CN106097329B - 一种基于边缘检测的集装箱轮廓定位方法 - Google Patents

一种基于边缘检测的集装箱轮廓定位方法 Download PDF

Info

Publication number
CN106097329B
CN106097329B CN201610398985.7A CN201610398985A CN106097329B CN 106097329 B CN106097329 B CN 106097329B CN 201610398985 A CN201610398985 A CN 201610398985A CN 106097329 B CN106097329 B CN 106097329B
Authority
CN
China
Prior art keywords
image
line segment
lockhole
container
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610398985.7A
Other languages
English (en)
Other versions
CN106097329A (zh
Inventor
高飞
李定谢尔
童伟圆
汪敏倩
葛粟
葛一粟
卢书芳
肖刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201610398985.7A priority Critical patent/CN106097329B/zh
Publication of CN106097329A publication Critical patent/CN106097329A/zh
Application granted granted Critical
Publication of CN106097329B publication Critical patent/CN106097329B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image

Landscapes

  • Image Analysis (AREA)

Abstract

本发明涉及一种基于边缘检测的集装箱轮廓定位方法,它用摄像头采集集装箱相对两侧的图像并得上下锁孔的粗定位范围,将锁孔的粗定位图像转为灰度图并进行预处理,得到图像I1,I2,对图像I1,I2进行边缘检测,得到粗定位的上下锁孔边缘图像I1',I'2;采用Hough直线检测算法进行检测,得到线段集合,采用DBCAN聚类算法把接近水平和垂直的线段保留,得到水平线段集合LH和垂直线段集合LV,获得4个交点p1,p2,p3,p4由四个点构成一个四边形即为集装箱轮廓,由此实现集装箱轮廓的定位。它有效地解决锁孔图像在边缘检测的时候存在干扰边缘,以及Hough直线效果不佳等不足。

Description

一种基于边缘检测的集装箱轮廓定位方法
技术领域
本发明属于计算机视觉技术和图像处理技术领域,具体涉及一种基于边缘检测的集装箱轮廓定位方法。
背景技术
随着集装箱运输的发展,使得集装箱船舶越来越大,货物集装箱化的比例不断提高,集装箱运量不断上升。从航次经济核算分析,通过缩短集装箱船舶的停泊时间可以降低停泊成本,提高集装箱运输船舶的航行效率并充分发挥船舶单位运输成本的优势,提高经济效益。传统的手动控制抓取集装箱已经极大的影响了生产效率和装卸速度。一台桥吊把集装箱从货轮装到拖车上,过程要求操作精度高,劳动强度大,是比较耗时的一个环节,其中,在桥吊司机将抓具对准集装箱锁孔这一环节花费的时间占主要部分。提高装卸自动化的程度是提高集装箱效率的有效途径,其关键内容就是减少桥吊司机对集装箱锁孔的定位时间并且提升定位的准确性。
为了解决集装箱锁孔轮廓的问题,国内外学术界、工业界提出了很多方案,其中与本发明较为接近的技术方案包括:漆静(基于机器视觉集装箱吊具智能定位系统研究[D].西南交通大学,2015)首先通过模板匹配算法把集装箱顶部图像从整体图像中提取出来,然后提取集装箱图像轮廓并平滑处理,最后用形态学处理过滤掉干扰的点和线,只保留吊孔区域。这种方法存在的问题是,在光线不足的情况下集装箱轮廓提取效果的好坏并不稳定,同时通过形态学算法提取吊孔区域的效果并不总是特别好,这通常会导致最后计算吊孔区域形心坐标的偏差。徐良(基于ARM的集装箱定位系统的设计与实现[D].西南交通大学,2012)首先将摄像头采集到的集装箱彩色图像转换为灰度图像,再者使用Canny算子检测并且二值化以及Hough直线检测保证图像中的集装箱边缘与图像平行,将不平行的集装箱图像排除,然后通过Otsu算法把集装箱灰度图像转换为二值图,最后根据集装箱锁孔外接矩形的长宽比和面积过滤出二值图中锁孔的位置。文中使用锁孔外接矩形的顶点代替集装箱轮廓顶点存在一定误差,因为在采集集装箱图像的时候,锁孔存在一定程度的形变,而且锁孔的位置并不是出于集装箱的最外侧。发明专利(申请号:CN200710169094.5,名称:基于机器视觉的双集装箱定位系统)中首先利用SUSAN算子提取集装箱图像边缘区域,其次抑制图像噪声同时进行目标增强,然后采用Otsu算法对灰度图作闭运算,最后采用Hough直线检测算法提取图像中集装箱的边线并与图库中的集装箱姿态进行匹配得到集装箱的位置。该方法存在的问题是Hough直线提取的效果并不稳定,没有对检测出来的线段进行处理对后一步姿态匹配的效果会有一定的影响。
综上所述,既要实现集装箱轮廓的准确定位,又要能很好地适应不同光线带来的影响,当前方法存在如下不足:(1)用吊孔中心坐标代替集装箱外侧角点存在一定误差(2)用锁孔外接矩形的顶点代替集装箱外侧角点存在一定误差(3)对磨损的锁孔效果不好等等。本发明针对这些问题提出了一种基于边缘检测的集装箱轮廓定位方法。
发明内容
为解决上述问题,本发明的目的在于提供一种基于边缘检测的集装箱轮廓定位方法。
所述的一种基于边缘检测的集装箱轮廓定位方法,其特征在于包括如下步骤:
步骤1:首先用安装在吊具上的摄像头采集下方集装箱某一侧的图像;
步骤2:然后利用集装箱锁孔粗定位和跟踪方法获得步骤1得到图像的上下锁孔的粗定位区域,该粗定位区域图像的高度为height,宽度为width,单位为像素;
步骤3:将上下锁孔的粗定位图像转为灰度图并进行预处理,得到图像I1,I2
步骤4:利用自适应Canny边缘检测算法对步骤3的图像I1,I2进行边缘检测,得到粗定位的上下锁孔边缘图像I′1,I′2
步骤5:根据步骤4得到的边缘图像I′1,I′2,采用Hough直线检测算法进行检测,得到线段集合LN={ln|n=1,2,…,N},N表示线段的数量;
步骤6:根据步骤5得到的线段集合LN,采用DBCAN聚类算法把接近水平和垂直的线段保留,得到水平线段集合LH和垂直线段集合LV,其中:
LH={lh|kh∈(-0.2,0.2),h=1,2,...P} (7)
LV={lv|kv∈(-∞,-11.43)∪(11.43,+∞),v=1,2,...Q} (8)
LH∪LV∈LN (9)
式中,lh、kh、P分别表示集合LH中的线段、线段的斜率以及线段的数量,lv、kv、Q分别表示集合LV中的线段、线段的斜率以及线段的数量;
