CN106127119A - 基于彩色图像和深度图像多特征的联合数据关联方法 - Google Patents

基于彩色图像和深度图像多特征的联合数据关联方法 Download PDF

Info

Publication number
CN106127119A
CN106127119A CN201610430214.1A CN201610430214A CN106127119A CN 106127119 A CN106127119 A CN 106127119A CN 201610430214 A CN201610430214 A CN 201610430214A CN 106127119 A CN106127119 A CN 106127119A
Authority
CN
China
Prior art keywords
data association
feature
multiple features
joint
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610430214.1A
Other languages
English (en)
Other versions
CN106127119B (zh
Inventor
刘国良
田国会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201610430214.1A priority Critical patent/CN106127119B/zh
Publication of CN106127119A publication Critical patent/CN106127119A/zh
Application granted granted Critical
Publication of CN106127119B publication Critical patent/CN106127119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition

Abstract

本发明公开了基于彩色图像和深度图像多特征的联合数据关联方法,采用联合数据概率关联算法本地传感器节点对跟踪目标和目标观测之间进行第一次数据关联;基于马氏距离的匈牙利算法实现传感器节点之间对跟踪目标的第二次数据关联;在第一次数据关联时,基于多特征的目标观测候选集调整机制,利用关节点位置观测信息z、彩色图像梯度方向直方图特征hc和深度图像梯度方向直方图特征hd构建三个阈值门限(γzcd)以限定观测集大小。本发明能提高JPDA算法估计精度和执行效率。

Description

基于彩色图像和深度图像多特征的联合数据关联方法
技术领域
本发明涉及信息技术领域,具体涉及基于彩色图像和深度图像多特征的联合数据关联方法。
背景技术
基于多个RGBD相机的人体行为识别受到研究者的广泛关注,被应用于手术室、工厂车间、汽车组装、室内监控等环境下的人体行为检测,有效解决了人体遮挡问题和可能发生的人-机器人碰撞问题,具有重要的应用价值。
目前基于多个RGBD传感器的人体行为感知还处于集中式阶段,需要一个或多个数据融合中心进行三维数据、人体骨架关节点数据的融合,对数据融合中心的计算能力和鲁棒性要求较高,对网络的不稳定性抵抗力较弱,可扩展程度低。
当场景中存在多个人体目标时,需要解决多个人体目标和传感器感知到的人体骨架观测信息之间的对应问题,即数据关联问题。
其中,关于基于彩色图像和深度图像多特征的联合数据关联的相关技术还没有出现。
随着RGBD传感器技术的发展,其使用数量和覆盖范围会随之增大,集中式的RGBD传感器网络所需要处理和传输的信息流会爆发式增长,其在现实应用中的瓶颈会越发明显。
发明内容
为解决现有技术存在的不足,本发明公开了基于彩色图像和深度图像多特征的联合数据关联方法,以提高JPDA算法估计精度和执行效率。
为实现上述目的,本发明的具体方案如下:
基于彩色图像和深度图像多特征的联合数据关联方法,包括以下步骤:
采用联合数据概率关联算法实现本地传感器节点对跟踪目标和目标观测之间进行第一次数据关联;
基于马氏距离的匈牙利算法实现传感器节点之间对跟踪目标的第二次数据关联;
各传感器之间交换关节点估计信息,通过一致性算法加权迭代实现各传感器估计状态的一致性;
其中,在第一次数据关联时,基于多特征的目标观测候选集调整机制,利用关节点位置观测信息z、彩色图像梯度方向直方图特征hc和深度图像梯度方向直方图特征hd构建三个阈值门限(γzcd)以限定观测集大小。
进一步的,基于分布式信息一致性算法的信息融合之后还包括利用模型概率对各个模型的估计结果进行加权求和,作为各传感器信息处理系统当前时刻的估计结果的步骤。
进一步的,分布式信息一致性算法使得本地传感器在获取本地数据关联估计结果后,可与邻近节点交换数据关联结果,以实现各传感器数据关联结果的融合。
进一步的,利用关节点位置观测信息z、彩色图像梯度方向直方图特征hc和深度图像梯度方向直方图特征hd构建三个阈值门限(γzcd)以限定观测集大小:
( z - z ^ ) S - 1 ( z - z ^ ) < &gamma; z , d ( h c , h ^ c ) < &gamma; c , d ( h d , h ^ d ) < &gamma; d ,
其中,是根据上一帧关节点估计值预测的当前关节点位置,S是z的方差,分别是从最近的历史关键帧中学习的以关节点位置为中心的HOG特征和HOD特征,d是直方图Chi-square卡方距离测度。
进一步的,关节点的马氏距离定义如下:
(xi-xj)T(Pi+Pj)-1(xi-xj),
(xi,xj)和(Pi,Pj)是人体关节点分别在传感器i和传感器j上的估计状态和方差。
进一步的,在实现第一次数据关联之前还包括骨架关节点位置初始化的步骤。
进一步的,在骨架关节点位置初始化之前还需要构建动态分布式传感器网络。
更进一步的,基于构建的动态分布式传感器网络,传感器将采集的人体骨架关节点信息传输至信息处理中心。
进一步的,骨架关节点位置初始化时,通过对关节点深度信息预先学习训练,实现对每帧人体关节点的检测,或利用现有工具OPENNI NITE或微软SDK直接提取关节点。
更进一步的,在骨架关节点位置初始化时,为去除无效关节点,建立人体关节点运动模型物理约束,剔除不满足人体关节点旋转角度和长度约束的人体关节点。
进一步的,人体关节点运动模型物理约束的相关参数,包括人体肘关节和肩关节之间长度,可依据检测数据自适应升级。
进一步的,多模型包括构建人体关节点的运动模型和观测模型,其中,对线性模型,利用线性信息滤波器估计,而对于非线性模型,利用非线性滤波器进行估计,非线性滤波器包括扩展信息滤波器和基于中心差分信息滤波器。
本发明的有益效果:
本发明提出了基于彩色图像和深度图像多特征的联合数据关联方法,以提高JPDA算法估计精度和执行效率。
本发明通过构建分布式RGBD传感器网络,利用信息一致性算法,实现了对人体关节点的分布式估计,网络中无数据融合中心,提高了系统对节点信息错误和无效的鲁棒性,较容易实现对传感器网络的扩展。
传感器节点只与周围邻近连接节点通讯,交换信息向量、信息矩阵和信息贡献,相较于传输原始的RGBD数据,极大的减少了数据量。
一致性算法实现了与网络中传感器节点的有效融合,间接实现了对目标的多角度观测,减少了遮挡或角度对人体关节点估计的影响,扩大了感知范围。
提出了基于彩色图像和深度图像多特征的联合数据关联方法,以应对人体不同关节点时变的运动模式。
附图说明
图1本发明的基于动态三维RGBD传感器网络的分布式示意图;
图2本发明的分布式三维传感器网络对人体关节点的多模型估计流程图;
图3本发明的分布式多人体目标关节点跟踪算法流程。
具体实施方式:
下面结合附图对本发明进行详细说明:
如图3所示,基于彩色图像和深度图像多特征的联合数据关联方法,该方法针对多目标跟踪,包括:
系统参数初始化;
多模型交互;
基于线性信息滤波器的JPDA及基于中心差分信息滤波器的JPDA;
发送本地信息给临近传感器节点;
接收临近传感器节点信息;
基于马氏距离的数据关联;
分布式信息一致性算法实现多模型结果融合。
分布式信息一致性估计时,具体为:
通过构建动态分布式RGBD传感器网络,实现对数据的分布式处理和对信息的分布式融合,网络中无集中式信息处理和融合中心,传感器节点只与邻近节点信息交换,通过有限次一致性迭代,实现网络内对感知目标状态的估计一致。
传感器网络通过无线通信实现信息的传输。每个传感器连接到本地处理器,可以是微型电脑或ARM开发板。本地处理器对信息处理后,通过无线与邻近节点进行网络数据交换。动态网络是指由位置静态的传感器和位置可移动的传感器组成的网络。其中,位置移动通过将传感器放置在移动机器人上实现。分布式具体是指信息的分布式计算和融合。
分布式三维传感器网络对人体关节点的多模型估计流程图如图2所示,该流程只针对单一目标,具体包括:骨架关节点位置初始化:通过对关节点深度信息预先学习训练,实现对每帧人体关节点的检测,也可利用现有工具OPENNI NITE或微软SDK直接提取关节点。为去除无效关节点,建立人体关节点运动模型物理约束,剔除不满足人体关节点旋转角度和长度约束的人体关节点。物理约束模型的相关参数,如人体肘关节和肩关节之间长度,可依据检测数据自适应升级。
其中,关节点深度信息是通过微软Kinect开发包或开源OpenNI驱动软件获取场景的RGB图像和深度图像。
预先学习训练的目的是为了构建关节点特征库,从而实现对待检测图像中的关节点的分类和识别。
RGBD传感器提供场景颜色和深度图像。关节点检测模块从图像中提取人体关节点。
人体关节点运动模型物理约束相关技术内容可参考论文Model-BasedReinforcement of Kinect Depth Data for Human Motion Capture Applications。
本地RGBD传感器对关节点运动估计:构建人体关节点的运动模型和观测模型,基于贝叶斯滤波器,实现对关节点状态(位置、速度和加速度)的有效估计。人体关节点的运动存在静止、匀速、加速交替进行的多模型属性,单一运动模型不足以描述关节点动态特征,因此设计基于交互多模型的贝叶斯估计方法,对人体关节点的时变状态进行有效跟踪估计。对线性模型,可利用线性信息滤波器估计,而对于非线性模型,可利用扩展信息滤波器和基于中心差分信息滤波器等非线性滤波器进行估计。
观测模型是指滤波器系统状态与传感器观测之间的模型关系。在这里,系统状态是指关节点三维位置、速度和加速度,而传感器观测是关节点三维位置。
有效估计的具体算法可参考论文Central Difference Information Filterwith Interacting Multiple Model for Robust Maneuvering Object Tracking。
RGBD传感器之间对目标关节点的信息一致性估计:定义人体关节点状态对应的信息向量、信息矩阵及其信息贡献和模型概率作为信息一致性算法的交换量,每个传感器将自身估计的关节点信息向量、信息矩阵及其对应的信息贡献、模型概率发送给相邻的通讯传感器节点,并接受周围传感器的信息,利用信息一致性算法,融合周围传感器的估计结果,连续迭代数次,实现算法和估计结果的收敛。当场景中存在多个人体目标时,需要解决多个人体目标和传感器感知到的人体骨架观测信息之间的对应问题,即数据关联问题。为减少目标所对应的观测集内候选目标数目,利用人体的航迹、三维结构、图像等多特征信息筛选候选目标范围的机制,以提高匹配效率。同时,设计与其相适应的分布式一致性算法,使得本地传感器在获取本地数据关联估计结果后,可与邻近节点交换数据关联结果,以实现各传感器数据关联结果的融合。
本发明中基于彩色图像和深度图像多特征的联合数据关联方法,具体步骤如下:
第一步是系统参数初始化,其中人体关节点的初始位置可通过OPENNI直接从RGBD相机的深度图像检测得出,位置的方差可依据OPENNI返回的关节点识别的置信水平确定,并依据关节运动特点设定关节的运动模型转换概率。
第二步是多模型交互,即根据模型概率和模型转换概率计算模型之间的混合概率,再依据混合概率计算得出每个模型的混合均值和混合方差。
第三步是信息滤波,以混合均值和混合方差为输入,计算其信息向量和信息矩阵,对线性和非线性运动模型分别采用线性信息滤波器和中心差分信息滤波器估计,根据当前深度图像检测的关节点位置升级滤波器关节点状态(信息向量和信息矩阵)和模型概率。当场景中存在多个目标,需对本地传感器节点对跟踪目标和目标观测之间进行数据关联(track to measurement)。从算法实时性和估计精度两层考虑,联合数据概率关联算法(JPDA)可解决此问题。JPDA会考虑每个目标和所有观测之间的相似度,以概率加权和的形式计算最终的估计结果,因此观测数目是影响JPDA效率和精度的一个关键量。为提高JPDA算法效率,减少冗余无效的观测,本申请提出基于多特征的目标观测候选集调整机制,核心机理是利用关节点位置观测信息z、彩色图像梯度方向直方图(HOG)特征hc和深度图像梯度方向直方图(HOD)特征hd构建三个阈值门限(γzcd)以限定观测集大小:
( z - z ^ ) S - 1 ( z - z ^ ) < &gamma; z , d ( h c , h ^ c ) < &gamma; c , d ( h d , h ^ d ) < &gamma; d ,
其中,是根据上一帧关节点估计值预测的当前关节点位置,S是z的方差,分别是从最近的历史关键帧中学习的以关节点位置为中心的HOG特征和HOD特征,d是直方图Chi-square卡方距离测度。
第四步是基于分布式信息一致性算法的信息融合,即各传感器之间交换关节点估计信息,包括关节点状态信息向量、信息矩阵和模型概率,通过一致性算法加权迭代实现各传感器估计状态的一致性,如传感器节点i和传感器节点j是相邻通讯节点,两者之间的Metroplis权重为εi,j,则在第r次迭代其信息向量信息矩阵和模型概率可由其所有相邻节点j的相应信息加权和计算得出:
y i r = &Sigma; j &epsiv; i , j y j r , Y i r = &Sigma; j &epsiv; i , j Y j r , &mu; i r = &Sigma; j &epsiv; i , j &mu; j r .
在多目标情况下,在运用一致性算法之前需解决传感器节点之间对跟踪目标的数据关联(track to track)问题,可以利用基于马氏距离(Mahalanobis distance)的匈牙利算法(Hungarian algorithm)完成此任务,其中关节点的马氏距离定义如下:
(xi-xj)T(Pi+Pj)-1(xi-xj),
其中(xi,xj)和(Pi,Pj)是人体关节点分别在传感器i和传感器j上的估计状态和方差。
第五步是各传感器节点基于模型概率加权和的混合输出,即利用模型概率对各个模型的估计结果进行加权求和,作为各传感器信息处理系统当前时刻的估计结果。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

