CN106103723B - 果实产量提高的番茄(Solanum lycopersicum)植物 - Google Patents

果实产量提高的番茄(Solanum lycopersicum)植物 Download PDF

Info

Publication number
CN106103723B
CN106103723B CN201580013200.3A CN201580013200A CN106103723B CN 106103723 B CN106103723 B CN 106103723B CN 201580013200 A CN201580013200 A CN 201580013200A CN 106103723 B CN106103723 B CN 106103723B
Authority
CN
China
Prior art keywords
tomato
solanum
gene
sp3d
fruit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580013200.3A
Other languages
English (en)
Other versions
CN106103723A (zh
Inventor
伊利亚·罗布贝克
马里科·伊克马
斯泰 马蒂因·特鲁斯·范
布尔 海尔特·约翰内斯·德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Invest BV
Original Assignee
Monsanto Invest BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Invest BV filed Critical Monsanto Invest BV
Publication of CN106103723A publication Critical patent/CN106103723A/zh
Application granted granted Critical
Publication of CN106103723B publication Critical patent/CN106103723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及果实产量提高的番茄(Solanum lycopersicum)植物以及本发明所述的番茄植物的种子和果实。本发明还涉及提高番茄植物果实产量的方法。本发明还涉及本发明所述的番茄植物的果实和种子。包含潘那利番茄(Solanum pennelli)或另一种茄属物种的SP3D和SP基因或至少其启动子序列的果实产量提高的番茄植物,所述另一种茄属物种选自小花番茄(Solanum neorickii)、克梅留斯基番茄(Solanum chmielewskii)、智利番茄(Solanum chilense)、Solanum parviflorum、细叶番茄(Solanum pimpinellifolium)和秘鲁番茄(Solanum peruvianum)。

Description

果实产量提高的番茄(Solanum lycopersicum)植物
描述
本发明涉及果实产量提高的番茄(Solanum lycopersicum)植物以及本发明所述的番茄植物的种子和果实。本发明还涉及提高番茄植物果实产量的方法。本发明还涉及本发明所述的番茄植物的果实和种子。
番茄(Solanum lycopersicum)植物还称为番茄(Lycopersicon lycopersicum(L.))或番茄(Lycopersicon esculentum),它通常叫做番茄(西红柿,tomato)植物。该物种起源于南美洲安第斯山脉并且首先在墨西哥作为食物使用,在西班牙人殖民美洲后,传遍世界。目前,在田间或寒冷气候的温室中,广泛种植了多种番茄品种。
番茄以多种方式消费,包括生吃或作为多种菜肴、果酱、沙拉和饮料的成分。尽管在植物学中认为番茄是水果,但是通常在烹饪中认为是蔬菜。番茄富含番茄红素,其可以具有有益的健康作用。番茄属于茄科 (nightshade family),茄科(Solanaceae)。这种植物通常生长高度为1-3 米,并且具有通常在地面蔓生的弱茎和其它植物的藤。在其原产地,它是多年生植物,尽管通常在温和气候中在户外作为一年生植物种植。常见番茄的平均重量为约100克,尽管已知更小和更大的品种。
考虑到番茄植物的经济重要性,在植物育种领域中仍持续需要提高这些植物的果实产量。
在最近几十年间,育种主要集中在产量、抗病性和果实质量方面,如均一成熟度和味道。由于新生产方法、改善的虫害治理以及更适合于新生产方法的品种,已实现了产量改善。每株植物多5或15个果实的新品种使产量提高了2至4%。
由于缺少确定番茄产量方面的知识,阻碍了具有更高产量的品种的开发。假定当维持叶面积指数(LAI)不变时,在番茄串(trusses)之间具有两片叶片而不是常规的三片叶片的番茄品种将吸收(同化)向果实转化,从而导致更高的产量。
在WO 2009/021545中描述了番茄串之间具有两片叶片的番茄培养品种。WO 2009/021545公开在番茄的野生亲缘植物(即潘那利番茄(Solanum pennelli))中发现的SP3D启动子可以提供在番茄串之间具有两片叶片的番茄植物,借此提高果实产量。然而,后续实验显示通过(例如)潘那利番茄(Solanum pennelli)的SP3D基因或启动子向番茄中的基因渗入所提供的番茄串间具有两片叶片的表型并不总是稳定的,借此阻碍了所得子代的果实产量。
在其它目标中,本发明的目标是提供果实产量提高的番茄植物。本发明的另一个目标是稳定在番茄串之间具有两片叶片的表型,借此进一步提高番茄植物的果实产量。
在其它目标中,通过提供如所附权利要求中所列的番茄植物来实现上述目标。
具体地,在其它目标中,通过果实产量提高的番茄植物实现上述目标,所述植物包含潘那利番茄(Solanum pennelli)的SP3D和SP基因或至少其启动子序列。
本发明人意外地发现将潘那利番茄的SP3D和SP基因两者在番茄中组合会稳定地提供“在番茄串之间具有两片叶片的表型”,借此提高番茄植物的整体果实产量。相对于果实产量的提高,观察到番茄串数目提高多至 30%。
在本发明的背景中,术语“基因”将理解为对应于遗传单元的基因组序列的可定位区域,其与调控区、转录区及其它功能序列区有关。本发明的术语“基因”至少表示包含启动子区和转录或编码区的基因组序列。
植物物种潘那利番茄为番茄植物的野生密切亲缘植物。通过常规基因渗入或通过现代分子生物学技术,如通过转化可以容易地将潘那利番茄的基因引入到番茄植物中。考虑到番茄植物其它野生亲缘植物的SP和SP3D 基因的基因密切相似性,在本发明的背景中,还考虑了SP和SP3D基因或至少其启动子,如小花番茄(Solanum neorickii)、克梅留斯基番茄 (Solanum chmielewskii)、智利番茄(Solanum chilense)、Solanum parviflorum、细叶番茄(醋栗番茄,Solanum pimpinellifolium)和秘鲁番茄 (Solanum peruvianum)。
本发明的SP3D基因的转录区编码与SEQ ID No.1具有至少90%,如 91、92、93或94%,优选地,至少95%,如96、97、98或99%,并且更优选地,基本100%的序列同一性的氨基酸序列的蛋白质。在本发明的背景中,序列同一性表示给定序列中顺序相同的氨基酸的数目除以给定SEQ ID No的氨基酸的总数并乘以100%。
本发明的SP基因的转录区编码与SEQ ID No.2具有至少90%,如91、 92、93或94%,优选地,至少95%,如96、97、98或99%,并且更优选地,基本100%的序列同一性的氨基酸序列的蛋白质。
应注意本发明通过在番茄中组合潘那利番茄的SP3D和SP基因所提供的稳定“果实产量提高”将归因于两个基因的转录调控而不是所编码的蛋白。具体地,至少启动子区(即调控转录的转录序列的基因组区上游) 负责所观察到的作用。通过不同的配合,与番茄相比,本发明的“果实产量提高”的特性将归因于潘那利番茄中SP和SP3D的转录调控差异。特别是在转基因植物的情况下,在转录序列或cDNA序列之前操作性引入两个基因的至少启动子序列将提供本发明的表型。
因此,根据特别优选的实施方式,本发明涉及番茄植物,其中SP3D 基因或cDNA序列受SEQ ID No.3的启动子序列的控制,和/或SP基因或 cDNA序列受SEQ ID No.4的启动子序列的控制。
本文作为SEQ ID No.5提供了SP3D的cDNA序列,并且作为SEQ ID No.6提供了SPcDNA序列。
根据本发明,本发明的番茄植物可以在杂合或纯合形式中包含潘那利番茄的SP和SP3D基因,即本发明的番茄植物中至少一个等位基因包含潘那利番茄的SP并且本发明的番茄植物中至少一个等位基因包含潘那利番茄的SP3D。然而,本发明人意外地观察到如果本发明的启动子或基因之一纯合地存在,即在两个等位基因上,则可以获得果实产量(例如,番茄串的数目)的进一步改善。当两个潘那利番茄基因纯合存在时,获得了最佳果实产量提高。
因此,根据特别优选的实施方式,本发明涉及番茄植物,其中本发明的潘那利番茄的SP3D基因或至少其启动子纯合存在,涉及番茄植物,其中本发明的潘那利番茄的SP基因或至少其启动子纯合存在,或涉及番茄植物,其中本发明的潘那利番茄的SP3D基因和SP基因或至少其启动子纯合存在。在本发明的背景中,所需启动子的存在表明通过操作性连接至转录基因序列或cDNA序列,启动子操作性连接至编码各个功能SP3D和 SP蛋白的DNA序列。
考虑到本发明的番茄植物的显著提高,根据其它方面,本发明涉及提供产量改善的番茄植物的方法,其中所述方法包括向番茄植物基因组引入本发明的潘那利番茄的SP3D和SP3基因或其启动子。
根据另一个方面,本发明涉及本发明的番茄植物的果实和种子。固有地,根据本发明的这个方面的果实和种子包括如上定义的潘那利番茄的 SP3D和SP基因。
在以下实施例中,将进一步详细说明本发明。在实施例中,参考附图,其中:
图1:显示在不存在潘那利番茄的SP基因的情况下,包含潘那利番茄的SP3D基因的番茄植物的串之间的叶片数目。
图2:显示不同的番茄单倍体的串间叶片量。SPpen表示存在潘那利番茄的SP基因,SP3Dpen表示存在潘那利番茄的SP3D基因。SPesc表示存在番茄的SP基因,SP3Desc表示存在番茄的SP3D基因。
图3:显示不同的番茄单倍体的串数目。SPpen表示存在潘那利番茄的SP基因,SP3Dpen表示存在潘那利番茄的SP3D基因。SPesc表示存在番茄的SP基因,SP3Desc表示存在番茄的SP3D基因。
基因标识 植物 序列类型 SEQ ID No.
SP3D蛋白 潘那利番茄 氨基酸 1
SP蛋白 潘那利番茄 氨基酸 2
SP3D启动子 潘那利番茄 核酸 3
SP启动子 潘那利番茄 核酸 4
SP3D cDNA 潘那利番茄 核酸 5
SP cDNA 潘那利番茄 核酸 6
实施例
为了鉴别SP基因是否可以稳定果实产量提高的表型100,使基因渗入的植物生长。具体地,通过将来自潘那利番茄的SP3D和SP基因渗入到番茄植物(或番茄(Lycopersiconesculentum))获得这些植物。通过标准分子分析确定两个基因的存在。
使植物在标准条件下生长,并对串间叶片数目计数。如图1所示,串间叶片平均数在2和3之间波动。此外,图1显示来自潘那利番茄的纯合 SP3D导致串间叶片比SP3D处于杂合状态时少。
为了测试与纯合潘那利番茄SP3D(SP3Dpen/pen)或杂合潘那利番茄 SP3D(SP3Dpen /pen)组合的杂合潘那利番茄SP(SPpen/sec)相比,纯合潘那利番茄SP(SPpen/pen)对串间两片叶片表型的贡献更大,在图2中,将回交家系中存在的不同单倍体对串间叶片量作图。如图2中可见,当SPpen/pen和SP3Dpen/pen两者在植物中作为纯合潘那利番茄存在时,串间平均叶片量为2,而所有其它组合导致2.25个叶片和更高的平均值。与图1相比,图 2显示潘那利番茄的存在有助于串间2叶片表型的稳定。
为了评价本发明植物的果实产量,根据以下杂交方案,在Moneyberg (番茄)的背景中,在通过基因渗入潘那利番茄SP3D和潘那利番茄SP 两者获得的植物中对串数目进行计数:
植物在6月至10月间生长,并对每株植物的串数目计数。图3显示了4种不同基因型的串数目。如图3中清楚所示,当潘那利番茄SP3D和潘那利番茄SP两者纯合存在时,所述植物具有改善的串的量。

Claims (5)

1.提供果实产量改善的番茄植物的方法,所述方法包括向所述番茄植物的基因组中引入潘那利番茄的SP3D基因和SP基因,其中所述SP3D基因编码由SEQ ID NO.1所示序列构成的蛋白质,且所述SP基因编码由SEQ ID NO.2所示序列构成的蛋白质。
2.根据权利要求1所述的方法,其中所述SP3D基因具有SEQ ID NO.3的启动子序列。
3.根据权利要求1-2中任一项所述的方法,其中所述SP基因具有SEQ ID NO.4的启动子序列。
4.根据权利要求1-2中任一项所述的方法,其中纯合引入所述SP3D基因。
5.根据权利要求1-2中任一项所述的方法,其中纯合引入所述SP基因。
CN201580013200.3A 2014-03-13 2015-03-13 果实产量提高的番茄(Solanum lycopersicum)植物 Active CN106103723B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2012426 2014-03-13
NL2012426A NL2012426B1 (en) 2014-03-13 2014-03-13 Solanum lycopersicum plants with increased fruit yield.
PCT/EP2015/055259 WO2015136065A1 (en) 2014-03-13 2015-03-13 Solanum lycopersicum plants with increased fruit yield

Publications (2)

Publication Number Publication Date
CN106103723A CN106103723A (zh) 2016-11-09
CN106103723B true CN106103723B (zh) 2019-10-18

Family

ID=50483456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580013200.3A Active CN106103723B (zh) 2014-03-13 2015-03-13 果实产量提高的番茄(Solanum lycopersicum)植物

Country Status (9)

Country Link
US (1) US10465201B2 (zh)
EP (1) EP3116899A1 (zh)
JP (1) JP6606093B2 (zh)
CN (1) CN106103723B (zh)
CA (1) CA2941671C (zh)
MX (1) MX368958B (zh)
NL (1) NL2012426B1 (zh)
RU (1) RU2696827C2 (zh)
WO (1) WO2015136065A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018011046A1 (en) 2016-07-13 2018-01-18 Dsm Ip Assets B.V. Process to improve crop yield
CA3114866A1 (en) * 2018-10-16 2020-04-23 Syngenta Participations Ag Tomato plant producing fruits with modified sugar content

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101755052A (zh) * 2007-08-10 2010-06-23 安莎种子公司 提高番茄作物产量的启动子序列和基因构建体
WO2010147467A2 (en) * 2009-06-17 2010-12-23 Monsanto Invest N.V. Novel tomato plants

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US329796A (en) * 1885-11-03 Organ-coupler
US6100449A (en) 1995-04-13 2000-08-08 Yeda Research And Development Co. Ltd. Transgenic tomato plants containing a fusarium resistance gene
CN1946848A (zh) * 2004-03-01 2007-04-11 克罗普迪塞恩股份有限公司 产量增加的植物及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101755052A (zh) * 2007-08-10 2010-06-23 安莎种子公司 提高番茄作物产量的启动子序列和基因构建体
WO2010147467A2 (en) * 2009-06-17 2010-12-23 Monsanto Invest N.V. Novel tomato plants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1;Lilac Pnueli等;《Development》;19981231;第125卷;1979-1989 *

Also Published As

Publication number Publication date
MX2016011408A (es) 2016-12-07
US10465201B2 (en) 2019-11-05
NL2012426A (en) 2015-11-23
US20170107529A1 (en) 2017-04-20
CN106103723A (zh) 2016-11-09
RU2696827C2 (ru) 2019-08-06
RU2016140220A (ru) 2018-04-13
MX368958B (es) 2019-10-23
RU2016140220A3 (zh) 2018-09-18
CA2941671A1 (en) 2015-09-17
CA2941671C (en) 2020-12-15
EP3116899A1 (en) 2017-01-18
JP2017506906A (ja) 2017-03-16
WO2015136065A1 (en) 2015-09-17
NL2012426B1 (en) 2016-01-06
JP6606093B2 (ja) 2019-11-13

Similar Documents

Publication Publication Date Title
Musacchi et al. Training systems and sustainable orchard management for European pear (Pyrus communis L.) in the Mediterranean area: A review
Rodríguez-Burruezo et al. Breeding strategies for improving the performance and fruit quality of the pepino (Solanum muricatum): A model for the enhancement of underutilized exotic fruits
Cortés-Olmos et al. Traditional Eastern Spanish varieties of tomato
Venkadeswaran et al. Evaluating the yield and quality characters of cherry tomato [Solanum lycopersicum (L.) var. cerasiforme Mill.] genotypes
CN106103723B (zh) 果实产量提高的番茄(Solanum lycopersicum)植物
Sau et al. Recent trends in agro-technology, post-harvest management and molecular characterisation of pomegranate
Doddrell et al. Feeding the world: impacts of elevated [CO2] on nutrient content of greenhouse grown fruit crops and options for future yield gains
Zamani et al. A study and comparison of control methods of anthracnose disease in walnut trees of Roodbar region
Patra et al. Variability studies in gladiolus.
Meena et al. Estimation of mean performance and genetic association of yield components and drought related traits in chickpea (Cicer arietinum L.)
Said ElM Genotypic variability in fruits characters of Moroccan watermelon cultivars (Citrullus lanatus) cultivars under well and limited watered conditions
Stafne et al. Grapevine breeding in the southern United States
Das et al. Characterization of brinjal genotypes for growth, yield and morphological traits
Singh et al. Variability in fruit physico-chemical characters of litchi (Litchi chinensis Sonn.): an index for selection of improved clones for processing and value addition
Askari-Khorasgani et al. Grapevine selection for improving nutrient content and composition and the associated quality indices—A review
Bosoi et al. Vine varieties for white wines in the climate context of the Odobesti vineyard, Romania
Thakur et al. Studies on genetic divergence in tomato (Solanum lycopersicum L.) under mid hill conditions of Solan District of Himachal Pradesh
Pradhan et al. Evaluation of tomato (Solanum lycopersicum L.) hybrids during rainy season in coastal plain of Odisha, India
Hussain Pheno-Physiological Assessment of Grapes (Vitis vinifera) Germplasm
Bunea et al. The influence of the different training systems on yield quantity and quality of interspecific hybrid SV 18-402, in Cluj-Napoca, Romania
Popa et al. The evolution of garlic cultivation in Romania constraints and perspectives
Khan et al. History, distribution, production and taxonomic classification
BUCUR et al. STUDY ON THE IMPACT OF CLIMATE CHANGES ON THE PHENOLOGY AND ADAPTABILITY OF SOME VARIETIES INTENDED TO PRODUCTION QUALITY RED WINES.
Badhe et al. Genetic divergence in cowpea (Vigna unguiculata (L.) Walp.)
Singh et al. Mitigating climate change impact on tomato (Solanum lycopersicum mill.) under protected cultivation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant