CN106093913A - 一种激光雷达双通道共视场的调节方法 - Google Patents

一种激光雷达双通道共视场的调节方法 Download PDF

Info

Publication number
CN106093913A
CN106093913A CN201610435140.0A CN201610435140A CN106093913A CN 106093913 A CN106093913 A CN 106093913A CN 201610435140 A CN201610435140 A CN 201610435140A CN 106093913 A CN106093913 A CN 106093913A
Authority
CN
China
Prior art keywords
structural member
ccd camera
light path
laser radar
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610435140.0A
Other languages
English (en)
Other versions
CN106093913B (zh
Inventor
张云鹏
易帆
李昕桥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201610435140.0A priority Critical patent/CN106093913B/zh
Publication of CN106093913A publication Critical patent/CN106093913A/zh
Application granted granted Critical
Publication of CN106093913B publication Critical patent/CN106093913B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Telescopes (AREA)

Abstract

本发明涉及一种激光雷达双通道共视场的调节方法,包括:沿光路前后移动长焦镜头,使相机对无穷远处目标清晰成像;沿光路前后移动小孔光阑,使相机成像中的小孔边沿清晰;调节二维旋转台,使相机成像中的暗黑圆斑与亮白圆环均处于暗黑背景的中心;沿光路前后移动结构件,使相机成像中的暗黑圆斑与亮白圆环的边缘清晰;缩小小孔光阑,并平移调节二维旋转平移平台,使相机成像中的亮白圆环的亮度保持不变;调节固定偏振分光棱镜的二维旋转台,使在透射通道、反射通道处相机成像中的暗黑圆斑与亮白圆环均处于暗黑背景的中心。本发明引入相机进行可视化调节,以保证激光雷达系统的两个接收通道共视场;具有调节精度高,操作直观、简单方便的优点。

