CN106127240A - 一种基于非线性重构模型的植物图像集的分类识别方法 - Google Patents

一种基于非线性重构模型的植物图像集的分类识别方法 Download PDF

Info

Publication number
CN106127240A
CN106127240A CN201610439561.0A CN201610439561A CN106127240A CN 106127240 A CN106127240 A CN 106127240A CN 201610439561 A CN201610439561 A CN 201610439561A CN 106127240 A CN106127240 A CN 106127240A
Authority
CN
China
Prior art keywords
image
model
nonlinear
sigma
reconstruction model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610439561.0A
Other languages
English (en)
Inventor
杜吉祥
刘孟南
王靖
范文涛
张洪博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN201610439561.0A priority Critical patent/CN106127240A/zh
Publication of CN106127240A publication Critical patent/CN106127240A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes
    • G06F18/24137Distances to cluster centroïds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于非线性重构模型的植物图像集的分类识别方法,方法包括:(1)图像的预处理;(2)用k‑means方法提取每张植物叶片图像的特征;(3)用PCA方法对得到的特征向量进行降维;(4)随机选取部分特征向量用高斯自动编码器(GRMBs)预训练非线性重构模型的参数;(5)用训练得到的参数初始化非线性重构模型的参数,并为每一类训练一个特定的模型;(6)最后用最小重构误差和最大投票策略进行分类识别。本发明方法提供了一种自动的特征提取方法和一种自动的学习数据潜在的流行结构,能够实现快速学习和高精度的分类识别。

Description

一种基于非线性重构模型的植物图像集的分类识别方法
技术领域
本发明涉及植物叶片图像集的自动分类识别系统,特别涉及一种k-means特征提取和基于深度学习的非线性重构模型的植物图像集的分类识别方法。
背景技术
植物是地球上物种数量最多、分布最广泛的生命形式之一,并为人类的生存和发展提供必要的资源。然而随着人类生产活动的日益增加,生态环境不断地遭到破坏,从而导致众多的植物物种灭绝,对人类的生产和生活也产生了巨大的影响。因此对植物的分类识别具有非常重要的意义。然而单靠人工的操作是无法实现的,而且需要大量的人力和物力。近年来,随着计算机硬件性能的不断提高,数字图像采集设备的广泛使用,以及网络的普及应用,大量植物信息已经被数字化,而利用计算机处理数字植物信息可以避免传统研究过程中的工作效率低、工作量大且客观性难以保证等缺点。
在植物图像集分类识别系统中,通常分为两个阶段,第一个阶段是特征的提取,第二个阶段是分类器的设计。在现有的植物图像集分类识别系统中学习或提取的特征一般是通过手动提取特征的方法如形状特征(傅里叶描述子、多尺度曲率空间、PHOG)、纹理特征(Gabor小波变换、局域二值模式、二值模式)、颜色特征(颜色矩、颜色直方图、颜色均值)等。尽管手动选择的特征在某些领域取得非常好的效果,但是当面对新的数据或者新的条件下,手动选择特征方法可能不一定能适合。对于图像集的分类方法主要分类两类:基于参数化模型的方法和基于非参数化模型的方法。基于参数化模型方法假设每个图像集服从某种概率分布,然后用K-L散度来度量两个概率分布之间的相似度,但这种方法当测试集和训练集没有强的统计相关性时,分类效果不佳。基于非参数化模型的方法通过用线性/仿射子空间、混合子空间、非线性流行、图像集协方差矩阵和字典来表示图像集,然后重定义图像集间的距离度量,但这些方法当遇到奇异值时分类效果不佳或者需要假设图像集数据分布在某种几何表面。
近年来学习的深度学习,也能够用来自动的学习图像集数据潜在的流行结构。深度学习是机器学习的一个领域,其动机在于建立和,模拟人脑进行学习分析的神经网络,它模仿人脑的机制来解释数据。深度学习的网络结构含有多个隐含层,通过组合底层特征形成更加抽象的高层表示,以发现数据特征潜在的流行结构。但是随着隐含层层数的增多和每个隐含层中神经元个数的增加,导致需要学习的参数急剧增加,对运算性能提出了很高的要求,这也是深度学习需要解决的问题。
发明内容
本发明的目的在于克服现有技术的不足,提出一种k-means特征提取和基于深度学习的非线性重构模型的植物图像集的分类识别方法。该方法提供了一种自动的特征提取方法和一种自动的学习数据潜在的流行结构,能够实现快速学习和高精度的分类识别。
本发明解决其技术问题所采用的技术方案是:
一种基于非线性重构模型的植物图像集的分类识别方法,对植物叶片图像进行预处理后,用k-means方法提取叶片图像的特征,然后PCA算法来降低特征的维度。用高斯RBMs非监督预训练非线性重构模型的参数。用预训练得到的参数为每一类植物叶片初始化一个非线性重构模型,并用该类的训练数据训练得到特定的模型参数。最后用测试样本的最小重构误差和测试集的最多投票策略来进行最终的类别判定。
1、对图像进行预处理
图像的预处理包含彩色图像灰度化,目标对象的边界提取,目标对象的切割,假设切割后的图像为x∈RN×M,N≤M,根据需要标准化块大小L×L,根据来缩放目标图像,最后将缩放后的图像放置于标准化块的中心,从而得到预处理后的图像。
2、基于K-means聚类方法提取图像的特征向量
从图像集中随机的提取m个图像块N=w×w并列向量化构成块矩阵X={x(1),…,x(m)},然后进行白化处理,根据k-means聚类方法对白化处理后的块矩阵进行聚类得到k个聚类中心c(k)。对于特征映射采用如下非线性映射函数:
fk(x)=max{0,μ(z)-zk} (1)
其中,zk=||x-c(k)||2,μ(z)表示z的均值;该激活函数将图像块到k个中心的距离大于这k个距离均值的赋值为0。
对于预处理后的每张大小为L×L的图像,根据非线性映射函数f和大小为w×w,w<L子块,得到该子块的非线性表示进一步的,整幅图像可以得到((L-w)/s+1)×((L-w)/s+1)×K特征矩阵。当步长s=1时,整幅图像就可以得到(L-w+1)×(L-w+1)×K特征矩阵。然后将特征矩阵按四个象限分别池化并级联池化的结果,得到4K×1维的特征向量。
3、使用PCA方法对得到的特征向量进行降维
4、建立非线性重构模型并训练非线性重构模型的参数
非线性重构模型能够自动的学习数据潜在的非线性结构,包括一个输入层、三个隐含层和一个输出层,并且每个隐含层的“神经元”较少,有效地减少了模型需要训练的参数。为了使网络运行的更好,采用高斯RBMs通过非监督预训练的方法来逐层训练得到模型的初始化权值,避免模型陷入极小值和出现梯度弥散。每个类用得到的权值初始化模型参数,并用各自的训练集训练模型,得到各自的模型参数。最后根据测试样本的最小重构误差和测试集的最多投票策略进行类别的判定。具体包括如下步骤:
(1)建立非线性重构模型
非线性重构模型结构是一个自动编码器,由编码器和解码器组成。编码器和解码器分别含有两个隐含层,其中共享第二个隐含层。
编码器的两个隐含层分别用如下公式表示:
h 1 = s ( W e ( 1 ) x + b e ( 1 ) )
h = s ( W e ( 2 ) h 1 + b e ( 2 ) ) - - - ( 2 )
解码器的两个隐含层分别用如下公式表示:
x &prime; &prime; = s ( W d ( 1 ) h + b d ( 1 ) )
x &prime; = s ( W d ( 2 ) X &prime; &prime; + b d ( 2 ) ) - - - ( 3 )
其中,其中,是网络的权值矩阵,第i层有di各结点, 是偏差向量,s(·)表示非线性激活函数,常用的非线性激活函数有sigmoid函数和正切双曲线函数。
编码器部分是为了找到输入数据的一种紧凑的低维表示;编码器的参数是结合编码器和解码器并联合训练编码-解码结构通过最小化代价函数来重构输入数据。因此,可以将解码器定义为结合非线性函数从编码器的输出重构输入数据。模型的参数可以表示为θ={θWb},其中
(2)模型参数的初始化
这里使用随机梯度的反向传播算法类分别用上述的模型为每一类训练一个特定的模型,但是不适当的模型初始化权值,训练的模型很可能陷入局部的极小值,或者出现梯度弥散的问题。为了解决上述的问题,这里采用高斯RBMs,通过非监督的预训练方法来逐层初始化模型的权值。由于标准的RBMs的结点只能取0或1,这里通过修改其能量函数将其扩展到实数域。修改后的能量函数为:
E G R B M ( v , h ) = &Sigma; i ( v i - b i ) 2 2 &sigma; i 2 - &Sigma; j c j h j - &Sigma; i j w i j v i &sigma; i h j - - - ( 4 )
其中,bi和cj分别是可视层单元vi及隐藏层单元hj的偏置,wij是它们之间的权重系数,σi表示可视层实值输入数据的标准差,单个RBM的训练就是学习模型的参数{W,b,c};。由于对比差异的方法不适合高斯RBMs参数的学习,修改的高斯RBMs的概率分布如下:
p ( h j = 1 | v ) = s i g m o i d ( &Sigma; i w i j v i + c j ) - - - ( 5 )
p ( v i | h ) = 1 &sigma; i 2 &pi; exp ( - ( v i - u i ) 2 2 &sigma; i 2 ) - - - ( 6 )
其中,
因为我们的数据都是实值的,所以就可以用高斯RBMs来初始化模型的权值由于编码层学习的权值分别与相对应的解码层的权值关联,则有: 至此就得到了非线性重构模型的初始化权值。模型的其他参数通过获取。
(3)学习特定的类模型
预训练得到模型的初始化权值后,对于K个类,分别为每个类训练微调模型的权值,这样就得到K个特定的模型。每一个模型的参数θ(c)是再反向学习中通过随机梯度下降来最小化类Xc中所有训练样本x(t)的重构误差得到的。
J ( &theta; ; x ( t ) &Element; X c ) = &Sigma; x ( t ) || x ( t ) - x &prime; ( t ) || 2 - - - ( 7 )
为了避免过拟合和提高可扩展性,引入了正则化的代价函数,添加了权重延迟判罚项Jwd和稀疏约束项Jsp的代价函数形式为:
J r e g ( &theta; ; x ( t ) &Element; X c ) = &Sigma; x ( t ) || x ( t ) - x &prime; ( t ) || 2 + &lambda; w d J w d + &lambda; s p J s p - - - ( 8 )
其中,λwd、λsp为正则化参数,Jwd确保所有隐含层的权重值是一个很小的值,其函数形式为:
J w d = &Sigma; i 2 || W e ( i ) || F 2 + &Sigma; i 2 || W d ( i ) || F 2 - - - ( 9 )
Jsp确保第i个隐含层的第j个单元的平均激活度尽可能的接近稀疏目标值ρ(一个很小的值),它是根据KL散度定义的,其函数形式为:
J s p = &Sigma; i 3 &Sigma; j K L ( &rho; | | &rho; &OverBar; j ( i ) ) = &Sigma; i 3 &Sigma; j &rho; l o g &rho; &rho; &OverBar; j ( i ) + ( 1 - &rho; ) l o g 1 - &rho; &rho; &OverBar; j ( i ) - - - ( 10 )
类特定模型参数θ(c)是通过用训练集Xc训练正则化的非线性重构模型得到:
&theta; ( c ) = m i n &theta; J r e g ( &theta; ; x ( t ) &Element; X c ) - - - ( 11 )
5、根据测试样本的最小重构误差和测试样本集的最多投票策略来判定植物图像集的类别
给定一个测试样本集我们通过所有的类模型参数θ(c),c=1…k来重构每一个测试样本x(t)∈Xtest。如果x'(t)(c)是x(t)通过模型参数θ(c)重构得到的,则重构误差为:
r(t)(c)=||x(t)-x'(t)(c)||2 (12)
根据最小重构误差来判定测试样本x(t)的类标签:
y ( t ) = arg min c r ( t ) ( c ) - - - ( 13 )
测试样本的最小重构误差只有从用与本测试样本相同的训练集训练的模型中获得,据此,测试集Xtest的标签ytest通过测试样本投票最多的类决定:
y t e s t = arg m a x c &Sigma; t &delta; c ( y ( t ) ) , &delta; ( c ) ( y ( t ) ) = 1 , y ( t ) = c 0 , o t h e r w i s e - - - ( 14 ) .
本发明具有如下有益效果:本发明方法提供了一种自动的特征提取方法和一种自动的学习数据潜在的流行结构,能够实现快速学习和高精度的分类识别植物图像集。
以下结合附图及实施例对本发明作进一步详细说明,但本发明的一种基于非线性重构模型的植物图像集的分类识别方法不局限于实施例。
附图说明
图1为本发明方法的主流程图;
图2是本发明的整体流程图;
图3是本发明方法的图像预处理流程图;
图4是本发明方法的K-means聚类方法流程图;
图5是本发明方法的图像特征提取流程图;
图6是本发明方法的非线性重构模型示意图;
图7是本发明实施例用到的植物数据库的部分样本示例图;
图8是本发明实施例用到的植物数据库的另一部分样本示例图;
图9是不同样本数目对本发明方法的分类识别的影响结果图。
具体实施方式
参见图1,一种基于非线性重构模型的植物图像集的分类识别方法,包括如下步骤:
步骤101,对图像进行预处理;
步骤102,基于K-means聚类方法提取图像的特征向量;
步骤103,使用PCA方法对得到的特征向量进行降维;
步骤104,建立非线性重构模型并训练非线性重构模型的参数;
步骤105,根据测试样本的最小重构误差和测试样本集的最多投票策略来判定植物图像集的类别。
上述各步骤的详细说明请参考“发明内容”部分。
为了对本发明方法有一个更直观的理解,本发明方法流程图的另一种表示方法如图2所示。图2中,首先对训练图像集进行图像预处理、K-means特征提取和PCA降维,提取出图像的特征,再通过建立非线性重构模型和训练模型的初始化参数后获取到各个类特定模型;最后根据测试样本的最小重构误差和测试样本集的最多投票策略来判定植物图像集的类别。
图像预处理的过程如图3所示。具体包括彩色图像灰度化、边界提取、目标对象的切割。进一步的,假设目标对象切割后得到目标图像的大小为x∈RN×M,N≤M,且需要标准化块的大小为L×L,则根据来缩放目标图像,最后将缩放后的图像放置于标准化块的中心,从而得到预处理后的图像。
基于k-means的聚类流程图如图4所示。通过随机的提取大量的图像块并列向量化,构成块矩阵;然后进行块矩阵的白化处理;最后根据K-means聚类算法求得k个聚类中心。
图像特征提取过程如图5所示。对于预处理后的每张大小为L×L的图像,根据非线性映射函数f和大小为w×w,w<L子块,得到该子块的非线性表示则当步长s=1时,对于整幅图像就可以得到(L-w+1)×(L-w+1)×K特征矩阵;然后将特征矩阵按四个象限分别池化并级联池化的结果,得到4K×1维的特征向量。
非线性重构模型如图5所示。用高斯RBMs通过非监督的预训练方法得到模型的初始化权值。然后每个类使用各自训练集数据训练得到一个特定的模型。最后根据测试样本的最小重构误差和测试集的最多投票策略进行植物叶片图像集类别的判定。
本实施例中,通过实验进行验证。实验中使用的数据集来自中国科学院智能计算实验室,该数据集包含220个类,17000多个植物图像。实验中从数据集中选择出85个类作为子集,其中每个类至少包含260张图像,里面的图像具有高度的可变性(如图像的大小,叶片的正反面放置,叶片的朝向等)。植物数据库部分样本示例图如图7、图8。
在预处理中,将彩色图像标准化为大小为80*80的灰度图像。在k-means特征提取中,设置K=800,块大小为8*8,步长s=1,运用非线性映射函数,得到73*73*800的特征矩阵,然后四象限分别池化并级联池化结果,最后每张图像得到1*3200特征。然后利用PCA方法进行降维。对于非线性重构模型,隐含层设置为[400100400],每个类随机的选择90个作为训练数据,90个作为测试数据,每类训练数据和测试数据无交集。最后根据测试样本的最小重构误差和最多投票策略进行类别判定。重复实验10次,以获得真实客观的评价。从实验的结果来看,实验的平均准确率为100%且平均的运行时间为740秒。图9为样本数目的变化对算法分类准确率的影响,每个实验重复10次,以获得知识客观的评价。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于非线性重构模型的植物图像集的分类识别方法,其特点在于,包括:
对图像进行预处理;
基于K-means聚类方法提取图像的特征向量;
使用PCA方法对得到的特征向量进行降维;
建立非线性重构模型并训练非线性重构模型的参数;
根据测试样本的最小重构误差和测试样本集的最多投票策略来判定植物图像集的类别。
2.根据权利要求1所述的基于非线性重构模型的植物图像集的分类识别方法,其特征在于,所述对图像进行预处理具体包括:
灰度化彩色图像;
提取经过灰度化的图像的边界;
将经过灰度化的图像切割为x∈RN×M,N≤M;
根据标准化块的大小L×L,使用来缩放切割后的图像;
将缩放后的图像放置于标准化块的中心,得到预处理后的图像。
3.根据权利要求2所述的基于非线性重构模型的植物图像集的分类识别方法,其特征在于,所述基于K-means聚类方法提取图像的特征向量包括基于K-means的聚类步骤,具体方法如下:
从预处理后的图像中随机提取m个图像块令N=w×w,并列向量化构成块矩阵X={x(1),…,x(m)},
进行白化处理;
根据k-means聚类方法对白化处理后的块矩阵进行聚类得到k个聚类中心c(k)
4.根据权利要求3所述的基于非线性重构模型的植物图像集的分类识别方法,其特征在于,所述基于K-means聚类方法提取图像的特征向量进一步包括特征提取步骤,具体方法如下:
对于预处理后的每张大小为L×L的图像,根据非线性映射函数f和大小为w×w,w<L的子块,得到该子块的非线性表示所述非线性映射函数f用如下公式表示:
fk(x)=max{0,μ(z)-zk}
其中,zk=||x-c(k)||2,μ(z)表示z的均值;上述非线性映射函数将图像块到k个中心的距离大于这k个距离均值的赋值为0;
整幅图像得到((L-w)/s+1)×((L-w)/s+1)×K特征矩阵,其中s表示步长;
将特征矩阵按四个象限分别池化并级联池化的结果,得到4K×1维的特征向量。
5.根据权利要求4所述的基于非线性重构模型的植物图像集的分类识别方法,其特征在于,所述建立非线性重构模型并训练非线性重构模型的参数具体包括:
建立非线性重构模型;
采用高斯RBMs通过预训练的方法逐层训练得到模型的初始化权值;
分别为K个类中的每个类训练微调模型的权值,获取K个特定的模型。
6.根据权利5要求所述的基于非线性重构模型的植物图像集的分类识别方法,其特征在于,所述建立非线性重构模型的具体方法如下:
建立一个由编码器和解码器组成的自动编码器,所述编码器和解码器分别含有两个隐含层,并共享第二个隐含层;非线性重构模型的结构即所述自动编码器;
所述编码器的两个隐含层用如下公式表示:
h 1 = s ( W e ( 1 ) x + b e ( 1 ) )
h = s ( W e ( 2 ) h 1 + b e ( 2 ) )
所述解码器的两个隐含层用如下公式表示:
x &prime; &prime; = s ( W d ( 1 ) h + b d ( 1 ) )
x &prime; = s ( W d ( 2 ) x &prime; &prime; + b d ( 2 ) )
其中,是网络的权值矩阵,第i层有di各结点, 是偏差向量,s(·)表示非线性激活函数;
模型的参数用如下公式表示:
θ={θWb}
其中
7.根据权利要求6所述的基于非线性重构模型的植物图像集的分类识别方法,其特征在于,所述采用高斯RBMs通过预训练的方法逐层训练得到模型的初始化权值的具体方法如下:
修改标准RBMs的能量函数,将其扩展到实数域;修改后的能量函数用如下公式表示:
E G R B M ( v , h ) = &Sigma; i ( v i - b i ) 2 2 &sigma; i 2 - &Sigma; i c j h j - &Sigma; i j w i j v i &sigma; i h j
其中,bi和cj分别是可视层单元vi及隐藏层单元hj的偏置,wij是它们之间的权重系数,σi表示可视层实值输入数据的标准差,单个RBM的训练就是学习模型的参数{W,b,c};
修改的高斯RBMs的概率分布用如下公式表示:
p ( h j = 1 | v ) = s i g m o i d ( &Sigma; i w i j v i + c j )
p ( v i | h ) = 1 &sigma; i 2 &pi; exp ( - ( v i - u i ) 2 2 &sigma; i 2 )
其中,
随机选取部分特征向量用高斯RBMs来训练非线性重构模型的初始化权值根据如下公式获得初始化权值
W d ( 2 ) = W e ( 1 ) T , W d ( 1 ) = W e ( 2 ) T
参数通过如下公式获得:
b e ( 1 ) = c ( 1 ) , b e ( 2 ) = c ( 2 ) , b d ( 1 ) = b ( 2 ) , b d ( 2 ) = b ( 1 ) .
8.根据权利要求7所述的基于非线性重构模型的植物图像集的分类识别方法,其特征在于,所述获取K个特定的模型具体包括:
通过在反向学习中通过随机梯度下降来最小化类Xc中所有训练样本x(t)的重构误差,得到每一个模型的参数θ(c);
代价函数用如下公式表示:
J ( &theta; ; x ( t ) &Element; X c ) = &Sigma; x ( t ) || x ( t ) - x &prime; ( t ) || 2
引入正则化的代价函数,添加了权重延迟判罚项Jwd和稀疏约束项Jsp的代价函数用如下公式表示:
J r e g ( &theta; ; x ( t ) &Element; X c ) = &Sigma; x ( t ) || x ( t ) - x &prime; ( t ) || 2 + &lambda; w d J w d + &lambda; s p J s p
其中,λwd、λsp表示正则化参数;
通过用训练集Xc训练正则化的非线性重构模型得到类特定模型参数θ(c),用如下公式表示:
&theta; ( c ) = m i n &theta; J r e g ( &theta; ; x ( t ) &Element; X c ) .
9.根据权利要求8所述的基于非线性重构模型的植物图像集的分类识别方法,其特征在于:
所述Jwd确保所有隐含层的权重值是一个很小的值,其函数形式为:
J w d = &Sigma; i 2 || W e ( i ) || F 2 + &Sigma; i 2 || W d ( i ) || F 2
所述Jsp确保第i个隐含层的第j个单元的平均激活度尽可能的接近稀疏目标值ρ;它是根据KL散度定义的,其函数形式如下:
J s p = &Sigma; i 3 &Sigma; j K L ( &rho; | | &rho; &OverBar; j ( i ) ) = &Sigma; i 3 &Sigma; j &rho; log &rho; &rho; &OverBar; j ( i ) + ( 1 - &rho; ) log 1 - &rho; 1 - &rho; &OverBar; j ( i ) .
10.根据权利要求8所述的基于非线性重构模型的植物图像集的分类识别方法,其特征在于,所述根据测试样本的最小重构误差和测试样本集的最多投票策略来判定植物图像集的类别具体包括:
给定一个测试样本集通过所有的类模型参数θ(c),c=1…k来重构每一个测试样本x(t)∈Xtest
假设x'(t)(c)是x(t)通过模型参数θ(c)重构得到的,用如下公式表示重构误差:
r(t)(c)=||x(t)-x'(t)(c)||2
根据最小重构误差判定测试样本x(t)的类标签y(t),用如下公式表示:
y ( t ) = arg m i n c r ( t ) ( c )
通过测试样本投票最多的类决定测试集Xtest的标签ytest
y t e s t = arg m a x c &Sigma; t &delta; c ( y ( t ) ) , &delta; ( c ) ( y ( t ) ) = 1 , y ( t ) = c 0 , o t h e r w i s e .
CN201610439561.0A 2016-06-17 2016-06-17 一种基于非线性重构模型的植物图像集的分类识别方法 Pending CN106127240A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610439561.0A CN106127240A (zh) 2016-06-17 2016-06-17 一种基于非线性重构模型的植物图像集的分类识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610439561.0A CN106127240A (zh) 2016-06-17 2016-06-17 一种基于非线性重构模型的植物图像集的分类识别方法

Publications (1)

Publication Number Publication Date
CN106127240A true CN106127240A (zh) 2016-11-16

Family

ID=57470655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610439561.0A Pending CN106127240A (zh) 2016-06-17 2016-06-17 一种基于非线性重构模型的植物图像集的分类识别方法

Country Status (1)

Country Link
CN (1) CN106127240A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108764154A (zh) * 2018-05-30 2018-11-06 重庆邮电大学 一种基于多特征机器学习的水面垃圾识别方法
CN108875740A (zh) * 2018-06-15 2018-11-23 浙江大学 一种应用于激光切割机的机器视觉切割方法
CN109902736A (zh) * 2019-02-25 2019-06-18 东北大学 一种基于自动编码器构建特征表示的肺结节图像分类方法
CN109934107A (zh) * 2019-01-31 2019-06-25 北京市商汤科技开发有限公司 图像处理方法及装置、电子设备及存储介质
CN110169768A (zh) * 2019-07-08 2019-08-27 河北大学 一种心电信号的自动降噪方法
CN110533101A (zh) * 2019-08-29 2019-12-03 西安宏规电子科技有限公司 一种基于深度神经网络子空间编码的图像分类方法
CN110991226A (zh) * 2020-01-16 2020-04-10 常熟理工学院 基于重构模型的人体运动意向检测方法
CN111340111A (zh) * 2020-02-26 2020-06-26 上海海事大学 基于小波核极限学习机识别人脸图像集方法
TWI754972B (zh) * 2020-06-23 2022-02-11 財團法人亞洲大學 影像驗證方法及產品即時認證系統
CN117992765A (zh) * 2024-04-03 2024-05-07 华侨大学 基于动态新兴标记的偏标签学习方法、装置、设备及介质
CN117992765B (zh) * 2024-04-03 2024-06-28 华侨大学 基于动态新兴标记的偏标签学习方法、装置、设备及介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103955707A (zh) * 2014-05-04 2014-07-30 电子科技大学 一种基于深度层次特征学习的海量图像分类系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103955707A (zh) * 2014-05-04 2014-07-30 电子科技大学 一种基于深度层次特征学习的海量图像分类系统

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ADAM COATES ET AL.: "An analysis of single-layer networks in unsupervised feature learning", 《PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS. 2011》 *
JI-XIANG DU ET AL.: "Recognition of leaf image set based on manifold–manifold distance", 《NEUROCOMPUTING》 *
MUNAWAR HAYAT ET AL.: "Learning Non-Linear Reconstruction Models for Image Set Classification", 《2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION》 *
刘慧薇: "文物图像辨识及检索软件的开发研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
吕娜: "基于深度层次特征学习的大规模图像分类研究", 《中国优秀硕士学位论文全文数据库 信息科技辑(月刊)》 *
王一丁等: "《数字图像处理》", 31 August 2015, 西安:西安电子科技大学出版社 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108764154A (zh) * 2018-05-30 2018-11-06 重庆邮电大学 一种基于多特征机器学习的水面垃圾识别方法
CN108875740B (zh) * 2018-06-15 2021-06-08 浙江大学 一种应用于激光切割机的机器视觉切割方法
CN108875740A (zh) * 2018-06-15 2018-11-23 浙江大学 一种应用于激光切割机的机器视觉切割方法
CN109934107A (zh) * 2019-01-31 2019-06-25 北京市商汤科技开发有限公司 图像处理方法及装置、电子设备及存储介质
CN109902736A (zh) * 2019-02-25 2019-06-18 东北大学 一种基于自动编码器构建特征表示的肺结节图像分类方法
CN110169768A (zh) * 2019-07-08 2019-08-27 河北大学 一种心电信号的自动降噪方法
CN110533101A (zh) * 2019-08-29 2019-12-03 西安宏规电子科技有限公司 一种基于深度神经网络子空间编码的图像分类方法
CN110991226A (zh) * 2020-01-16 2020-04-10 常熟理工学院 基于重构模型的人体运动意向检测方法
CN111340111A (zh) * 2020-02-26 2020-06-26 上海海事大学 基于小波核极限学习机识别人脸图像集方法
CN111340111B (zh) * 2020-02-26 2023-03-24 上海海事大学 基于小波核极限学习机识别人脸图像集方法
TWI754972B (zh) * 2020-06-23 2022-02-11 財團法人亞洲大學 影像驗證方法及產品即時認證系統
CN117992765A (zh) * 2024-04-03 2024-05-07 华侨大学 基于动态新兴标记的偏标签学习方法、装置、设备及介质
CN117992765B (zh) * 2024-04-03 2024-06-28 华侨大学 基于动态新兴标记的偏标签学习方法、装置、设备及介质

Similar Documents

Publication Publication Date Title
CN106127240A (zh) 一种基于非线性重构模型的植物图像集的分类识别方法
Xin et al. Complex network classification with convolutional neural network
Zou et al. Deep learning based feature selection for remote sensing scene classification
CN103996056B (zh) 一种基于深度学习的纹身图像分类方法
CN105488536B (zh) 一种基于多特征深度学习技术的农田害虫图像识别方法
CN103116762B (zh) 一种基于自调制字典学习的图像分类方法
CN108595602A (zh) 基于浅层模型与深度模型结合的问句文本分类方法
CN106023220A (zh) 一种基于深度学习的车辆外观部件图像分割方法
CN105184303A (zh) 一种基于多模态深度学习的图像标注方法
CN103955702A (zh) 基于深度rbf网络的sar图像地物分类方法
CN106845528A (zh) 一种基于K‑means与深度学习的图像分类算法
CN110119707B (zh) 一种人体动作识别方法
CN110321862B (zh) 一种基于紧致三元损失的行人再识别方法
CN106570521A (zh) 多语言场景字符识别方法及识别系统
CN107679509A (zh) 一种小环藻识别方法及装置
CN110321967A (zh) 基于卷积神经网络的图像分类改进算法
CN109086886A (zh) 一种基于极限学习机的卷积神经网络学习算法
CN106127230B (zh) 基于人类视觉感知的图像识别方法
CN106485259A (zh) 一种基于高约束高分散主成分分析网络的图像分类方法
CN106326925A (zh) 一种基于深度学习网络的苹果病变图像识别方法
Li et al. Dating ancient paintings of Mogao Grottoes using deeply learnt visual codes
CN106228027A (zh) 一种多视角数据的半监督特征选择方法
CN108364073A (zh) 一种多标记学习方法
Liu et al. A novel image retrieval algorithm based on transfer learning and fusion features
CN114494777A (zh) 一种基于3D CutMix-Transformer的高光谱图像分类方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116