步骤7:在线段集合LH中,计算两两不同线段之间中心点连线的斜率kij和两条线段自身平均斜率以及kij之间差的绝对值Δkij;若Δkij小于阈值T,则将相应的两条线段合并,否则保留,之后得到新的线段集合LH;同样在线段集合LV中完成相同计算得到新的线段集合LV:
式中,ki,kj表示线段集合LH中两条线段的斜率且i≠j,其中i=1,2,...P;j=1,2,...P;
步骤8:根据步骤7得到的新的线段集合LH、LV,首先将LH中最上侧的水平线段lt作为上锁孔图像的上边缘,LH中最下侧的水平线段lb作为下锁孔图像的下边缘,其次根据坐标从左向右遍历LV中的线段lv,延长lv和lt,lb,获得两个交点p1,p2,然后将这两个交点连接起来得到线段lp并计算其斜率,将lp斜率和图像I1,I2中心点连线lc的斜率相比,如果斜率差值的绝对值在阈值T以内则保留p1,p2并停止遍历LV,否则继续遍历,若遍历结束还没有找到p1,p2则退出;
步骤9:用安装在吊具上的摄像头采集下方集装箱另一侧的图像,然后重复步骤2~8,获得另一侧的交点p3和p4
步骤10:利用基于双目视觉技术将p1,p2,p3,p4点的像素坐标转换为以吊具为参照物建立的坐标系下的世界坐标,然后将这四个世界坐标点按逆时针或顺时针排序,四个点构成一个四边形即为集装箱轮廓,由此实现集装箱轮廓的定位。
所述的一种基于边缘检测的集装箱轮廓定位方法,其特征在于步骤3中的预处理具体步骤如下:
步骤3.1:根据加权平均值公式,把粗定位图像转为灰度图:
Gray=R*0.299+G*0.587+B*0.114 (1)
式中,Gray表示灰度值,R,G,B表示彩色分量值;
步骤3.2:采用高斯金字塔方法对步骤3.1得到的灰度图进行下采样操作再进行上采样操作,得到图像I1,I2
所述的一种基于边缘检测的集装箱轮廓定位方法,其特征在于步骤4中的自适应Canny边缘检测算法具体步骤如下:
步骤4.1:使用一阶Sobel算子对图像x方向和y方向进行计算,得到梯度矢量Sx,Sy
步骤4.2:计算出图像的梯度值矩阵S,同时计算出图像中最大的梯度值M:
式中,(xr,yr)表示梯度值矩阵S中某个点r的坐标,(xu,yu)表示梯度值矩阵S中某个点u的坐标且r≠u,表示点r的梯度值,表示点u的梯度值,max表示求最大值;
步骤4.3:首先计算出图像的梯度值直方图,然后设定直方图的最大梯度值为H并且通过计算得到用于Canny边缘检测的高阈值Ht和低阈值Lt,最后设定梯度值大小在前α%的像素点为图像的非边缘点,剩下1-α%的像素点为边缘点:
Ht=(smin+1)*M/H
(5)
Lt=Ht*k (6)
式中,smin表示1-α%的像素点中的最小梯度值,k表示高低阈值之间的比例系数,0<α<100;
步骤4.4:根据步骤4.3得到的高阈值Ht和低阈值Lt,采用Canny算法对图像I1,I2进行边缘检测,得到粗定位的上下锁孔边缘图像I′1,I′2
本发明的优点是:本发明通过采用上述方法,能有效地解决锁孔图像在边缘检测的时候存在干扰边缘,以及Hough直线效果不佳等不足。
附图说明
图1为本发明实施例步骤1采集到的集装箱图像;
图2a为本发明实施例步骤2得到的上锁孔粗定位图像;
图2b为本发明实施例步骤2得到的下锁孔粗定位图像;
图3a为本发明实施例图2a经过步骤4得到的边缘图像;
图3b为本发明实施例图2b经过步骤4得到的边缘图像;
图4a为本发明实施例图3a经过步骤5得到的直线图像;
图4b为本发明实施例图3b经过步骤5得到的直线图像;
图5a为本发明实施例图4a经过步骤6、7得到的图像;
图5b为本发明实施例图4b经过步骤6、7得到的图像;
图6a为本发明实施例图5a经过步骤8得到的锁孔拐点图像;
图6b为本发明实施例图5b经过步骤8得到的锁孔拐点图像。
图中:1-交点p1,2-交点p2
具体实施方式
下面结合实施例来详细阐述本发明基于边缘检测的集装箱轮廓定位方法的具体实施方式。
步骤1:首先用安装在吊具上的摄像头采集下方集装箱某一侧的图像;在本实施例中,如附图1;
步骤2:然后利用集装箱锁孔粗定位和跟踪方法获得上下锁孔的粗定位区域,该粗定位区域图像的高度为height,宽度为width,单位为像素;在本实施例中,上锁孔粗定位图像如附图2a、下锁孔粗定位图像如附图2b,height=120、width=120,所述的集装箱锁孔粗定位和跟踪方法在申请号为201610273182.9的文件中已公开,在此不再详述;