1.基于彩色图像和深度图像多特征的联合数据关联方法,其特征是,包括以下步骤:
基于彩色图像和深度图像多特征的联合数据关联方法,包括以下步骤:
采用联合数据概率关联算法实现本地传感器节点对跟踪目标和目标观测之间进行第一次数据关联;
基于马氏距离的匈牙利算法实现传感器节点之间对跟踪目标的第二次数据关联;
各传感器之间交换关节点估计信息,通过一致性算法加权迭代实现各传感器估计状态的一致性;
其中,在第一次数据关联时,基于多特征的目标观测候选集调整机制,利用关节点位置观测信息z、彩色图像梯度方向直方图特征hc和深度图像梯度方向直方图特征hd构建三个阈值门限(γzcd)以限定观测集大小。
2.如权利要求1所述的基于彩色图像和深度图像多特征的联合数据关联方法,其特征是,基于分布式信息一致性算法的信息融合之后还包括利用模型概率对各个模型的估计结果进行加权求和,作为各传感器信息处理系统当前时刻的估计结果的步骤。
3.如权利要求2所述的基于彩色图像和深度图像多特征的联合数据关联方法,其特征是,分布式信息一致性算法使得本地传感器在获取本地数据关联估计结果后,可与邻近节点交换数据关联结果,以实现各传感器数据关联结果的融合。
4.如权利要求1所述的基于彩色图像和深度图像多特征的联合数据关联方法,其特征是,利用关节点位置观测信息z、彩色图像梯度方向直方图特征hc和深度图像梯度方向直方图特征hd构建三个阈值门限(γzcd)以限定观测集大小:
( z - z ^ ) S - 1 ( z - z ^ ) < &gamma; z , d ( h c , h ^ c ) < &gamma; c , d ( h d , h ^ d ) < &gamma; d ,
其中,是根据上一帧关节点估计值预测的当前关节点位置,S是z的方差,分别是从最近的历史关键帧中学习的以关节点位置为中心的HOG特征和HOD特征,d是直方图Chi-square卡方距离测度。
5.如权利要求1所述的基于彩色图像和深度图像多特征的联合数据关联方法,其特征是,关节点的马氏距离定义如下:
(xi-xj)T(Pi+Pj)-1(xi-xj),
(xi,xj)和(Pi,Pj)是人体关节点分别在传感器i和传感器j上的估计状态和方差。
6.如权利要求1所述的基于彩色图像和深度图像多特征的联合数据关联方法,其特征是,在实现第一次数据关联之前还包括骨架关节点位置初始化的步骤。
7.如权利要求6所述的基于彩色图像和深度图像多特征的联合数据关联方法,其特征是,在骨架关节点位置初始化之前还需要构建动态分布式传感器网络。
8.如权利要求7所述的基于彩色图像和深度图像多特征的联合数据关联方法,其特征是,基于构建的动态分布式传感器网络,传感器将采集的人体骨架关节点信息传输至信息处理中心。
9.如权利要求6所述的基于彩色图像和深度图像多特征的联合数据关联方法,其特征是,骨架关节点位置初始化时,通过对关节点深度信息预先学习训练,实现对每帧人体关节点的检测,或利用现有工具OPENNI NITE或微软SDK直接提取关节点。
10.如权利要求9所述的基于彩色图像和深度图像多特征的联合数据关联方法,其特征是,在骨架关节点位置初始化时,为去除无效关节点,建立人体关节点运动模型物理约束,剔除不满足人体关节点旋转角度和长度约束的人体关节点。
CN201610430214.1A 2016-06-16 2016-06-16 基于彩色图像和深度图像多特征的联合数据关联方法 Active CN106127119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610430214.1A CN106127119B (zh) 2016-06-16 2016-06-16 基于彩色图像和深度图像多特征的联合数据关联方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610430214.1A CN106127119B (zh) 2016-06-16 2016-06-16 基于彩色图像和深度图像多特征的联合数据关联方法

Publications (2)

Publication Number Publication Date
CN106127119A true CN106127119A (zh) 2016-11-16
CN106127119B CN106127119B (zh) 2019-03-08

Family

ID=57470626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610430214.1A Active CN106127119B (zh) 2016-06-16 2016-06-16 基于彩色图像和深度图像多特征的联合数据关联方法

Country Status (1)

Country Link
CN (1) CN106127119B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110705605A (zh) * 2019-09-11 2020-01-17 北京奇艺世纪科技有限公司 特征数据库建立及动作识别方法、装置、系统及存储介质
CN110781730A (zh) * 2019-09-16 2020-02-11 北京踏歌智行科技有限公司 智能驾驶感知方法及感知装置
CN111222437A (zh) * 2019-12-31 2020-06-02 浙江工业大学 一种基于多深度图像特征融合的人体姿态估计方法
CN111241936A (zh) * 2019-12-31 2020-06-05 浙江工业大学 一种基于深度和彩色图像特征融合的人体姿态估计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101676744A (zh) * 2007-10-31 2010-03-24 北京航空航天大学 一种复杂背景低信噪比下弱小目标高精度跟踪方法
CN102521612A (zh) * 2011-12-16 2012-06-27 东华大学 一种基于协同关联粒子滤波的多视频目标主动跟踪方法
CN104168648A (zh) * 2014-01-20 2014-11-26 中国人民解放军海军航空工程学院 传感器网络多目标分布式一致性跟踪器
CN104200488A (zh) * 2014-08-04 2014-12-10 合肥工业大学 一种基于图表示和匹配的多目标跟踪方法
CN104467742A (zh) * 2014-12-16 2015-03-25 中国人民解放军海军航空工程学院 基于高斯混合模型的传感器网络分布式一致性粒子滤波器
CN105787439A (zh) * 2016-02-04 2016-07-20 广州新节奏智能科技有限公司 一种基于卷积神经网络的深度图像人体关节定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101676744A (zh) * 2007-10-31 2010-03-24 北京航空航天大学 一种复杂背景低信噪比下弱小目标高精度跟踪方法
CN102521612A (zh) * 2011-12-16 2012-06-27 东华大学 一种基于协同关联粒子滤波的多视频目标主动跟踪方法
CN104168648A (zh) * 2014-01-20 2014-11-26 中国人民解放军海军航空工程学院 传感器网络多目标分布式一致性跟踪器
CN104200488A (zh) * 2014-08-04 2014-12-10 合肥工业大学 一种基于图表示和匹配的多目标跟踪方法
CN104467742A (zh) * 2014-12-16 2015-03-25 中国人民解放军海军航空工程学院 基于高斯混合模型的传感器网络分布式一致性粒子滤波器
CN105787439A (zh) * 2016-02-04 2016-07-20 广州新节奏智能科技有限公司 一种基于卷积神经网络的深度图像人体关节定位方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DU YONG KIM等: "《Data fusion in 3D vision using a RGB-D data via switching observation model and its application to people tracking》", 《2013 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS)》 *
FERNANDO GARCÍA等: "《Joint Probabilistic Data Association fusion approach for pedestrian detection》", 《2013 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV)》 *
文云峰等: "《基于多假设的航迹关联方法研究》", 《航船科学技术》 *
田国会等: "《基于多特征融合的人体动作识别》", 《山东大学学报(工学版)》 *
胡文龙等: "《多传感器多目标跟踪中的概率数据互联》", 《电子学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110705605A (zh) * 2019-09-11 2020-01-17 北京奇艺世纪科技有限公司 特征数据库建立及动作识别方法、装置、系统及存储介质
CN110705605B (zh) * 2019-09-11 2022-05-10 北京奇艺世纪科技有限公司 特征数据库建立及动作识别方法、装置、系统及存储介质
CN110781730A (zh) * 2019-09-16 2020-02-11 北京踏歌智行科技有限公司 智能驾驶感知方法及感知装置
CN110781730B (zh) * 2019-09-16 2022-09-27 北京踏歌智行科技有限公司 智能驾驶感知方法及感知装置
CN111222437A (zh) * 2019-12-31 2020-06-02 浙江工业大学 一种基于多深度图像特征融合的人体姿态估计方法
CN111241936A (zh) * 2019-12-31 2020-06-05 浙江工业大学 一种基于深度和彩色图像特征融合的人体姿态估计方法

Also Published As

Publication number Publication date
CN106127119B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
Wang et al. Lanenet: Real-time lane detection networks for autonomous driving
Choi et al. Looking to relations for future trajectory forecast
CN106127125A (zh) 基于人体行为特征的分布式dtw人体行为意图识别方法
CN114384920B (zh) 一种基于局部栅格地图实时构建的动态避障方法
Luo et al. Multisensor integration and fusion in intelligent systems
CN112070807B (zh) 多目标跟踪方法和电子装置
CN108445480A (zh) 基于激光雷达的移动平台自适应扩展目标跟踪系统及方法
CN103778635A (zh) 用于处理数据的方法和装置
Chen et al. Milestones in autonomous driving and intelligent vehicles—part ii: Perception and planning
CN106127119A (zh) 基于彩色图像和深度图像多特征的联合数据关联方法
CN105869181A (zh) 基于交互多模型的人体关节点分布式信息一致性估计方法
CN114998276B (zh) 一种基于三维点云的机器人动态障碍物实时检测方法
CN114237235B (zh) 一种基于深度强化学习的移动机器人避障方法
CN111309035A (zh) 多机器人协同移动与动态避障方法、装置、设备及介质
Yu et al. A deep-learning-based strategy for kidnapped robot problem in similar indoor environment
Prasetyo et al. Spatial Based Deep Learning Autonomous Wheel Robot Using CNN
Duan et al. A semantic robotic grasping framework based on multi-task learning in stacking scenes
CN106096565B (zh) 基于传感网络的移动机器人与静态传感器的任务协作方法
CN103839280A (zh) 一种基于视觉信息的人体姿态跟踪方法
CN111611869B (zh) 一种基于串行深度神经网络的端到端单目视觉避障方法
Jo et al. Mixture density-PoseNet and its application to monocular camera-based global localization
CN116630376A (zh) 基于ByteTrack的无人机多目标跟踪方法
CN103440277A (zh) 一种动作模型特征库及其构建方法
CN115690157A (zh) 一种基于Transformer的毫米波雷达行人轨迹预测方法
CN116109047A (zh) 一种基于三维智能检测的智能调度方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant