CN106096545A - Method based on the hail cloud recognition estimating excavation - Google Patents

Method based on the hail cloud recognition estimating excavation Download PDF

Info

Publication number
CN106096545A
CN106096545A CN201610405791.5A CN201610405791A CN106096545A CN 106096545 A CN106096545 A CN 106096545A CN 201610405791 A CN201610405791 A CN 201610405791A CN 106096545 A CN106096545 A CN 106096545A
Authority
CN
China
Prior art keywords
reflectance
hail
magnitude
value
gray value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610405791.5A
Other languages
Chinese (zh)
Inventor
李国东
徐文霞
钱斯祺
吴晨瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610405791.5A priority Critical patent/CN106096545A/en
Publication of CN106096545A publication Critical patent/CN106096545A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images

Abstract

Technology based on the hail cloud recognition estimating excavation belongs to field of statistics, especially belongs to art of image analysis.The existing prediction to hail cloud depends on experience often and differentiates, such method exists a lot of not enough.In order to overcome the deficiencies in the prior art, the present invention is open: a kind of method predicting hail, it is characterized in that, described method comprises the following steps: the first step, utilize cloud atlas to obtain dBZ, second step, RGB image is converted into gray level image, 3rd step, the reflectance of gray level image is divided into 15 magnitudes, the 4th step, calculates the proportion of each magnitude, 5th step, calculates average x of each magnitude1, variance x2, degree of bias x3, kurtosis x4, angle second moment x5, entropy x6, the moment of inertia x7, dependency x8, the 6th step, utilize formula: y=879.83840 x1+186.90265·x2‑1335·x3+770.04074·x4+2145·x5+59.31601·x6‑13.01776·x7‑6022·x8y0If=158.23206 thus have: y > y0, then X ∈ G1, otherwise X ∈ G2, G1Conjunction, G is converged for hail shooting2For converging conjunction without hail.The present invention can pre-hail detection cloud.

Description

Method based on the hail cloud recognition estimating excavation
Technical field
The invention belongs to field of statistics, especially belong to art of image analysis.
Background technology
Hail, as a kind of strong convective weather, is characterized in that space scale is little, life cycle is short, sudden strong, development evolvement Rapidly, its forecast difficulty is well-known.Through " 15 ", the development of Eleventh Five-Year Plan and construction, Xinjiang meteorology hail suppression technology Level has had the biggest lifting, but compared with the demand that national economy and social development is growing, however it remains necessarily not enough, main Accuracy rate and the level of becoming more meticulous of hail weather to be showed themselves in that prediction have much room for improvement, and particularly close on local hail weather (0~3 hour) and in short-term (3~12 hours) prediction ability urgently strengthen." 13 " period is Xinjiang social stability and economy The critical period of development, in the urgent need to providing the monitoring and forecast more become more meticulous to Xinjiang hail weather.And to hail cloud recognition Service basic is mainly derived from weather radar, the radar image of real-time monitored Convective Cloud, and image covers cloud cluster life development The information of change, by processing the radar image of this cloud cluster in real time, whether hail shooting is for anti-for look-ahead to this cloud cluster Hail mitigation is significant.
The existing prediction to hail cloud depends on experience often and differentiates, such method exists a lot of not enough.
Summary of the invention
In order to overcome the deficiencies in the prior art, the present invention is open:
1, method based on the hail cloud recognition estimating excavation, it is characterized in that, described method comprises the following steps:
The first step, gathers radar RGB cloud atlas, utilizes cloud atlas to obtain dBZ,
Second step, is converted into gray level image the RGB image of first step gained,
3rd step, is divided into 15 magnitudes the reflectance of the gray level image of second step gained,
4th step, calculates each magnitude proportion in the picture,
5th step, calculates average x of each magnitude1, variance x2, degree of bias x3, kurtosis x4, angle second moment x5, entropy x6, inertia Square x7, dependency x8,
6th step, average x of the 5th step gained1, variance x2, degree of bias x3, kurtosis x4, angle second moment x5, entropy x6, the moment of inertia x7, dependency x8:
Y=879.83840 x1+186.90265·x2-1335·x3+770.04074·x4+2145·x5+ 59.31601·x6-13.01776·x7-6022·x8
If therefore have: y > y0Then X ∈ G1, otherwise X ∈ G2。G1Conjunction, G is converged for hail shooting2For converging conjunction without hail.
2, it is characterized in that: described y0=158.23206
3, it is characterized in that: also include:
Utilize formula:
y 0 = n 1 y ‾ ( 1 ) + n 2 y ‾ ( 2 ) n 1 + n 2
Obtain y0
Hail shooting converges conjunction G1In meansigma methods,Hail shooting converges conjunction G2In meansigma methods, n1Conjunction G is converged for hail shooting1In Element number, n2For converging conjunction G without hail2In element number.
Reflectance separates for unit according to 5, dBZ value s1Corresponding gray value is calculated as s1-2.5 arrive s1The gray scale of+2.5 is put down Average.
4, it is characterized in that: described reflectance, magnitude, rgb value, relation that gray value is corresponding be:
Reflectance is :-5, and corresponding magnitude is: 1, and corresponding rgb value is :-201,201,201, and corresponding gray value is: 201;
Reflectance is: 0, and corresponding magnitude is: 2, and corresponding rgb value is :-118,118,118, and corresponding gray value is: 118;
Reflectance is: 5, and corresponding magnitude is: 3, and corresponding rgb value is :-255,170,170, and corresponding gray value is: 196;
Reflectance is: 10, and corresponding magnitude is: 4, and corresponding rgb value is :-238,140,140, and corresponding gray value is: 170;
Reflectance is: 15, and corresponding magnitude is: 5, and corresponding rgb value is :-201,112,112, and corresponding gray value is: 139;
Reflectance is: 20, and corresponding magnitude is: 6, and corresponding rgb value is: 0,251,144, and corresponding gray value is: 164;
Reflectance is: 25, and corresponding magnitude is: 7, and corresponding rgb value is: 0,187,0, and corresponding gray value is: 110;
Reflectance is: 30, and corresponding magnitude is: 8, and corresponding rgb value is :-255,255,112, and corresponding gray value is: 239;
Reflectance is: 35, and corresponding magnitude is: 9, and corresponding rgb value is: 208,208,96, and corresponding gray value is: 195;
Reflectance is: 40, and corresponding magnitude is: 10, and corresponding rgb value is: 255,96,96, and corresponding gray value is: 144;
Reflectance is: 45, and corresponding magnitude is: 11, and corresponding rgb value is: 218,0,0, and corresponding gray value is: 65;
Reflectance is: 50, and corresponding magnitude is 12, and corresponding rgb value is: 174,0,0, and corresponding gray value is: 52;
Reflectance is: 55, and corresponding magnitude is: 13, and corresponding rgb value is: 0,0,255, and corresponding gray value is: 29;
Reflectance is: 60, and corresponding magnitude is: 14, and corresponding rgb value is :-160,255,255, corresponding gray value For: 227;
Reflectance is: 65, and corresponding magnitude is: 15, and corresponding rgb value is: 231,0,255, and corresponding gray value is: 98。
5, it is characterized in that: by the conversion relation formula of RGB Yu gray value
Gray=R × 0.2999+G × 0.587+B × 0.114
Obtain corresponding gray value.The method can improve the accuracy rate of hail cloud forecast, reduces rate of false alarm.Effective raising Identification hail cloud atlas, as accuracy rate, provides reference for Forecast of Hail.
Detailed description of the invention:
1 intensity statistics
Radar reflectivity image is based on RGB color space, based on the legend of base reflectivity figure, utilizes The color production theory of RGB color space, reads echo reflection figure.Will reflectance be-5dBZ 65dBZ, be divided into 15 kinds accordingly Magnitude.Wherein it is as shown in the table, by the conversion relation formula (1) of RGB Yu gray value for different rgb values corresponding to magnitude, it is known that corresponding Gray value.
Gray=R × 0.2999+G × 0.587+B × 0.114 (1)
Table 1 is used for reflectance and rgb value, gray value corresponding relation are described.
Table 1:
What the different colours of radar reflectivity image represented is different reflex strengths, i.e. can be by statistics different colours Proportion shared in the picture, reflects the feature of echo strength in image, and the different proportion shared by intensity can be by probability Represent, calculate as shown in formula (2).If a width size is the image of M × N, then containing M × N number of pixel, reflectivity intensity is divided into 15 Individual magnitude, this varying strength proportion in the picture is:
pi=si/ M × N i=1,2 ..., 15 (2)
Wherein, siFor the color of the i-th magnitude number of pixels on image.
2, the modelling of eight rank hail cloud recognition
According to meteorological theory, the extreme weather of strong convection, it is only possible to occur in reflex strength more than 40dBZ's Region.Therefore only choosing magnitude is 10 15, eight first-order statistics being calculated hail cloud and non-hail cloud in accordance with the following methods are surveyed Angle value.
Average:
E = Σ i = 1 17 i × p i
Variance:
D = Σ i = 1 17 ( i - m e a n ) 2 · p i
The degree of bias:
s k e w n e s s = 1 ( var i a n c e ) 3 / 2 · Σ i = 1 17 ( i - m e a n ) 3 · p i
Kurtosis:
k u r t o s i s = 1 ( var i a n c e ) 2 · Σ i = 1 17 ( i - m e a n ) 4 · p i
Dependency:
u i = Σ i = 1 k Σ j = 1 k i · G ( i , j )
u j = Σ i = 1 k Σ j = 1 k j · G ( i , j )
s i 2 = Σ i = 1 k Σ j = 1 k G ( i , j ) ( i - u i ) 2
s j 2 = Σ i = 1 k Σ j = 1 k G ( i , j ) ( j - u j ) 2
The moment of inertia:
Angle direction second moment:
A S M = Σ i [ p Δ ( i ) ] 2
Entropy:
E N T = - Σ i p Δ ( i ) lg p Δ ( i )
Determine differentiation critical point, take y0ForWithWeighted mean, it may be assumed that
y 0 = n 1 y ‾ ( 1 ) + n 2 y ‾ ( 2 ) n 1 + n 2
Hail shooting converges conjunction G1In meansigma methods,Hail shooting converges conjunction G2In meansigma methods, n1Conjunction G is converged for hail shooting1In Element number, n2For converging conjunction G without hail2In element number.
Discriminant function is:
Y=879.83840 x1+186.90265·x2-1335·x3+770.04074·x4+2145·x5+ 59.31601·x6-13.01776·x7-6022·x8 (3)
Differentiate that critical point is: y0=158.23206, andIf therefore have: y > y0Then X ∈ G1, otherwise X ∈ G2。G1 Conjunction, G is converged for hail shooting2For converging conjunction without hail.
3, model testing
Utilizing method of the present invention, inventor has carried out following checking, to prove that prediction hail is had relatively by the present invention High accuracy rate.
Data decimation is Shihezi, area, Shawan and the data being different from training sample of Aksu Prefecture between 2009, make For sample to be tested table 2.Owing to the classification of sample to be tested is it is known that then utilize this discriminant function to differentiate, and will differentiate result with Legitimate reading compares, and i.e. may know that the accuracy rate that discriminant function differentiates for albedo image.Result is as shown in table 3.
The moment of inertia dependency-the sample to be tested of the albedo image intensity of table 2 each department
Table 3 differentiates result
From table 2 and table 3, the differentiation accuracy rate of this discrimination model is fine, and this model is ratio for the identification of hail cloud Accurate, accuracy rate is 100%.

Claims (5)

1. method based on the hail cloud recognition estimating excavation, is characterized in that, described method comprises the following steps:
The first step, gathers radar RGB cloud atlas, utilizes cloud atlas to obtain dBZ,
Second step, is converted into gray level image the RGB image of first step gained,
3rd step, is divided into 15 magnitudes the reflectance of the gray level image of second step gained,
4th step, calculates each magnitude proportion in the picture,
5th step, calculates average x of each magnitude1, variance x2, degree of bias x3, kurtosis x4, angle second moment x5, entropy x6, the moment of inertia x7、 Dependency x8,
6th step, average x of the 5th step gained1, variance x2, degree of bias x3, kurtosis x4, angle second moment x5, entropy x6, the moment of inertia x7, phase Closing property x8:
Y=879.83840 x1+186.90265·x2-1335·x3+770.04074·x4+2145·x5+59.31601· x6-13.01776·x7-6022·x8
If therefore have: y > y0, then X ∈ G1Otherwise X ∈ G2, G1Conjunction, G is converged for hail shooting2For converging conjunction without hail.
2. method based on the hail cloud recognition estimating excavation as claimed in claim 1, is characterized in that: described y0=158.23206.
3. method based on the hail cloud recognition estimating excavation as claimed in claim 1, is characterized in that: also include:
Utilize formula:
Hail shooting converges conjunction G1In meansigma methods,Hail shooting converges conjunction G2In meansigma methods, n1Conjunction G is converged for hail shooting1In unit Element number, n2For converging conjunction G without hail2In element number,
Obtain y0.
4. method based on the hail cloud recognition estimating excavation as claimed in claim 1, is characterized in that: described reflectance, amount The relation that level, rgb value, gray value are corresponding is:
Reflectance is :-5, and corresponding magnitude is: 1, and corresponding rgb value is :-201,201,201, and corresponding gray value is: 201;
Reflectance is: 0, and corresponding magnitude is: 2, and corresponding rgb value is :-118,118,118, and corresponding gray value is: 118;
Reflectance is: 5, and corresponding magnitude is: 3, and corresponding rgb value is :-255,170,170, and corresponding gray value is: 196;
Reflectance is: 10, and corresponding magnitude is: 4, and corresponding rgb value is :-238,140,140, and corresponding gray value is: 170;
Reflectance is: 15, and corresponding magnitude is: 5, and corresponding rgb value is :-201,112,112, and corresponding gray value is: 139;
Reflectance is: 20, and corresponding magnitude is: 6, and corresponding rgb value is: 0,251,144, and corresponding gray value is: 164;
Reflectance is: 25, and corresponding magnitude is: 7, and corresponding rgb value is: 0,187,0, and corresponding gray value is: 110;
Reflectance is: 30, and corresponding magnitude is: 8, and corresponding rgb value is :-255,255,112, and corresponding gray value is: 239;
Reflectance is: 35, and corresponding magnitude is: 9, and corresponding rgb value is: 208,208,96, and corresponding gray value is: 195;
Reflectance is: 40, and corresponding magnitude is: 10, and corresponding rgb value is: 255,96,96, and corresponding gray value is: 144;
Reflectance is: 45, and corresponding magnitude is: 11, and corresponding rgb value is: 218,0,0, and corresponding gray value is: 65;
Reflectance is: 50, and corresponding magnitude is 12, and corresponding rgb value is: 174,0,0, and corresponding gray value is: 52;
Reflectance is: 55, and corresponding magnitude is: 13, and corresponding rgb value is: 0,0,255, and corresponding gray value is: 29;
Reflectance is: 60, and corresponding magnitude is: 14, and corresponding rgb value is :-160,255,255, and corresponding gray value is: 227;
Reflectance is: 65, and corresponding magnitude is: 15, and corresponding rgb value is: 231,0,255, and corresponding gray value is: 98.
5. method based on the hail cloud recognition estimating excavation as claimed in claim 1, is characterized in that: by RGB and gray value Conversion relation formula
Gray=R × 0.2999+G × 0.587+B × 0.114, obtains corresponding gray value.
CN201610405791.5A 2016-06-08 2016-06-08 Method based on the hail cloud recognition estimating excavation Pending CN106096545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610405791.5A CN106096545A (en) 2016-06-08 2016-06-08 Method based on the hail cloud recognition estimating excavation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610405791.5A CN106096545A (en) 2016-06-08 2016-06-08 Method based on the hail cloud recognition estimating excavation

Publications (1)

Publication Number Publication Date
CN106096545A true CN106096545A (en) 2016-11-09

Family

ID=57229137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610405791.5A Pending CN106096545A (en) 2016-06-08 2016-06-08 Method based on the hail cloud recognition estimating excavation

Country Status (1)

Country Link
CN (1) CN106096545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470141A (en) * 2018-01-27 2018-08-31 天津大学 Insulator recognition methods in a kind of distribution line based on statistical nature and machine learning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622515A (en) * 2012-02-21 2012-08-01 北京联合大学 Weather prediction method
CN103258142A (en) * 2013-06-04 2013-08-21 哈尔滨工业大学 Wind power plant short-term wind speed forecasting method based on weather patterns

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622515A (en) * 2012-02-21 2012-08-01 北京联合大学 Weather prediction method
CN103258142A (en) * 2013-06-04 2013-08-21 哈尔滨工业大学 Wind power plant short-term wind speed forecasting method based on weather patterns

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王雪等: "基于Fisher判别法的雹云识别模型研究", 《第32届中国气象学会年会S1 灾害天气监测、分析与预报》 *
路志英等: "基于雷达反射率图像特征的冰雹暴雨识别", 《物理学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470141A (en) * 2018-01-27 2018-08-31 天津大学 Insulator recognition methods in a kind of distribution line based on statistical nature and machine learning
CN108470141B (en) * 2018-01-27 2021-08-10 天津大学 Statistical feature and machine learning-based insulator identification method in distribution line

Similar Documents

Publication Publication Date Title
Zhou et al. Forecasting different types of convective weather: A deep learning approach
Sherburn et al. Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments
Menendez et al. High-resolution sea wind hindcasts over the Mediterranean area
Cohen et al. Discrimination of mesoscale convective system environments using sounding observations
Brooks Tornado-warning performance in the past and future: A perspective from signal detection theory
Foresti et al. Retrieval of analogue radar images for ensemble nowcasting of orographic rainfall
Körner et al. Introducing Gradient Boosting as a universal gap filling tool for meteorological time series
CN104237890B (en) The heavy rain identification that one is caused by " train effect " and forecasting procedure
CN108254750B (en) Down-blast intelligent identification early warning method based on radar data
Kettle Unexpected vertical wind speed profiles in the boundary layer over the southern North Sea
CN103529492A (en) Storm body position and form prediction method based on Doppler radar reflectivity image
CN113469278B (en) Strong weather target identification method based on deep convolutional neural network
Kuster et al. Rapid-update radar observations of ZDR column depth and its use in the warning decision process
CN112946657A (en) Method for identifying ground wind field in strong convection weather
Madonna et al. Verification of North Atlantic warm conveyor belt outflows in ECMWF forecasts
CN114463947B (en) Convective disaster-causing strong wind early warning and forecasting method based on space-time network convolution model
CN107403004A (en) A kind of suspicious numerical examination method of remote gauged rainfall website based on terrain data
Zou et al. A method of radar echo extrapolation based on TREC and Barnes filter
Valldecabres et al. Minute‐scale detection and probabilistic prediction of offshore wind turbine power ramps using dual‐Doppler radar
Britt et al. Effects of horizontal grid spacing and inflow environment on forecasts of cyclic mesocyclogenesis in NSSL’s Warn-on-Forecast System (WoFS)
CN103336972A (en) Foundation cloud picture classification method based on completion local three value model
CN106096545A (en) Method based on the hail cloud recognition estimating excavation
CN106097400A (en) The Design of Mathematical Model method of hail prediction
CN106097401A (en) Hail shooting index analysis method based on critical point design
Šaur Evaluation of the accuracy of numerical weather prediction models

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161109

WD01 Invention patent application deemed withdrawn after publication