Description

一种激光雷达双通道共视场的调节方法
技术领域
本发明属于激光雷达光学技术领域,具体涉及一种激光雷达双通道共视场的调节方法,可应用于多种具有双接收通道的激光雷达系统。
背景技术
激光雷达系统被广泛应用于大气参量的遥感探测。在发射功率较大时,通常激光束的指向与望远镜光轴平行但不共轴。当激光雷达系统的接收单元为单通道时,通过调节后置光路中固定反射镜的二维旋转台,同时观察传感器光电倍增管的输出信号,当高空与低空的回波信号强度都达到最大值时,即可认为后置光路调节完毕。但是当接受单元为多通道时,例如在偏振激光雷达系统的调节过程中,以上方法就难以实施成功。从调节过程上看,一般接收单元中偏振分光棱镜不可调节,而仅仅调节二维旋转台则难以使两个不同通道的回波信号强度同时达到最大,这也意味着这两个通道并不共视场,为后续的大气参数反演过程引入了较大的系统误差。
发明内容
为了解决上述技术问题,本发明提供了一种激光雷达双通道共视场的调节方法,采用的硬件包括第一二维旋转台2,平面镜3,小孔光阑4,第一结构件5,二维旋转平移台6,准直透镜7,第二二维旋转台8,偏振分光棱镜9,第二结构件12,第三结构件15,长焦镜头16,第四结构件17,CCD相机18,第五结构件19。
具体调节方法如下:
步骤1,将长焦镜头16、第四结构件17、CCD相机18沿光路依次安装放置在第二结构件12中,沿光路前后移动长焦镜头16,使CCD相机18对无穷远处目标清晰成像,然后锁紧长焦镜头16;
步骤2,将小孔光阑4、准直透镜7、第一结构件5,以及在步骤1中已经锁紧的长焦镜头16、第四结构件17、CCD相机18与第二结构件12沿光路放置于第五结构件19中,沿光路前后移动小孔光阑4,使CCD相机18成像中的小孔边沿清晰,然后锁紧小孔光阑4,再将长焦镜头16与第四结构件17从第五结构件19上移除;
步骤3,将在步骤2中调节好的小孔光阑4、准直透镜7、第一结构件5,CCD相机18与第二结构件12以及第五结构件19沿光路放置于第一二维旋转台2之后,调节第一二维旋转台2,使CCD相机18成像中的暗黑圆斑20与亮白圆环21均处于暗黑背景22的中心;
步骤4,沿光路前后移动第五结构件19,使CCD相机18成像中的暗黑圆斑20与亮白圆环21的边缘清晰;
步骤5,将二维旋转平移平台6与第一结构件5紧密装配,固定第二结构件12,并移除第五结构件19,缩小小孔光阑4,在与光路垂直的平面上平移调节二维旋转平移平台6,使CCD相机18成像中的亮白圆环21的亮度保持不变;
步骤6,沿光路放置第二二维旋转台8与偏振分光棱镜9于第一结构件5与第二结构件12之间,调节固定偏振分光棱镜9的第二二维旋转台8,使在CCD相机18成像中的暗黑圆斑20与亮白圆环21均处于暗黑背景22的中心,最后移除CCD相机18,并在第二结构件12内依次安装第一光电倍增管11与第一窄带滤光片10;
步骤7,放置CCD相机18于反射通道的第三结构件15内,调节固定偏振分光棱镜9的第二二维旋转台8,使CCD相机18成像中的暗黑圆斑20与亮白圆环21均处于暗黑背景22的中心,最后移除CCD相机18,并在第三结构件15内依次安装第二光电倍增管14与第二窄带滤光片13。
作为优选,所述的二维旋转台,具备水平旋转与俯仰上下的调节能力,以及锁紧功能。
作为优选,所述的二维旋转平移台6,具备水平旋转与俯仰上下的调节能力,水平与垂直方向移动的调节能力,以及锁紧功能。
作为优选,所述的偏振分光棱镜9可由平面型分束镜9替代。
作为优选,所述相机18为CCD相机,也可以为CMOS相机。
作为优选,所述第一结构件5,第二结构件12,第三结构件15,第四结构件17,第五结构件19均为铝制结构件,也可由其它金属制作。
本发明引入相机进行可视化调节,可以保证激光雷达系统的两个接收通道共视场。本发明具有调节精度高,操作直观、简单方便的优点。
附图说明
图1是本发明的激光雷达光学系统结构示意图;
图2是本发明调节过程中镜头焦距调节的结构示意图;
图3是本发明调节过程中小孔光阑与准直透镜共焦调节的结构示意图;
图4是本发明调节过程中准直透镜与望远镜共焦共轴调节的结构示意图;
图5是本发明调节过程中相机图像的示意图;
图6是本发明调节过程中透射通道与望远镜共轴调节的结构示意图;
图7是本发明调节过程中反射通道与望远镜共轴调节的结构示意图。
其中,1—望远镜,2—第一二维旋转台,3—平面镜,4—小孔光阑,5—第一结构件,6—二维旋转平移台,7—准直透镜,8—第二二维旋转台,9—偏振分光棱镜,10—第一窄带滤光片,11—第一光电倍增管,12—第二结构件,13—第二窄带滤光片,14—第二光电倍增管,15—第三结构件,16—长焦镜头,17—第四结构件,18—CCD相机,19—第五结构件,20—暗黑圆斑,21—亮白圆环,22—暗黑背景。
具体实施方式
以下通过实施例,并结合附图,对本发明一种激光雷达双通道共视场的调节方法作进一步具体说明。
实施例1
图1是本发明的激光雷达光学系统结构示意图,其中,第一光电倍增管11对应于透射通道,而第二光电倍增管14对应于反射通道。本发明在本实施例中的目的是使透射与反射两个通道共视场。
图2是本发明调节过程中镜头焦距调节的结构示意图,用来辅助说明本发明的调节步骤1。
图3是本发明调节过程中小孔光阑与准直透镜共焦调节的结构示意图,用来辅助说明本发明的调节步骤2。
图4是本发明调节过程中准直透镜与望远镜共焦共轴调节的结构示意图,用来辅助说明本发明的调节步骤3,步骤4与步骤5。
图5是本发明调节过程中相机图像的示意图,用来辅助说明本发明的调节步骤3、步骤4、步骤5、步骤6与步骤7。
图6是本发明调节过程中透射通道与望远镜共轴调节的结构示意图,用来辅助说明本发明的调节步骤6。
图7是本发明调节过程中反射通道与望远镜共轴调节的结构示意图,用来辅助说明本发明的调节步骤7。
在本发明的调节过程中,第一结构件5,第二结构件12,第三结构件15,第四结构件17,第五结构件19均为铝制结构件,也可由其它金属制作;第一结构件5用于固定小孔光阑4与准直透镜7,其中小孔光阑4可沿光轴靠近或远离准直透镜7;第二结构件12用于固定第一窄带滤光片10与第一光电倍增管11,也可以单独固定相机18;第三结构件15用于固定第二窄带滤光片13与第二光电倍增管14,也可以单独固定相机18;第四结构件17用于固定长焦镜头16;第五结构件19用于固定第一结构件5,第四结构件17,第二结构件12。
在本发明的调节过程中,第一二维旋转台2用于调节平面镜3;二维旋转平移台6用于调节第一结构件5;第二二维旋转台8用于调节偏振分光棱镜9。第一二维旋转台2、第二二维旋转台8与二维旋转平移台6均具备水平旋转与俯仰上下的调节能力,以及锁紧功能;其中,二维旋转平移台6还具备水平与垂直方向移动的调节能力。
在本发明的调节过程中,专用光源不是必需的,可以使用天光背景作为光源,即在晴朗的白天打开望远镜1的镜盖即可。
一种激光雷达双通道共视场的调节方法包括以下步骤:
步骤1,将长焦镜头16、第四结构件17、CCD相机18与第二结构件12沿光路依次安装放置,沿光路前后移动长焦镜头16,使CCD相机18对无穷远处目标清晰成像,然后锁紧长焦镜头16;
步骤2,将小孔光阑4、准直透镜7、第一结构件5,以及在步骤1中已经锁紧的长焦镜头16、第四结构件17、CCD相机18与第二结构件12沿光路放置于第五结构件19中,沿光路前后移动小孔光阑4,使CCD相机18成像中的小孔边沿清晰,然后锁紧小孔光阑4,再将长焦镜头16与第四结构件17从第五结构件19上移除;
步骤3,将在步骤2中调节好的小孔光阑4、准直透镜7、第一结构件5,CCD相机18与第二结构件12以及第五结构件19沿光路放置于二维旋转台2之后,调节第一二维旋转台2,使CCD相机18成像中的暗黑圆斑20与亮白圆环21均处于暗黑背景22的中心;
步骤4,沿光路前后移动第五结构件19,使CCD相机18成像中的暗黑圆斑20与亮白圆环21的边缘清晰;步骤5,将二维旋转平移平台6与第一结构件5紧密装配,固定第二结构件12,并移除第五结构件19,缩小小孔光阑4,在与光路垂直的平面上平移调节二维旋转平移平台6,使CCD相机18成像中的亮白圆环21的亮度保持不变;
步骤6,沿光路放置第二二维旋转台8与偏振分光棱镜9于第一结构件5与第二结构件12之间,调节固定偏振分光棱镜9的第二二维旋转台8,使在CCD相机18成像中的暗黑圆斑20与亮白圆环21均处于暗黑背景22的中心,最后移除CCD相机18,并在第二结构件12内依次安装第一光电倍增管11与第一窄带滤光片10;
步骤7,放置CCD相机18于反射通道的第三结构件15内,调节固定偏振分光棱镜9的第二二维旋转台8,使CCD相机18成像中的暗黑圆斑20与亮白圆环21均处于暗黑背景22的中心,最后移除CCD相机18,并在第三结构件15内依次安装第二光电倍增管14与第二窄带滤光片13。
实施例2
本实施例与实施例1基本相同,不同之处是:偏振分光棱镜9改为平面型分束镜9。
实施例3
本实施例与实施例1基本相同,不同之处是:CCD相机18改为CMOS相机18。

Claims (8)

1.一种激光雷达双通道共视场的调节方法,其特征在于:包括第一二维旋转台(2),平面镜(3),小孔光阑(4),第一结构件(5),二维旋转平移台(6),准直透镜(7),第二二维旋转台(8),偏振分光棱镜(9),第二结构件(12),第三结构件(15),长焦镜头(16),第四结构件(17),CCD相机(18),第五结构件(19);
具体步骤如下:
步骤1,将长焦镜头(16)、第四结构件(17)、CCD相机(18)沿光路依次安装放置在第二结构件(12)中,沿光路前后移动长焦镜头(16),使CCD相机(18)对无穷远处目标清晰成像,然后锁紧长焦镜头(16);
步骤2,将小孔光阑(4)、准直透镜(7)、第一结构件(5),以及在步骤1中已经锁紧的长焦镜头(16)、第四结构件(17)、CCD相机(18)与第二结构件(12)沿光路放置于第五结构件(19)中,沿光路前后移动小孔光阑(4),使CCD相机(18)成像中的小孔边沿清晰,然后锁紧小孔光阑(4),再将长焦镜头(16)与第四结构件(17)从第五结构件(19)上移除;
步骤3,将在步骤2中调节好的小孔光阑(4)、准直透镜(7)、第一结构件(5),CCD相机(18)与第二结构件(12)以及第五结构件(19)沿光路放置于第一二维旋转台(2)之后,调节第一二维旋转台(2),使CCD相机(18)成像中的暗黑圆斑(20)与亮白圆环(21)均处于暗黑背景(22)的中心;
步骤4,沿光路前后移动第五结构件(19),使CCD相机(18)成像中的暗黑圆斑(20)与亮白圆环(21)的边缘清晰;
步骤5,将二维旋转平移平台(6)与第一结构件(5)紧密装配,且固定第二结构件(12),并移除第五结构件(19),缩小小孔光阑(4),在与光路垂直的平面上平移调节二维旋转平移平台(6),使CCD相机(18)成像中的亮白圆环(21)的亮度保持不变;
步骤6,沿光路将第二二维旋转台(8)、偏振分光棱镜(9)放置于第一结构件(5)与第二结构件(12)之间,调节固定偏振分光棱镜(9)的第二二维旋转台(8),使在CCD相机(18)成像中的暗黑圆斑(20)与亮白圆环(21)均处于暗黑背景(22)的中心,最后移除CCD相机(18);
步骤7,放置CCD相机(18)于反射通道的第三结构件(15)内,调节固定偏振分光棱镜(9)的第二二维旋转台(8),使CCD相机(18)成像中的暗黑圆斑(20)与亮白圆环(21)均处于暗黑背景(22)的中心,最后移除CCD相机(18)。
2.根据权利要求1所述的一种激光雷达双通道共视场的调节方法,其特征在于:所述步骤6中,移除CCD相机(18)之后,在第二结构件(12)内依次安装第一光电倍增管(11)与第一窄带滤光片(10)。
3.根据权利要求2所述的一种激光雷达双通道共视场的调节方法,其特征在于:所述步骤7中,移除CCD相机(18)之后,在第三结构件(15)内依次安装第二光电倍增管(14)与第二窄带滤光片(13)。
4.根据权利要求书1-3中任意一项所述的一种激光雷达双通道共视场的调节方法,其特征在于:所述的二维旋转台具备水平旋转与俯仰上下的调节能力,以及锁紧功能。
5.根据权利要求书1-3中任意一项所述的一种激光雷达双通道共视场的调节方法,其特征在于:所述的二维旋转平移台(6)具备水平旋转与俯仰上下的调节能力,水平与垂直方向移动的调节能力,以及锁紧功能。
6.根据权利要求书1-3中任意一项所述的一种激光雷达双通道共视场的调节方法,其特征在于:所述的偏振分光棱镜(9)可由平面型分束镜9替代。
7.根据权利要求书1-3中任意一项所述的一种激光雷达双通道共视场的调节方法,其特征在于:所述的CCD相机(18)可由CMOS相机18替代。
8.根据权利要求书1-3中任意一项所述的一种激光雷达双通道共视场的调节方法,其特征在于:所述第一结构件(5),第二结构件(12),第三结构件(15),第四结构件(17),第五结构件(19)均为铝制结构件,也可由其它金属制作。
CN201610435140.0A 2016-06-16 2016-06-16 一种激光雷达双通道共视场的调节方法 Active CN106093913B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610435140.0A CN106093913B (zh) 2016-06-16 2016-06-16 一种激光雷达双通道共视场的调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610435140.0A CN106093913B (zh) 2016-06-16 2016-06-16 一种激光雷达双通道共视场的调节方法

Publications (2)

Publication Number Publication Date
CN106093913A true CN106093913A (zh) 2016-11-09
CN106093913B CN106093913B (zh) 2017-08-08

Family

ID=57236140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610435140.0A Active CN106093913B (zh) 2016-06-16 2016-06-16 一种激光雷达双通道共视场的调节方法

Country Status (1)

Country Link
CN (1) CN106093913B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072880A (zh) * 2018-01-17 2018-05-25 上海禾赛光电科技有限公司 激光雷达视场中心指向的调整方法、介质、激光雷达系统
CN111408836A (zh) * 2020-04-23 2020-07-14 中国科学院西安光学精密机械研究所 双摆头激光加工光束指向的高精度调节方法及激光加工系统
US11346926B2 (en) 2018-01-17 2022-05-31 Hesai Technology Co., Ltd. Detection device and method for adjusting parameter thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031851B (zh) * 2019-04-12 2020-10-30 武汉大学 一种小角度分光光机装置及快速装调方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340699A (zh) * 2000-08-24 2002-03-20 中国科学院大气物理研究所 多波长激光雷达的激光发射与接收光轴平行调整装置
US7064817B1 (en) * 2003-11-04 2006-06-20 Sandia Corporation Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system
CN101216558A (zh) * 2008-01-21 2008-07-09 中国科学院安徽光学精密机械研究所 激光雷达发射与接收光路平行调整系统及方法
CN102353950A (zh) * 2011-10-18 2012-02-15 中国工程物理研究院应用电子学研究所 一种具有光轴校准功能的激光雷达光学系统及光轴校准方法
CN104391291A (zh) * 2014-12-14 2015-03-04 中国科学院合肥物质科学研究院 一种焦点位置可调细粒子激光雷达系统及自标定方法
CN104635760A (zh) * 2015-01-08 2015-05-20 中国科学院合肥物质科学研究院 一种数字式大气细粒子激光雷达高精度自动调节系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340699A (zh) * 2000-08-24 2002-03-20 中国科学院大气物理研究所 多波长激光雷达的激光发射与接收光轴平行调整装置
US7064817B1 (en) * 2003-11-04 2006-06-20 Sandia Corporation Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system
CN101216558A (zh) * 2008-01-21 2008-07-09 中国科学院安徽光学精密机械研究所 激光雷达发射与接收光路平行调整系统及方法
CN102353950A (zh) * 2011-10-18 2012-02-15 中国工程物理研究院应用电子学研究所 一种具有光轴校准功能的激光雷达光学系统及光轴校准方法
CN104391291A (zh) * 2014-12-14 2015-03-04 中国科学院合肥物质科学研究院 一种焦点位置可调细粒子激光雷达系统及自标定方法
CN104635760A (zh) * 2015-01-08 2015-05-20 中国科学院合肥物质科学研究院 一种数字式大气细粒子激光雷达高精度自动调节系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖铃 等: "大气探测激光雷达自动准直方法综述", 《大气与环境光学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072880A (zh) * 2018-01-17 2018-05-25 上海禾赛光电科技有限公司 激光雷达视场中心指向的调整方法、介质、激光雷达系统
US11346926B2 (en) 2018-01-17 2022-05-31 Hesai Technology Co., Ltd. Detection device and method for adjusting parameter thereof
CN111408836A (zh) * 2020-04-23 2020-07-14 中国科学院西安光学精密机械研究所 双摆头激光加工光束指向的高精度调节方法及激光加工系统
CN111408836B (zh) * 2020-04-23 2021-05-18 中国科学院西安光学精密机械研究所 双摆头激光加工光束指向的高精度调节方法及激光加工系统

Also Published As

Publication number Publication date
CN106093913B (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
CN106093913A (zh) 一种激光雷达双通道共视场的调节方法
CN100437336C (zh) 可见光和红外光摄影用透镜系统
CA2822076C (en) Active imaging device having field of view and field of illumination with corresponding rectangular aspect ratios
CN106443954A (zh) 一种激光测距机光轴调试系统及方法
WO2017028652A1 (zh) 一种镜头、摄像机、包裹检测系统和图像处理方法
CN103777348A (zh) 一种多波段灵巧红外光学系统
RU182719U1 (ru) Бинокль для дневного и ночного наблюдения
CN107271986A (zh) 一种用于mems微镜激光雷达的凝视成像接收光学系统
CN104501972A (zh) 一种复合型夏克-哈特曼波前传感器
RU200679U1 (ru) Псевдобинокулярные очки ночного видения с передачей изображения
CN106575030A (zh) 具有分束器组件的显微镜
CN108614352B (zh) 无2/1机构的望远光学系统
CN106094071A (zh) 基于液体透镜的调频连续波激光测距双光束快速聚焦方法
CN209512829U (zh) 一种电动调焦测距望远镜
CN208143394U (zh) 一种高精度大气颗粒物监测扫描偏振激光雷达取证系统
JP2011075647A (ja) オートフォーカス機能を有する結像光学系及び及びその撮影システム
JP5278890B2 (ja) 光捕捉追尾装置
WO2020241205A1 (ja) 光分離装置及び撮像装置
RU221844U1 (ru) Дневно-ночной бинокль-дальномер
CN109073872A (zh) 光学单元及光学单元的调节方法
KR890005224B1 (ko) 투과물체 2방향 동시관찰장치
US3290986A (en) Target simulating and auto-collimating optical instrument
RU219076U1 (ru) Многофункциональный дневно-ночной бинокль
CN111638527A (zh) 一种观瞄镜
RU219322U1 (ru) Многофункциональный бинокль дневного и ночного видения

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant