763A (zh) * 2010-08-16 2011-01-12 成都市华为赛门铁克科技有限公司 一种控制负载电流分配的方法及装置
CN103187753A (zh) * 2012-12-11 2013-07-03 江苏嘉钰新能源技术有限公司 三路并联输出的充电电源模块均流控制系统及方法
CN103715721A (zh) * 2013-07-31 2014-04-09 南京南瑞集团公司 交直流混合电网联合实时调峰方法
CN104600830A (zh) * 2014-12-31 2015-05-06 华为技术有限公司 一种电源模块的均流方法、系统及管理器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369733A (zh) * 2008-06-25 2009-02-18 艾默生网络能源系统北美公司 一种电源系统
CN101944763A (zh) * 2010-08-16 2011-01-12 成都市华为赛门铁克科技有限公司 一种控制负载电流分配的方法及装置
CN103187753A (zh) * 2012-12-11 2013-07-03 江苏嘉钰新能源技术有限公司 三路并联输出的充电电源模块均流控制系统及方法
CN103715721A (zh) * 2013-07-31 2014-04-09 南京南瑞集团公司 交直流混合电网联合实时调峰方法
CN104600830A (zh) * 2014-12-31 2015-05-06 华为技术有限公司 一种电源模块的均流方法、系统及管理器

Also Published As

Publication number Publication date
CN106127349A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CN103592528A (zh) 一种基于动态轨迹灵敏度的光伏逆变器模型参数辨识方法
CN106054614B (zh) 兼顾效率和均流性能的并联供电系统模糊控制方法
CN106160021B (zh) 基于效率和均流标准差加权和矩阵的并联供电系统最优点确定方法
CN106127349B (zh) 并联供电系统最优点确定方法
CN106208036B (zh) 并联供电系统最优点确定方法
CN106094523B (zh) 基于效率和均流指标面积和最大的并联供电系统优化方法
CN104142703B (zh) 一种适用于差异性光伏单元串联电路的输出功率获取方法
CN106160016B (zh) 基于效率和均流性能面积和最大的并联供电系统模块数量控制方法
CN106160018B (zh) 并联供电系统最优点确定方法
CN106159934B (zh) 基于效率和均流指标黄金分割的并联供电系统优化控制方法
CN106253355B (zh) 并联供电系统电源模块数量模糊控制方法
CN106160015B (zh) 基于效率和均流性能黄金分割的并联供电系统模块数量控制方法
CN106160019B (zh) 基于效率和均流指标面积和最大的并联供电系统最优点确定方法
CN106156508B (zh) 一种并联供电系统最优点确定方法
CN106127609B (zh) 并联供电系统模块数量控制方法
CN106208037B (zh) 基于效率和均流性能黄金分割的供电系统优化控制方法
CN106094522B (zh) 并联供电系统模块数量控制方法
CN106160011B (zh) 基于效率和均流指标黄金分割的并联供电系统模块数量控制方法
CN106169776B (zh) 并联供电系统电源模块数量模糊控制方法
CN106127610B (zh) 并联供电系统优化控制方法
CN106026205B (zh) 基于效率和均流性能面积和最大的并联供电系统优化控制方法
CN106230033B (zh) 并联供电系统模块数量控制方法
CN106130000B (zh) 兼顾效率和均流指标的并联供电系统模糊控制方法
CN106026203B (zh) 基于效率和均流偏差期望加权和矩阵的并联供电系统优化控制方法
CN112557995A (zh) 一种便于校验误差的电表箱和误差校验方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20161116

Assignee: INSTITUTE OF LASER AND OPTOELECTRONICS INTELLIGENT MANUFACTURING, WENZHOU University

Assignor: Wenzhou University

Contract record no.: X2020330000103

Denomination of invention: A method to determine the optimal value of parallel power supply system

Granted publication date: 20191018

License type: Common License

Record date: 20201125

EE01 Entry into force of recordation of patent licensing contract
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191018

Termination date: 20210630

CF01 Termination of patent right due to non-payment of annual fee