步骤3:将锁孔的粗定位图像转为灰度图并进行预处理,具体步骤如下:
步骤3.1:根据加权平均值公式,把粗定位图像转为灰度图:
Gray=R*0.299+G*0.587+B*0.114 (1)
式中,Gray表示灰度值,R,G,B表示彩色分量值;
步骤3.2:采用高斯金字塔方法对步骤3.1得到的灰度图进行下采样操作再进行上采样操作,得到图像I1,I2
步骤4:利用自适应Canny边缘检测算法对图像I1,I2进行边缘检测,具体步骤如下:
步骤4.1:使用一阶Sobel算子对图像x方向和y方向进行计算,得到梯度矢量Sx,Sy
步骤4.2:计算出图像的梯度值矩阵S,同时计算出图像中最大的梯度值M:
式中,(xr,yr)表示梯度值矩阵S中某个点r的坐标,(xu,yu)表示梯度值矩阵S中某个点u的坐标且r≠u,表示点r的梯度值,表示点u的梯度值,max表示求最大值;
步骤4.3:首先计算出图像的梯度值直方图,然后设定直方图的最大梯度值为H并且通过计算得到用于Canny边缘检测的高阈值Ht和低阈值Lt,最后设定梯度值大小在前α%的像素点为图像的非边缘点,剩下1-α%的像素点为边缘点:
Ht=(smin+1)*M/H
(5)
Lt=Ht*k (6)
式中,smin表示1-α%的像素点中的最小梯度值,k表示高低阈值之间的比例系数,0<α<100;在本实施例中,α=70,k=0.4;
步骤4.4:根据步骤4.3得到的高阈值Ht和低阈值Lt,采用Canny算法对图像I1,I2进行边缘检测,得到粗定位的上下锁孔边缘图像I′1,I′2;在本实施例中,如图3a和图3b;
步骤5:根据步骤4得到的边缘图像I′1,I′2,采用Hough直线检测算法进行检测,得到线段集合LN={ln|n=1,2,…,N},N表示线段的数量;在本实施例中,如图4a和图4b;
步骤6:根据步骤5得到的线段集合LN,采用DBCAN聚类算法把接近水平和垂直的线段保留,得到水平线段集合LH和垂直线段集合LV,其中:
LH={lh|kh∈(-0.2,0.2),h=1,2,...P} (7)
LV={lv|kv∈(-∞,-11.43)∪(11.43,+∞),v=1,2,...Q} (8)
LH∪LV∈LN (9)
式中,lh、kh、P分别表示集合LH中的线段、线段的斜率以及线段的数量,lv、kv、Q分别表示集合LV中的线段、线段的斜率以及线段的数量;在本实施例中,T=0.2;
步骤7:在线段集合LH中,计算两两不同线段之间中心点连线的斜率kij和两条线段自身平均斜率以及kij之间差的绝对值Δkij;若Δkij小于T,则将相应的两条线段合并,否则保留,之后得到新的线段集合LH,在线段集合LV中完成相同计算:
式中,ki,kj表示线段集合LH中两条线段的斜率且i≠j,其中i=1,2,...P;j=1,2,...P;在本实施例中,如图5a和图5b,T=0.2;
步骤8:根据步骤7得到的线段集合LH、LV,首先将LH中最上侧的水平线段lt作为上锁孔图像的上边缘,LH中最下侧的水平线段lb作为下锁孔图像的下边缘,其次根据坐标从左向右遍历LV中的线段lv,延长lv和lt,lb,获得交点p11和交点p22,然后将这两个交点连接起来得到线段lp并计算斜率,将lp斜率和I1,I2图像中心点连线lc的斜率相比,如果斜率差值的绝对值在T以内则保留交点p11和交点p22并停止遍历LV,否则继续遍历,若遍历结束还没有找到交点p11和交点p22则退出;在本实施例中,如图6a和图6b,T=0.2;
步骤9:用安装在吊具上的摄像头采集下方集装箱另一侧的图像,然后重复步骤2~8,获得另一侧的交点p3和p4
步骤10:利用基于双目视觉技术将p1,p2,p3,p4点的像素坐标转换为以吊具为参照物建立的坐标系下的世界坐标,然后将这四个世界坐标点按逆时针或顺时针排序,四个点构成一个四边形即为集装箱轮廓,由此实现集装箱轮廓的定位。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围的不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (3)

1.一种基于边缘检测的集装箱轮廓定位方法,其特征在于包括如下步骤:
步骤1:首先用安装在吊具上的摄像头采集下方集装箱某一侧的图像;
步骤2:然后利用集装箱锁孔粗定位和跟踪方法获得步骤1得到图像的上下锁孔的粗定位区域,该粗定位区域图像的高度为height,宽度为width,单位为像素;
步骤3:将上下锁孔的粗定位图像转为灰度图并进行预处理,得到图像I1,I2
步骤4:利用自适应Canny边缘检测算法对步骤3的图像I1,I2进行边缘检测,得到粗定位的上下锁孔边缘图像I′1,I'2
步骤5:根据步骤4得到的边缘图像I′1,I'2,采用Hough直线检测算法进行检测,得到线段集合LN={ln|n=1,2,…,N},N表示线段的数量;
步骤6:根据步骤5得到的线段集合LN,采用DBCAN聚类算法把接近水平和垂直的线段保留,得到水平线段集合LH和垂直线段集合LV,其中:
LH={lh|kh∈(-0.2,0.2),h=1,2,...P} (7)
LV={lv|kv∈(-∞,-11.43)∪(11.43,+∞),v=1,2,...Q} (8)
LH∪LV∈LN (9)
式中,lh、kh、P分别表示集合LH中的线段、线段的斜率以及线段的数量,lv、kv、Q分别表示集合LV中的线段、线段的斜率以及线段的数量;
步骤7:在线段集合LH中,计算两两不同线段之间中心点连线的斜率kij和两条线段自身平均斜率以及kij之间差的绝对值Δkij;若Δkij小于阈值T,则将相应的两条线段合并,否则保留,之后得到新的线段集合LH;同样在线段集合LV中完成相同计算得到新的线段集合LV:
式中,ki,kj表示线段集合LH中两条线段的斜率且i≠j,其中i=1,2,...P;j=1,2,...P;
步骤8:根据步骤7得到的新的线段集合LH、LV,首先将LH中最上侧的水平线段lt作为上锁孔图像的上边缘,LH中最下侧的水平线段lb作为下锁孔图像的下边缘,其次根据坐标从左向右遍历LV中的线段lv,延长lv和lt,lb,获得两个交点p1,p2,然后将这两个交点连接起来得到线段lp并计算其斜率,将lp斜率和图像I1,I2中心点连线lc的斜率相比,如果斜率差值的绝对值在阈值T以内则保留p1,p2并停止遍历LV,否则继续遍历,若遍历结束还没有找到p1,p2则退出;
步骤9:用安装在吊具上的摄像头采集下方集装箱另一侧的图像,然后重复步骤2~8,获得另一侧的交点p3和p4
步骤10:利用基于双目视觉技术将p1,p2,p3,p4点的像素坐标转换为以吊具为参照物建立的坐标系下的世界坐标,然后将这四个世界坐标点按逆时针或顺时针排序,四个点构成一个四边形即为集装箱轮廓,由此实现集装箱轮廓的定位。
2.根据权利要求1所述的一种基于边缘检测的集装箱轮廓定位方法,其特征在于步骤3中的预处理具体步骤如下:
步骤3.1:根据加权平均值公式,把粗定位图像转为灰度图:
Gray=R*0.299+G*0.587+B*0.114 (1)
式中,Gray表示灰度值,R,G,B表示彩色分量值;
步骤3.2:采用高斯金字塔方法对步骤3.1得到的灰度图进行下采样操作再进行上采样操作,得到图像I1,I2
3.根据权利要求2所述的一种基于边缘检测的集装箱轮廓定位方法,其特征在于步骤4中的自适应Canny边缘检测算法具体步骤如下:
步骤4.1:使用一阶Sobel算子对图像x方向和y方向进行计算,得到梯度矢量Sx,Sy
步骤4.2:计算出图像的梯度值矩阵S,同时计算出图像中最大的梯度值M:
式中,(xr,yr)表示梯度值矩阵S中某个点r的坐标,(xu,yu)表示梯度值矩阵S中某个点u的坐标且r≠u,表示点r的梯度值,表示点u的梯度值,max表示求最大值;
步骤4.3:首先计算出图像的梯度值直方图,然后设定直方图的最大梯度值为H并且通过计算得到用于Canny边缘检测的高阈值Ht和低阈值Lt,最后设定梯度值大小在前α%的像素点为图像的非边缘点,剩下1-α%的像素点为边缘点:
Ht=(smin+1)*M/H (5)
Lt=Ht*k (6)
式中,smin表示1-α%的像素点中的最小梯度值,k表示高低阈值之间的比例系数,0<α<100;
步骤4.4:根据步骤4.3得到的高阈值Ht和低阈值Lt,采用Canny算法对图像I1,I2进行边缘检测,得到粗定位的上下锁孔边缘图像I′1,I'2
CN201610398985.7A 2016-06-07 2016-06-07 一种基于边缘检测的集装箱轮廓定位方法 Active CN106097329B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610398985.7A CN106097329B (zh) 2016-06-07 2016-06-07 一种基于边缘检测的集装箱轮廓定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610398985.7A CN106097329B (zh) 2016-06-07 2016-06-07 一种基于边缘检测的集装箱轮廓定位方法

Publications (2)

Publication Number Publication Date
CN106097329A CN106097329A (zh) 2016-11-09
CN106097329B true CN106097329B (zh) 2018-11-13

Family

ID=57227392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610398985.7A Active CN106097329B (zh) 2016-06-07 2016-06-07 一种基于边缘检测的集装箱轮廓定位方法

Country Status (1)

Country Link
CN (1) CN106097329B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108460800B (zh) * 2016-12-12 2020-10-09 交通运输部水运科学研究所 集装箱图像定位方法及系统
CN106780532A (zh) * 2016-12-30 2017-05-31 陕西海泰电子有限责任公司 一种面向df图的互调频率方程快速检测方法
CN107067439B (zh) * 2017-04-26 2020-04-10 北京航天自动控制研究所 一种基于车头检测的集装箱卡车定位与引导方法
CN107463939B (zh) * 2017-06-27 2020-06-09 浙江工业大学 一种图像关键直线检测方法
CN107909579B (zh) * 2017-10-31 2019-12-03 征图新视(江苏)科技股份有限公司 视觉检测中的产品轮廓自动提取方法
CN108876241B (zh) * 2018-06-08 2021-09-03 四川智动木牛智能科技有限公司 一种基于视觉的仓储空间识别管理系统
CN108996268A (zh) * 2018-08-01 2018-12-14 上海主线科技有限公司 一种基于相机的集装箱牵引车与吊桥相互定位方法
CN109165649B (zh) * 2018-09-03 2022-04-15 苏州巨能图像检测技术有限公司 基于视觉检测的集装箱箱孔高精准检测方法
CN109741325B (zh) * 2019-01-14 2022-08-16 南京理工大学 一种布线垂直度智能检测方法
CN109969669A (zh) * 2019-03-08 2019-07-05 青岛日日顺物流有限公司 一种无人卸货车的卸货控制方法
CN110738604B (zh) * 2019-07-31 2022-05-17 武汉大学 基于Canny算子和Hough变换的大倾角证件图像矫正方法及系统
CN115035316A (zh) * 2022-06-30 2022-09-09 招联消费金融有限公司 目标区域图像识别方法、装置、计算机设备
CN115229804B (zh) * 2022-09-21 2023-02-17 荣耀终端有限公司 组件贴合方法和装置
CN117952973A (zh) * 2024-03-26 2024-04-30 浙江明禾新能科技股份有限公司 一种基于轮廓匹配的光伏接线盒故障检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184398A (zh) * 2011-06-17 2011-09-14 电子科技大学 一种基于边缘检测的集装箱号码定位方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0203906D0 (sv) * 2002-12-31 2002-12-31 Abb Ab Container character recognition system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184398A (zh) * 2011-06-17 2011-09-14 电子科技大学 一种基于边缘检测的集装箱号码定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A New Framework for Container Code Recognition by Using Segmentation-Based and HMM-Based Approaches;Wei Wu et al;《International Journal of Pattern Recognition and Artificial Intelligence》;20150228;第29卷(第1期);1-16 *
基于双目视觉的集装箱自动识别定位系统的设计;梁晓波 等;《机械》;20150131;第42卷(第1期);7-10 *

Also Published As

Publication number Publication date
CN106097329A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106097329B (zh) 一种基于边缘检测的集装箱轮廓定位方法
CN106097332B (zh) 一种基于角点检测的集装箱轮廓定位方法
CN102043950B (zh) 基于canny算子和边缘点统计的车辆轮廓识别方法
CN106096606B (zh) 一种基于直线拟合的集装箱轮廓定位方法
CN105893949B (zh) 一种复杂路况场景下的车道线检测方法
CN106156723B (zh) 一种基于视觉的路口精定位方法
CN107705301B (zh) 一种基于无人机航拍公路图像的公路标线破损检测方法
CN102999753B (zh) 车牌定位方法
CN105654073B (zh) 一种基于视觉检测的速度自动控制方法
CN104318258A (zh) 一种基于时域模糊和卡尔曼滤波器的车道线检测方法
CN103902985B (zh) 一种基于roi的强鲁棒性实时车道侦测算法
CN105956619B (zh) 一种集装箱锁孔粗定位和跟踪方法
CN112194011A (zh) 一种基于双目视觉的塔吊自动装载方法
CN103984949A (zh) 基于高低帽变换和连通域的车牌定位方法及其系统
CN104647893B (zh) 一种基于十字线的印刷套印误差检测方法
CN103996031A (zh) 一种自适应阈值分割的车道线检测系统及其方法
CN109359653B (zh) 一种棉花叶部粘连病斑图像分割方法和系统
CN108460800A (zh) 集装箱图像定位方法及系统
Liu et al. Lane line detection based on mask R-CNN
CN113379684A (zh) 一种基于视频的集装箱箱角线定位及自动着箱方法
CN107463939B (zh) 一种图像关键直线检测方法
CN105469401B (zh) 一种基于计算机视觉的船槽定位方法
CN109410233A (zh) 一种边缘特征约束的高分辨率图像道路精准提取方法
CN114241438A (zh) 一种基于先验信息的交通信号灯快速精确的识别方法
CN115984806B (zh) 道路标线破损动态检测系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant