CN106126816B - Repeat the extensive ALS building point cloud modeling method under building automatic sensing - Google Patents
Repeat the extensive ALS building point cloud modeling method under building automatic sensing Download PDFInfo
- Publication number
- CN106126816B CN106126816B CN201610467713.8A CN201610467713A CN106126816B CN 106126816 B CN106126816 B CN 106126816B CN 201610467713 A CN201610467713 A CN 201610467713A CN 106126816 B CN106126816 B CN 106126816B
- Authority
- CN
- China
- Prior art keywords
- building
- buildings
- model
- point cloud
- roof
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 238000013135 deep learning Methods 0.000 claims abstract description 9
- 230000003252 repetitive effect Effects 0.000 claims abstract 7
- 230000008447 perception Effects 0.000 claims abstract 5
- 238000001514 detection method Methods 0.000 claims description 16
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- 230000011218 segmentation Effects 0.000 claims description 9
- 238000011156 evaluation Methods 0.000 claims description 8
- 238000003066 decision tree Methods 0.000 claims description 4
- 238000007637 random forest analysis Methods 0.000 claims description 3
- 238000007619 statistical method Methods 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims description 2
- 238000013210 evaluation model Methods 0.000 claims description 2
- 230000005484 gravity Effects 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- 238000013519 translation Methods 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 11
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000755266 Kathetostoma giganteum Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- VMXUWOKSQNHOCA-UKTHLTGXSA-N ranitidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-UKTHLTGXSA-N 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/13—Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Architecture (AREA)
- Mathematical Analysis (AREA)
- Structural Engineering (AREA)
- Pure & Applied Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Image Analysis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明是一种重复建筑自动感知下的大规模ALS建筑点云建模方法,包括以下步骤:(一)采用深度学习方法,精细分割ALS点云,获取“建筑”、“植被”、“地面”和“其他”四类目标;(二)针对建筑点云,在局部区域内探测重复建筑,并对探测出的重复建筑配准和对齐,接着采用数据驱动方法,构建重复建筑屋顶模型,针对剩余的非重复建筑,采取综合数据驱动和模型驱动的混合建模方法,构建建筑屋顶的几何模型;(三)定性和定量评价建筑屋顶几何模型建模方法的精度和效率。优点:1)建模的效率和精度高,适合对重复建筑较多的城市居民区进行建模。2)方便与其他方法整合,以提升建模方法的应用范围和模型的层次细节。
The present invention is a large-scale ALS building point cloud modeling method under the automatic perception of repetitive buildings, which includes the following steps: (1) Using a deep learning method, finely segment the ALS point cloud, and obtain "building", "vegetation", "ground" ” and “other” four types of targets; (2) For the building point cloud, duplicate buildings are detected in a local area, and the detected duplicate buildings are registered and aligned, and then a data-driven method is used to construct the roof model of the duplicate buildings. For the remaining non-repetitive buildings, a hybrid modeling method of comprehensive data-driven and model-driven is adopted to construct the geometric model of the building roof; (3) Qualitatively and quantitatively evaluate the accuracy and efficiency of the modeling method of the building roof geometric model. Advantages: 1) The modeling efficiency and accuracy are high, and it is suitable for modeling urban residential areas with many repeated buildings. 2) It is convenient to integrate with other methods to improve the application scope of the modeling method and the level of detail of the model.
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610467713.8A CN106126816B (en) | 2016-06-24 | 2016-06-24 | Repeat the extensive ALS building point cloud modeling method under building automatic sensing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610467713.8A CN106126816B (en) | 2016-06-24 | 2016-06-24 | Repeat the extensive ALS building point cloud modeling method under building automatic sensing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106126816A CN106126816A (en) | 2016-11-16 |
CN106126816B true CN106126816B (en) | 2019-04-05 |
Family
ID=57268737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610467713.8A Expired - Fee Related CN106126816B (en) | 2016-06-24 | 2016-06-24 | Repeat the extensive ALS building point cloud modeling method under building automatic sensing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106126816B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107025685B (en) * | 2017-04-11 | 2020-03-17 | 南京林业大学 | Airborne building roof point cloud modeling method under topology perception |
CN106772433B (en) * | 2017-04-11 | 2019-01-18 | 南京林业大学 | Building line based on airborne laser radar data draws drawing generating method |
CN107170003A (en) * | 2017-05-08 | 2017-09-15 | 广东工业大学 | The model matching method and system of a kind of sail shape outside plate |
CN108038908B (en) * | 2017-11-21 | 2021-11-30 | 泰瑞数创科技(北京)有限公司 | Space object identification and modeling method and system based on artificial intelligence |
JP7376496B2 (en) | 2018-03-20 | 2023-11-08 | ピーシーエムエス ホールディングス インコーポレイテッド | System and method for optimizing dynamic point clouds based on prioritized transformations |
CN112106063B (en) * | 2018-03-20 | 2025-05-16 | Pcms控股公司 | System and method for dynamically adjusting the level of detail of a point cloud |
CN109242855B (en) * | 2018-07-19 | 2020-08-11 | 中国科学院自动化研究所 | Roof segmentation method, system and equipment based on multi-resolution 3D statistical information |
CN109545021A (en) * | 2018-11-02 | 2019-03-29 | 国家消防工程技术研究中心 | Evacuation system detection device |
CN109753687A (en) * | 2018-12-04 | 2019-05-14 | 中国航空工业集团公司西安飞机设计研究所 | A composite aeroelastic dynamic modeling method |
CN112347540B (en) * | 2020-11-09 | 2023-09-08 | 重庆智慧之源科技有限公司 | Intelligent detection modeling system for building |
CN114004938B (en) * | 2021-12-27 | 2022-04-01 | 中国电子科技集团公司第二十八研究所 | Urban scene reconstruction method and device based on mass data |
CN115097415B (en) * | 2022-07-06 | 2025-06-03 | 山东矩阵软件工程股份有限公司 | A method, system and related device for processing waveform point cloud data |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103969656A (en) * | 2014-05-08 | 2014-08-06 | 北京数字绿土科技有限公司 | Building modeling method and device based on airborne laser radar |
CN104036544A (en) * | 2014-06-25 | 2014-09-10 | 西安煤航信息产业有限公司 | Building roof reconstruction method based on airborne LiDAR data |
CN104197897A (en) * | 2014-04-25 | 2014-12-10 | 厦门大学 | Urban road marker automatic sorting method based on vehicle-mounted laser scanning point cloud |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4188673B2 (en) * | 2002-12-02 | 2008-11-26 | ヒタチグローバルストレージテクノロジーズネザーランドビーブイ | RECORDING / REPRODUCING DEVICE, CONTENT REPRODUCING DEVICE, DISC DEVICE, ITS CONTROL METHOD, AND PROGRAM |
-
2016
- 2016-06-24 CN CN201610467713.8A patent/CN106126816B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104197897A (en) * | 2014-04-25 | 2014-12-10 | 厦门大学 | Urban road marker automatic sorting method based on vehicle-mounted laser scanning point cloud |
CN103969656A (en) * | 2014-05-08 | 2014-08-06 | 北京数字绿土科技有限公司 | Building modeling method and device based on airborne laser radar |
CN104036544A (en) * | 2014-06-25 | 2014-09-10 | 西安煤航信息产业有限公司 | Building roof reconstruction method based on airborne LiDAR data |
Also Published As
Publication number | Publication date |
---|---|
CN106126816A (en) | 2016-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106126816B (en) | Repeat the extensive ALS building point cloud modeling method under building automatic sensing | |
CN106127857B (en) | The on-board LiDAR data modeling method of integrated data driving and model-driven | |
CN109410327B (en) | BIM and GIS-based three-dimensional city modeling method | |
CN108759840B (en) | An indoor and outdoor integrated three-dimensional navigation path planning method | |
CN107025685B (en) | Airborne building roof point cloud modeling method under topology perception | |
CN109900276B (en) | Station real-time emergency path planning method based on point-line-surface obstacle model construction | |
CN110874391A (en) | Data fusion and display method based on urban space three-dimensional grid model | |
CN112598796A (en) | Method for building and automatically updating three-dimensional building information model based on generalized point cloud | |
CN109979006A (en) | Indoor road net model construction method and device | |
CN115482355A (en) | Many-source data driven LOD 2-level city building model enhanced modeling algorithm | |
Khayyal et al. | Creation and spatial analysis of 3D city modeling based on GIS data | |
Toschi et al. | Geospatial data processing for 3D city model generation, management and visualization | |
Adamopoulos et al. | Multi-sensor documentation of metric and qualitative information of historic stone structures | |
Boguslawski et al. | BIM-GIS modelling in support of emergency response applications | |
CN116994156B (en) | Landslide hidden danger comprehensive remote sensing identification method, system, equipment and medium | |
CN108182724A (en) | A kind of high-precision urban heat island detection method, equipment and storage device | |
CN113988084A (en) | BIM and GIS ontology fusion method and system based on SWRL rules | |
Ying et al. | Urban 3d modelling methods: A state-of-the-art review | |
Sabri et al. | A multi-dimensional analytics platform to support planning and design for liveable and sustainable urban environment | |
CN104729529B (en) | The method and system that map surveying systematic error judges | |
Erener et al. | An approach to urban building height and floor estimation by using LiDAR data | |
Taubenböck et al. | Remote sensing—An effective data source for urban monitoring | |
Adreani et al. | Rendering 3D city for smart city digital twin | |
CN112686988B (en) | Three-dimensional modeling method, three-dimensional modeling device, electronic equipment and storage medium | |
Agugiaro et al. | A web-based interactive tool for multi-resolution 3D models of a Maya archaeological site |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20161116 Assignee: Nanjing Tianfang Earth Circle Surveying and Mapping Technology Co.,Ltd. Assignor: Nanjing Forestry University Contract record no.: 2019320000272 Denomination of invention: Cloud modeling method of large-scale ALS building points of repetitive buildings based on automatic sensitivity Granted publication date: 20190405 License type: Common License Record date: 20190726 Application publication date: 20161116 Assignee: Nanjing Yihaopu Software Technology Co.,Ltd. Assignor: Nanjing Forestry University Contract record no.: 2019320000271 Denomination of invention: Cloud modeling method of large-scale ALS building points of repetitive buildings based on automatic sensitivity Granted publication date: 20190405 License type: Common License Record date: 20190726 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20161116 Assignee: Nanjing Wenjing Information Technology Co.,Ltd. Assignor: Nanjing Forestry University Contract record no.: X2019320000017 Denomination of invention: Cloud modeling method of large-scale ALS building points of repetitive buildings based on automatic sensitivity Granted publication date: 20190405 License type: Common License Record date: 20190809 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190405 |
|
CF01 | Termination of patent right due to non-payment of annual fee |