CN106092114A - The automobile real scene navigation apparatus of a kind of image recognition and method - Google Patents

The automobile real scene navigation apparatus of a kind of image recognition and method Download PDF

Info

Publication number
CN106092114A
CN106092114A CN201610461454.8A CN201610461454A CN106092114A CN 106092114 A CN106092114 A CN 106092114A CN 201610461454 A CN201610461454 A CN 201610461454A CN 106092114 A CN106092114 A CN 106092114A
Authority
CN
China
Prior art keywords
information
module
real
image recognition
road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610461454.8A
Other languages
Chinese (zh)
Inventor
江浩斌
陈潇君
江晓明
李康飞
李灵芝
周佳琳
兰豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201610461454.8A priority Critical patent/CN106092114A/en
Publication of CN106092114A publication Critical patent/CN106092114A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3446Details of route searching algorithms, e.g. Dijkstra, A*, arc-flags, using precalculated routes

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)

Abstract

本发明公开了一种图像识别的汽车实景导航装置及方法,包括视频分析模块,图像识别模块,GPS定位模块,路径规划模块,地图管理模块,实景导航管理模块;所述的视频分析模块与图像识别模块连接;所述的实景导航管理模块分别与图像识别模块、GPS定位模块、地图管理模块、路径规划模块连接;通过汽车导航设备提供地图显示,路径标示,结合行车记录仪采集的图像进行图像识别,特别是对于可变车道的交通标示牌的识别,提示和提醒用户在接近路口时如何选择转弯车道或直行车道,根据实际交通信号情况提醒用户行驶或驻车,实现实景导航。增加了汽车导航的新功能,增加了用户体验感受。

The invention discloses an image recognition vehicle real-scene navigation device and method, comprising a video analysis module, an image recognition module, a GPS positioning module, a route planning module, a map management module, and a real-scene navigation management module; the video analysis module and the image The identification module is connected; the real scene navigation management module is connected with the image recognition module, the GPS positioning module, the map management module, and the path planning module respectively; the map display is provided by the car navigation equipment, and the path is marked, and the image is carried out in conjunction with the image collected by the driving recorder Recognition, especially for the recognition of traffic signs with variable lanes, prompts and reminds users how to choose a turning lane or a straight lane when approaching an intersection, and reminds users to drive or park according to the actual traffic signal conditions to realize real-world navigation. Added new functions of car navigation and enhanced user experience.

Description

一种图像识别的汽车实景导航装置及方法A real-scene car navigation device and method for image recognition

技术领域technical field

本发明属于汽车控制技术领域,尤其涉及一种图像识别的汽车实景导航装置及方法。The invention belongs to the technical field of automobile control, and in particular relates to an image recognition real-scene navigation device and method for automobiles.

背景技术Background technique

随着数码摄像技术、GPS定位技术和无线互联网的普及和发展,相关汽车导航设备,行车记录仪等汽车辅助设备具有了1080P甚至更高分辨率的视频采集能力,厘米级别定位的GPS,稳定的100Mbps的无线传输速率。传统的行车记录仪一般记录汽车行驶全过程的视频图像和声音,没有其他扩展功能;传统的汽车导航设备一般采用内置或者网络地图方式结合GPS定位技术,采用地图显示和路径标示的方法进行汽车导航,没有结合行车记录仪采集的图像进行实景导航;有一些汽车实景导航设备具有采集实景视频的方式结合地图显示和路径标示的方法,或者计算多条道路车道中的交通流量,但是无法结合图像识别技术,提示和提醒用户在接近路口时如何选择转弯车道或直行车道,无法判断可变车道的交通标示牌,无法根据实际交通信号情况提醒用户行驶或驻车。With the popularization and development of digital camera technology, GPS positioning technology and wireless Internet, related car navigation equipment, driving recorder and other car auxiliary equipment have the video acquisition capability of 1080P or higher resolution, centimeter-level positioning GPS, stable 100Mbps wireless transmission rate. Traditional driving recorders generally record the video images and sounds of the whole process of car driving, without other extended functions; traditional car navigation devices generally use built-in or network maps combined with GPS positioning technology, and use map display and route marking methods for car navigation , without combining the images collected by the driving recorder for real-scene navigation; some car real-scene navigation devices have the method of collecting real-scene video combined with map display and route marking, or calculating the traffic flow in multiple road lanes, but they cannot be combined with image recognition Technology that prompts and reminds users how to choose a turning lane or a straight lane when approaching an intersection. It cannot judge the traffic signs of variable lanes, and cannot remind users to drive or park according to the actual traffic signal conditions.

发明内容Contents of the invention

本发明要解决技术问题是提供一种图像识别的汽车实景导航装置及方法,使用现有的视频分析技术、图像识别技术、GPS定位技术、路径规划技术等,通过信息化手段和硬件设备的设计,实现汽车实景导航功能。The technical problem to be solved by the present invention is to provide a car real-scene navigation device and method for image recognition, using existing video analysis technology, image recognition technology, GPS positioning technology, path planning technology, etc., through the design of information technology and hardware equipment , to realize the real scene navigation function of the car.

为了解决上述技术问题,本发明所采用的具体技术方案如下:In order to solve the problems of the technologies described above, the specific technical solutions adopted in the present invention are as follows:

一种图像识别的汽车实景导航装置,包括:视频分析模块,图像识别模块,GPS定位模块,路径规划模块,地图管理模块,实景导航管理模块;A car real-scene navigation device for image recognition, comprising: a video analysis module, an image recognition module, a GPS positioning module, a path planning module, a map management module, and a real-scene navigation management module;

所述的视频分析模块与图像识别模块连接;The video analysis module is connected with the image recognition module;

所述的实景导航管理模块分别与图像识别模块、GPS定位模块、地图管理模块、路径规划模块连接;Described real scene navigation management module is connected with image recognition module, GPS positioning module, map management module, route planning module respectively;

所述的地图管理模块用于提供汽车行驶区域的相关道路信息;The map management module is used to provide relevant road information of the driving area of the vehicle;

所述的实景导航管理模块用于集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实时显示;The real-scene navigation management module is used to integrate real-scene image recognition information, longitude and latitude information, path information and road information, and display it in real time on the display interface;

一种图像识别的汽车实景导航方法如下:A car real-scene navigation method for image recognition is as follows:

实景导航管理模块循环执行以下步骤Real-world navigation management module executes the following steps cyclically

步骤S1,GPS定位模块提取汽车行驶的经纬度信息;Step S1, the GPS positioning module extracts the latitude and longitude information of the vehicle;

步骤S2,地图管理模块用于提供汽车行驶区域的相关道路信息;Step S2, the map management module is used to provide relevant road information of the driving area of the vehicle;

步骤S3,路径规划模块根据汽车行驶的经纬度信息、相关道路信息和到达目的地需要的路径信息,提供汽车在前一个路口是掉头、左转弯、直行或者右转弯等车道选择方式;In step S3, the route planning module provides lane selection methods such as turning around, turning left, going straight or turning right at the previous intersection according to the latitude and longitude information of the car, relevant road information and the route information required to reach the destination;

步骤S4,视频分析模块采集汽车运行的实时视频信息,分析并提取出视频关键帧,存储为关键帧图像文件;Step S4, the video analysis module collects the real-time video information of the running of the car, analyzes and extracts video key frames, and stores them as key frame image files;

步骤S5,图像识别模块分析关键帧图像文件,分析出当前的时刻,如果是白天模式,转入步骤S6,否则是夜晚模式,转入步骤S7;Step S5, the image recognition module analyzes the key frame image file to analyze the current moment, if it is a daytime mode, go to step S6, otherwise it is a night mode, go to step S7;

步骤S6,设置白天模式参数,转入步骤S8;Step S6, setting daytime mode parameters, and turning to step S8;

步骤S7,设置夜晚模式参数,转入步骤S8;Step S7, set the night mode parameters, and go to step S8;

步骤S8,图像识别模块分析关键帧图像文件,交通标示牌信息、道路交通标线信息和交通信号灯信息,并存储信息;Step S8, the image recognition module analyzes the key frame image file, traffic sign information, road traffic marking information and traffic signal light information, and stores the information;

步骤S9,判断道路交通标线信息是否是路口车道标示,如果是,转入步骤S10,如果否,转入步骤12;Step S9, judging whether the road traffic marking information is an intersection lane marking, if yes, proceed to step S10, if not, proceed to step 12;

步骤S10,判断在时间阈值T1之内,是否有交通标示牌信息,如果是,则转入步骤S11,如果否,转入步骤12;Step S10, judging whether there is traffic sign information within the time threshold T1, if yes, then go to step S11, if not, go to step 12;

步骤S11,判断交通标示牌信息中的掉头、左转弯、直行或者右转弯,将其映射到道路交通标线信息掉头、左转弯、直行或者右转弯,根据路径规划模块提供的车道选择方式,确定车道选择信息;Step S11, judging the U-turn, left turn, straight line or right turn in the traffic sign information, mapping it to the road traffic marking information U-turn, left turn, straight line or right turn, according to the lane selection method provided by the path planning module, determine Lane selection information;

步骤S12,判断是否有交通信号灯信息,如果有,转入步骤S13,如果否,转入步骤16;Step S12, judging whether there is traffic signal light information, if yes, proceed to step S13, if not, proceed to step 16;

步骤S13,判断在时间阈值T2之内,是否有车道选择信息,如果是,则转入步骤S14,如果否,转入步骤15;Step S13, judging whether there is lane selection information within the time threshold T2, if yes, then go to step S14, if not, go to step 15;

步骤S14,根据车道选择信息判断交通信号灯信息中的车道放行标示情况:行驶或者驻车,转入步骤S16;Step S14, according to the lane selection information, judge the lane release marking situation in the traffic signal light information: driving or parking, go to step S16;

步骤S15,直接判断交通信号灯信息中的车道放行标示情况:行驶或者驻车;Step S15, directly judging the status of the lane clearance marking in the traffic signal light information: driving or parking;

步骤S16,实景导航管理模块集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实景显示,提供给司机车道选择,行驶或驻车提示;Step S16, the real-scene navigation management module integrates the real-scene image recognition information, latitude and longitude information, path information and road information, and displays the real scene on the display interface to provide the driver with lane selection, driving or parking prompts;

本发明具有有益效果:本发明提供了一种图像识别的汽车实景导航的新方法,通过汽车导航设备提供地图显示,路径标示,结合行车记录仪采集的图像进行图像识别,特别是对于可变车道的交通标示牌的识别,提示和提醒用户在接近路口时如何选择转弯车道或直行车道,根据实际交通信号情况提醒用户行驶或驻车,实现实景导航。增加了汽车导航的新功能,增加了用户体验感受。The present invention has beneficial effects: the present invention provides a new method for car real-scene navigation of image recognition, which provides map display and path marking through car navigation equipment, and performs image recognition in combination with images collected by driving recorders, especially for variable lanes The recognition of traffic signs, prompts and reminds users how to choose a turning lane or straight lane when approaching an intersection, and reminds users to drive or park according to the actual traffic signal conditions, realizing real-world navigation. Added new functions of car navigation and increased user experience.

本发明专利的具体有益效果可以体现在以下方面:The specific beneficial effects of the patent of the present invention can be reflected in the following aspects:

视频分析模块采用关键帧技术,可以去除实景视频信息中大部分重复视频帧,减少匹配的数据计算量,提高处理效率;The video analysis module adopts key frame technology, which can remove most of the repeated video frames in the live video information, reduce the matching data calculation amount, and improve the processing efficiency;

图像识别模块采用中值滤波和形态学处理方法消除关键帧图像文件中的噪声,降低匹配的误差率,采用构造多边形边界的方法识别区域边界,提高具体目标识别率,采用不变矩特征对于具体目标的平移、旋转和比例缩放都具有不变性,使具体目标具有更高的识别率;The image recognition module uses median filtering and morphological processing methods to eliminate noise in key frame image files, reduces the error rate of matching, uses the method of constructing polygonal boundaries to identify regional boundaries, and improves the recognition rate of specific targets. The translation, rotation and scaling of the target are invariant, so that the specific target has a higher recognition rate;

一种图像识别的汽车实景导航方法中通过分析关键帧图像文件,分析出当前的时刻为白天或者夜晚模式,可以采用适应于白天或者夜晚模式的不同参数,针对白天或者夜晚不同场景,使具体目标具有更高的识别率;In an image recognition method for car real scene navigation, by analyzing key frame image files, it is analyzed that the current moment is a day or night mode, and different parameters suitable for the day or night mode can be used to target different scenes during the day or night. Has a higher recognition rate;

一种图像识别的汽车实景导航方法中通过收集和判断:地面上的道路交通标线信息是否是路口车道标示,路边设立的交通标示牌信息中的掉头、左转弯、直行或者右转弯状态,路口设立交通信号灯信息等与实景导航相关的多方面综合信息,多方面的信息来源,使司机车道选择,行驶或驻车的决策信息计算具有更高的准确率;In an image recognition method for real-world vehicle navigation, by collecting and judging: whether the road traffic marking information on the ground is an intersection lane marking, the U-turn, left-turn, straight-going or right-turn status in the traffic sign information set up on the roadside, Multi-aspect comprehensive information related to real-world navigation, such as traffic signal information at intersections, and multi-aspect information sources, enable drivers to choose lanes, and calculate decision-making information for driving or parking with higher accuracy;

附图说明Description of drawings

图1是一种图像识别的汽车实景导航装置的总体结构示意图。FIG. 1 is a schematic diagram of an overall structure of an image-recognition vehicle real-scene navigation device.

图2是一种图像识别的汽车实景导航方法的流程图。Fig. 2 is a flow chart of an image recognition method for car real scene navigation.

图3是汽车行驶区域的相关地图道路信息和路径规划示意图。Fig. 3 is a schematic diagram of relevant map road information and route planning in the driving area of the vehicle.

图4是白天场景中交通标示牌信息的关键帧。Figure 4 is a key frame of traffic sign information in a daytime scene.

图5是白天场景提取出交通标示牌信息的示意图。Fig. 5 is a schematic diagram of extracting traffic sign information in a daytime scene.

图6是白天场景中道路交通标线信息的关键帧。Figure 6 is a key frame of road traffic marking information in a daytime scene.

图7是白天场景提取出道路交通标线信息的示意图。Fig. 7 is a schematic diagram of extracting road traffic marking information from a daytime scene.

图8是白天场景中交通信号灯红灯信息的关键帧。Figure 8 is a key frame of the red light information of the traffic lights in the daytime scene.

图9是白天场景提取出交通信号灯红灯信息的示意图。FIG. 9 is a schematic diagram of extracting red light information of traffic lights in a daytime scene.

图10是白天场景中交通信号灯绿灯信息的关键帧。Fig. 10 is a key frame of traffic signal green light information in a daytime scene.

图11是白天场景提取出交通信号灯绿灯信息的示意图。Fig. 11 is a schematic diagram of extracting green light information of traffic lights in a daytime scene.

图12是可变车道场景中交通标示牌信息的关键帧。Figure 12 is a key frame of traffic sign information in a variable lane scene.

图13是可变车道场景提取出交通标示牌信息的示意图。Fig. 13 is a schematic diagram of extracting traffic sign information in a scene with variable lanes.

图14是可变车道场景中道路交通标线信息的关键帧。Fig. 14 is a key frame of road traffic marking information in a variable lane scene.

图15是可变车道场景提取出道路交通标线信息的示意图。Fig. 15 is a schematic diagram of extracting road traffic marking information in a scene with variable lanes.

图16是掉头场景中交通标示牌信息的关键帧。Fig. 16 is a key frame of traffic sign information in the U-turn scene.

图17是掉头场景提取出交通标示牌信息的示意图。Fig. 17 is a schematic diagram of extracting traffic sign information in a U-turn scene.

图18是掉头场景中道路交通标线信息的关键帧。Fig. 18 is a key frame of road traffic marking information in a U-turn scene.

图19是掉头场景提取出道路交通标线信息的示意图。Fig. 19 is a schematic diagram of extracting road traffic marking information in a U-turn scene.

图20是夜晚场景中交通标示牌信息的关键帧。Fig. 20 is a key frame of traffic sign information in a night scene.

图21是夜晚场景提取出交通标示牌信息的示意图。FIG. 21 is a schematic diagram of extracting traffic sign information in a night scene.

图22是夜晚场景中道路交通标线信息的关键帧。Fig. 22 is a key frame of road traffic marking information in a night scene.

图23是夜晚场景提取出道路交通标线信息的示意图。Fig. 23 is a schematic diagram of extracting road traffic marking information in a night scene.

标号说明:1-视频分析模块,2-图像识别模块,3-GPS定位模块,4-路径规划模块,5-地图管理模块,6-实景导航管理模块。Reference numerals: 1-video analysis module, 2-image recognition module, 3-GPS positioning module, 4-route planning module, 5-map management module, 6-real scene navigation management module.

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the drawings in the embodiments of the present invention.

由图1所示的一种图像识别的汽车实景导航装置的总体结构示意图可知,它包括1-视频分析模块,2-图像识别模块,3-GPS定位模块,4-路径规划模块,5-地图管理模块,6-实景导航管理模块。It can be seen from the overall structural diagram of an image recognition vehicle real scene navigation device shown in Figure 1 that it includes 1-video analysis module, 2-image recognition module, 3-GPS positioning module, 4-path planning module, 5-map Management module, 6-real scene navigation management module.

所述的视频分析模块1与图像识别模块2连接;Described video analysis module 1 is connected with image recognition module 2;

所述的实景导航管理模块6分别与图像识别模块2、GPS定位模块3、地图管理模块4、路径规划模块5连接;Described real scene navigation management module 6 is connected with image recognition module 2, GPS positioning module 3, map management module 4, path planning module 5 respectively;

所述的视频分析模块1用于分析设备采集的实景视频信息,提取视频关键帧,存储为关键帧图像文件;Described video analysis module 1 is used for analyzing the real scene video information that equipment collects, extracts video key frame, is stored as key frame image file;

所述的图像识别模块2用于识别出关键帧图像文件中的交通标示牌信息,道路交通标线信息,交通信号灯信息;The image recognition module 2 is used to recognize the traffic sign information in the key frame image file, the road traffic marking information, and the traffic signal light information;

所述的GPS定位模块3用于提供汽车行驶的经纬度信息;Described GPS positioning module 3 is used for providing the longitude and latitude information of automobile driving;

所述的路径规划模块4用于提供到达目的地需要的路径信息;The path planning module 4 is used to provide path information needed to reach the destination;

所述的地图管理模块5用于提供汽车行驶区域的相关道路信息;The map management module 5 is used to provide relevant road information of the driving area of the automobile;

所述的实景导航管理模块6用于集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实时显示;The real-scene navigation management module 6 is used to integrate real-scene image recognition information, latitude and longitude information, route information and road information, and display it in real time on the display interface;

所述的视频分析模块用于分析设备采集的实景视频信息;提取视频关键帧,存储为关键帧图像文件;关键帧是实景视频信息中主要内容的一帧或多帧图像的组合,关键帧的抽取方法为判断实景视频信息中的所有连续图像帧之间相似程度,采用视觉特性如颜色、运动等为衡量标准;The video analysis module is used to analyze the real-scene video information collected by the equipment; extract the video key frame and store it as a key frame image file; the key frame is a combination of one or more frames of main content in the real-scene video information, and The extraction method is to judge the similarity between all consecutive image frames in the real-scene video information, using visual characteristics such as color, motion, etc. as the measurement standard;

所述的图像识别模块用于识别出关键帧图像文件中的交通标示牌信息,道路交通标线信息,交通信号灯信息;具体方法为:首先采用图像识别中的中值滤波和形态学处理方法消除关键帧图像文件中的噪声,然后采用图像识别中的构造多边形边界的方法识别区域边界并识别出具体目标,最后采用计算具体目标不变矩特征与交通标示牌,道路交通标线,交通信号灯的不变矩特征的距离,判断具体目标的实际信息;The image recognition module is used to recognize the traffic sign information in the key frame image file, the road traffic marking information, and the traffic signal light information; the specific method is: firstly, the median filter and the morphological processing method in the image recognition are used to eliminate The noise in the key frame image file, and then use the method of constructing polygonal boundary in image recognition to identify the area boundary and identify the specific target, and finally use the calculation of the specific target invariant moment characteristics and traffic signs, road traffic markings, traffic lights The distance of the invariant moment feature, to judge the actual information of the specific target;

所述的GPS定位模块采用频率为1575.42MHz的L1载波和频率为1227.60MHz的L2载波,用于提供汽车行驶的经纬度信息;The GPS positioning module adopts the L1 carrier with a frequency of 1575.42MHz and the L2 carrier with a frequency of 1227.60MHz to provide the latitude and longitude information of the vehicle;

所述的路径规划模块采用迪杰斯特拉算法,用于提供到达目的地需要的路径信息。The path planning module uses the Dijkstra algorithm to provide path information needed to reach the destination.

以下是发明人给出的实施例:Below are the embodiments given by the inventor:

流程由图2所示。The process is shown in Figure 2.

实施例1:汽车实景导航白天场景Example 1: Car real scene navigation daytime scene

由汽车行驶路线依次执行如下步骤Carry out the following steps sequentially from the driving route

图4所示帧图像处理步骤:Frame image processing steps shown in Figure 4:

GPS定位模块3提取汽车行驶的经纬度信息;GPS positioning module 3 extracts the latitude and longitude information of automobile driving;

地图管理模块5根据汽车行驶的经纬度信息,提供如图3所示的汽车行驶区域的相关道路信息;Map management module 5 provides the relevant road information of the automobile driving area as shown in Figure 3 according to the longitude and latitude information of automobile driving;

路径规划模块4根据汽车行驶的经纬度信息、相关道路信息和到达目的地需要的路径信息,提供给汽车在前一个路口直行的提示;The path planning module 4 provides the prompt for the automobile to go straight at the previous intersection according to the latitude and longitude information of the automobile, the relevant road information and the path information required to reach the destination;

视频分析模块1采集汽车运行的实时视频信息,分析并提取出视频关键帧,存储为如图4所示的关键帧图像文件;Video analysis module 1 collects the real-time video information of automobile operation, analyzes and extracts video key frames, and stores them as key frame image files as shown in Figure 4;

图像识别模块2分析关键帧图像文件,分析出当前的时刻是白天模式;Image recognition module 2 analyzes the key frame image file, and analyzes that the current moment is the daytime mode;

设置白天模式参数,调整合适的亮度,对比度,去噪声参数;Set day mode parameters, adjust appropriate brightness, contrast, noise removal parameters;

图像识别模块2分析如图4所示的关键帧图像文件,交通标示牌信息、道路交通标线信息和交通信号灯信息如图5所示,并存储信息;Image recognition module 2 analyzes the key frame image file as shown in Figure 4, traffic sign board information, road traffic marking information and traffic signal light information as shown in Figure 5, and store information;

判断道路交通标线信息是否是路口车道标示,否;Judging whether the road traffic marking information is an intersection lane marking, no;

判断是否有交通信号灯信息,否;Determine whether there is traffic signal light information, no;

实景导航管理模块6集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实景显示,提供给司机行驶提示;Real-scene navigation management module 6 integrates real-scene image recognition information, latitude and longitude information, path information and road information, and displays the real scene on the display interface to provide driving tips for drivers;

图6所示帧图像处理步骤Frame image processing steps shown in Figure 6

图像识别模块2分析如图6所示的关键帧图像文件,交通标示牌信息、道路交通标线信息和交通信号灯信息如图7所示,并存储信息;Image recognition module 2 analyzes the key frame image file as shown in Figure 6, traffic sign board information, road traffic marking information and traffic signal light information as shown in Figure 7, and store information;

判断道路交通标线信息是否是路口车道标示,是;Judging whether the road traffic marking information is an intersection lane marking, yes;

判断在时间阈值T1之内,T1=100秒,是否有交通标示牌信息,是;Judging whether there is traffic sign information within the time threshold T1, T1=100 seconds, yes;

判断从图4识别出的如图5所示的交通标示牌信息,从左至右依次为:直行1,直行2,右转;将其映射到从图6识别出的如图7所示的道路交通标线信息,从左至右依次为:直行1,直行2,右转;根据路径规划模块4提供的路口直行的提示,确定选择车道直行1或直行2;Judging the traffic sign information shown in Figure 5 identified from Figure 4, from left to right: go straight 1, go straight 2, turn right; map it to the traffic sign shown in Figure 7 identified from Figure 6 Road traffic marking information, from left to right: go straight 1, go straight 2, turn right; according to the prompt of going straight at the intersection provided by the path planning module 4, determine whether to choose the lane to go straight 1 or go straight 2;

判断从图6是否识别出交通信号灯信息,如图7所示,否;Judging whether the traffic signal light information is recognized from Fig. 6, as shown in Fig. 7, no;

实景导航管理模块6集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实景显示,提供给司机车道选择提示;Real-scene navigation management module 6 integrates real-scene image recognition information, latitude and longitude information, route information and road information, and displays the real scene on the display interface to provide drivers with lane selection prompts;

图8所示帧图像处理步骤Frame image processing steps shown in Figure 8

图像识别模块2分析如图8所示的关键帧图像文件,交通标示牌信息、道路交通标线信息和交通信号灯信息如图9所示,并存储信息;Image recognition module 2 analyzes the key frame image file as shown in Figure 8, traffic sign board information, road traffic marking information and traffic signal light information as shown in Figure 9, and store information;

判断道路交通标线信息是否是路口车道标示,是;Judging whether the road traffic marking information is an intersection lane marking, yes;

判断在时间阈值T1之内,T1=100秒,是否有交通标示牌信息,是;Judging whether there is traffic sign information within the time threshold T1, T1=100 seconds, yes;

判断从图4识别出的如图5所示的交通标示牌信息,从左至右依次为:直行,直行,右转;将其映射到从图6识别出的如图7所示的道路交通标线信息,从左至右依次为:直行,直行,右转;根据路径规划模块4提供的路口直行的提示,确定选择车道直行2;Judging the traffic sign information shown in Figure 5 identified from Figure 4, from left to right: go straight, go straight, turn right; map it to the road traffic identified from Figure 6 as shown in Figure 7 Marking information, from left to right: go straight, go straight, turn right; according to the prompt of going straight at the intersection provided by the path planning module 4, it is determined to choose the lane to go straight 2;

判断从图8是否识别出交通信号灯信息,如图9所示,是;Judging whether the traffic signal light information is recognized from Fig. 8, as shown in Fig. 9, yes;

判断在时间阈值T2之内,T2=90秒,是否有车道选择信息,是;Judging whether there is lane selection information within the time threshold T2, T2=90 seconds, yes;

根据车道选择信息判断交通信号灯信息中的车道放行标示情况,由于是红灯,并且有24秒的等待时间,则驻车;According to the lane selection information, judge the lane release sign in the traffic signal information, because it is a red light, and there is a waiting time of 24 seconds, then park;

实景导航管理模块6集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实景显示,提供给司机驻车提示;Real-scene navigation management module 6 integrates real-scene image recognition information, latitude and longitude information, path information and road information, and displays the real scene on the display interface to provide parking prompts for drivers;

图10所示帧图像处理步骤Frame image processing steps shown in Figure 10

图像识别模块2分析如图10所示的关键帧图像文件,交通标示牌信息、道路交通标线信息和交通信号灯信息如图11所示,并存储信息;Image recognition module 2 analyzes the key frame image file as shown in Figure 10, traffic sign board information, road traffic marking information and traffic signal light information as shown in Figure 11, and store information;

判断从图10是否识别出交通信号灯信息,如图11所示,是;Judging whether the traffic signal light information is identified from Figure 10, as shown in Figure 11, yes;

判断在时间阈值T1之内,T1=100秒,是否有交通标示牌信息,是;Judging whether there is traffic sign information within the time threshold T1, T1=100 seconds, yes;

判断从图4识别出的如图5所示的交通标示牌信息,从左至右依次为:直行,直行,右转;将其映射到从图6识别出的如图7所示的道路交通标线信息,从左至右依次为:直行,直行,右转;根据路径规划模块4提供的路口直行的提示,确定选择车道直行2;Judging the traffic sign information shown in Figure 5 identified from Figure 4, from left to right: go straight, go straight, turn right; map it to the road traffic identified from Figure 6 as shown in Figure 7 Marking information, from left to right: go straight, go straight, turn right; according to the prompt of going straight at the intersection provided by the path planning module 4, it is determined to choose the lane to go straight 2;

判断从图10是否识别出交通信号灯信息,如图11所示,是;Judging whether the traffic signal light information is identified from Figure 10, as shown in Figure 11, yes;

判断在时间阈值T2之内,T2=90秒,是否有车道选择信息,是;Judging whether there is lane selection information within the time threshold T2, T2=90 seconds, yes;

根据车道选择信息判断交通信号灯信息中的车道放行标示情况,由于是绿灯,则行驶;According to the lane selection information, judge the lane release sign in the traffic signal light information, and drive because it is a green light;

实景导航管理模块6集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实景显示,提供给司机行驶提示;Real-scene navigation management module 6 integrates real-scene image recognition information, latitude and longitude information, path information and road information, and displays the real scene on the display interface to provide driving tips for drivers;

实施例2:汽车实景导航可变车道场景;Embodiment 2: Vehicle real scene navigation variable lane scene;

由汽车行驶路线依次执行如下步骤;Carry out the following steps sequentially by the driving route of the car;

图12所示帧图像处理步骤:Frame image processing steps shown in Figure 12:

GPS定位模块3提取汽车行驶的经纬度信息;GPS positioning module 3 extracts the latitude and longitude information of automobile driving;

地图管理模块5根据汽车行驶的经纬度信息,提供汽车行驶区域的相关道路信息;The map management module 5 provides relevant road information of the driving area of the vehicle according to the latitude and longitude information of the driving of the vehicle;

路径规划模块4根据汽车行驶的经纬度信息、相关道路信息和到达目的地需要的路径信息,提供给汽车在前一个路口直行的提示;The path planning module 4 provides the prompt for the automobile to go straight at the previous intersection according to the latitude and longitude information of the automobile, the relevant road information and the path information required to reach the destination;

视频分析模块1采集汽车运行的实时视频信息,分析并提取出视频关键帧,存储为如图12所示的关键帧图像文件;Video analysis module 1 collects the real-time video information of automobile operation, analyzes and extracts video key frames, and is stored as a key frame image file as shown in Figure 12;

图像识别模块2分析关键帧图像文件,分析出当前的时刻是白天模式;Image recognition module 2 analyzes the key frame image file, and analyzes that the current moment is the daytime mode;

设置白天模式参数,调整合适的亮度,对比度,去噪声参数;Set day mode parameters, adjust appropriate brightness, contrast, noise removal parameters;

图像识别模块2分析如图12所示的关键帧图像文件,交通标示牌信息、道路交通标线信息和交通信号灯信息如图13所示,并存储信息;Image recognition module 2 analyzes the key frame image file as shown in Figure 12, and the traffic sign information, road traffic marking information and traffic signal light information are as shown in Figure 13, and store information;

判断道路交通标线信息是否是路口车道标示,否;Judging whether the road traffic marking information is an intersection lane marking, no;

判断是否有交通信号灯信息,否;Determine whether there is traffic signal light information, no;

实景导航管理模块6集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实景显示可变车道,提供给司机行驶提示;Real-scene navigation management module 6 integrates real-scene image recognition information, latitude and longitude information, path information and road information, and displays variable lanes in real scene on the display interface to provide driving tips for drivers;

图14所示帧图像处理步骤Frame image processing steps shown in Figure 14

图像识别模块2分析如图14所示的关键帧图像文件,交通标示牌信息、道路交通标线信息和交通信号灯信息如图7所示,并存储信息;Image recognition module 2 analyzes the key frame image file as shown in Figure 14, and the traffic sign information, road traffic marking information and traffic signal light information are as shown in Figure 7, and store information;

判断道路交通标线信息是否是路口车道标示,是;Judging whether the road traffic marking information is an intersection lane marking, yes;

判断在时间阈值T1之内,T1=100秒,是否有交通标示牌信息,是;Judging whether there is traffic sign information within the time threshold T1, T1=100 seconds, yes;

判断从图12识别出的如图13所示的交通标示牌信息,从左至右依次为:左转,直行1,直行2,右转;将其映射到从图14识别出的如图15所示的道路交通标线信息,映射之前从左至右依次为:左转,可变车道,直行,可变车道;映射之后从左至右依次为:左转,直行1,直行2,右转;根据路径规划模块4提供的路口直行的提示,确定选择车道直行2;Judging the traffic sign information shown in Figure 13 identified from Figure 12, from left to right: turn left, go straight 1, go straight 2, turn right; map it to the traffic sign information identified in Figure 14 as shown in Figure 15 For the road traffic marking information shown, the order from left to right before mapping is: turn left, variable lane, go straight, variable lane; after mapping, the order from left to right is: turn left, go straight 1, go straight 2, right Turn; According to the prompt of the crossing going straight provided by the path planning module 4, it is determined to select the lane going straight 2;

判断从图14是否识别出交通信号灯信息,如图15所示,否;Judging whether the traffic signal light information is identified from Figure 14, as shown in Figure 15, no;

实景导航管理模块6集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实景显示,提供给司机车道选择提示;Real-scene navigation management module 6 integrates real-scene image recognition information, latitude and longitude information, route information and road information, and displays the real scene on the display interface to provide drivers with lane selection prompts;

实施例3:汽车实景导航掉头场景Embodiment 3: U-turn scene of car real scene navigation

由汽车行驶路线依次执行如下步骤Carry out the following steps sequentially from the driving route

图16所示帧图像处理步骤:Frame image processing steps shown in Figure 16:

GPS定位模块3提取汽车行驶的经纬度信息;GPS positioning module 3 extracts the latitude and longitude information of automobile driving;

地图管理模块5根据汽车行驶的经纬度信息,提供汽车行驶区域的相关道路信息;The map management module 5 provides relevant road information of the driving area of the vehicle according to the latitude and longitude information of the driving of the vehicle;

路径规划模块4根据汽车行驶的经纬度信息、相关道路信息和到达目的地需要的路径信息,提供给汽车在前一个路口直行的提示;The path planning module 4 provides the prompt for the automobile to go straight at the previous intersection according to the latitude and longitude information of the automobile, the relevant road information and the path information required to reach the destination;

视频分析模块1采集汽车运行的实时视频信息,分析并提取出视频关键帧,存储为如图16所示的关键帧图像文件;Video analysis module 1 collects the real-time video information of automobile operation, analyzes and extracts video key frames, and stores them as key frame image files as shown in Figure 16;

图像识别模块2分析关键帧图像文件,分析出当前的时刻是白天模式;Image recognition module 2 analyzes the key frame image file, and analyzes that the current moment is the daytime mode;

设置白天模式参数,调整合适的亮度,对比度,去噪声参数;Set day mode parameters, adjust appropriate brightness, contrast, noise removal parameters;

图像识别模块2分析如图16所示的关键帧图像文件,交通标示牌信息、道路交通标线信息和交通信号灯信息如图17所示,并存储信息;Image recognition module 2 analyzes the key frame image file as shown in Figure 16, and the traffic sign information, road traffic marking information and traffic signal light information are as shown in Figure 17, and store the information;

判断道路交通标线信息是否是路口车道标示,否;Judging whether the road traffic marking information is an intersection lane marking, no;

判断是否有交通信号灯信息,否;Determine whether there is traffic signal light information, no;

实景导航管理模块6集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实景显示,提供给司机行驶提示;Real-scene navigation management module 6 integrates real-scene image recognition information, latitude and longitude information, path information and road information, and displays the real scene on the display interface to provide driving tips for drivers;

图18所示帧图像处理步骤Frame image processing steps shown in Figure 18

图像识别模块2分析如图18所示的关键帧图像文件,交通标示牌信息、道路交通标线信息和交通信号灯信息如图19所示,并存储信息;Image recognition module 2 analyzes the key frame image file as shown in Figure 18, and the traffic sign information, road traffic marking information and traffic signal light information are as shown in Figure 19, and store the information;

判断道路交通标线信息是否是路口车道标示,是;Judging whether the road traffic marking information is an intersection lane marking, yes;

判断在时间阈值T1之内,T1=100秒,是否有交通标示牌信息,是;Judging whether there is traffic sign information within the time threshold T1, T1=100 seconds, yes;

判断从图16识别出的如图17所示的交通标示牌信息,从左至右依次为:掉头或左转,左转,右转,右转;将其映射到从图18识别出的如图19所示的道路交通标线信息,从左至右依次为:掉头或左转,左转,右转,右转;根据路径规划模块4提供的路口直行的提示,确定选择车道掉头或左转;Judging the traffic sign information as shown in Figure 17 identified from Figure 16, from left to right is: turn around or turn left, turn left, turn right, turn right; map it to the information identified in Figure 18 as The road traffic marking information shown in Figure 19, from left to right, is: U-turn or left turn, left turn, right turn, right turn; change;

判断从图18是否识别出交通信号灯信息,如图19所示,否;Judging whether the traffic signal light information is identified from Figure 18, as shown in Figure 19, no;

实景导航管理模块6集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实景显示,提供给司机车道选择提示;Real-scene navigation management module 6 integrates real-scene image recognition information, latitude and longitude information, route information and road information, and displays the real scene on the display interface to provide drivers with lane selection prompts;

实施例4:汽车实景导航夜晚场景Embodiment 4: Car real scene navigation night scene

由汽车行驶路线依次执行如下步骤Carry out the following steps sequentially from the driving route

图20所示帧图像处理步骤:Frame image processing steps shown in Figure 20:

GPS定位模块3提取汽车行驶的经纬度信息;GPS positioning module 3 extracts the latitude and longitude information of automobile driving;

地图管理模块5根据汽车行驶的经纬度信息,提供汽车行驶区域的相关道路信息;The map management module 5 provides relevant road information of the driving area of the vehicle according to the latitude and longitude information of the driving of the vehicle;

路径规划模块4根据汽车行驶的经纬度信息、相关道路信息和到达目的地需要的路径信息,提供给汽车在前一个路口直行的提示;The path planning module 4 provides the prompt for the automobile to go straight at the previous intersection according to the latitude and longitude information of the automobile, the relevant road information and the path information required to reach the destination;

视频分析模块1采集汽车运行的实时视频信息,分析并提取出视频关键帧,存储为如图20所示的关键帧图像文件;Video analysis module 1 collects the real-time video information of automobile operation, analyzes and extracts video key frames, and is stored as a key frame image file as shown in Figure 20;

图像识别模块2分析关键帧图像文件,分析出当前的时刻是夜晚模式;Image recognition module 2 analyzes the key frame image file, and analyzes that the current moment is night mode;

设置夜晚模式参数,调整合适的亮度,对比度,去噪声参数;Set the night mode parameters, adjust the appropriate brightness, contrast, noise removal parameters;

图像识别模块2分析如图20所示的关键帧图像文件,交通标示牌信息、道路交通标线信息和交通信号灯信息如图21所示,并存储信息;Image recognition module 2 analyzes the key frame image file as shown in Figure 20, traffic sign information, road traffic marking information and traffic signal light information as shown in Figure 21, and store information;

判断道路交通标线信息是否是路口车道标示,否;Judging whether the road traffic marking information is an intersection lane marking, no;

判断是否有交通信号灯信息,否;Determine whether there is traffic signal light information, no;

实景导航管理模块6集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实景显示,提供给司机行驶提示;Real-scene navigation management module 6 integrates real-scene image recognition information, latitude and longitude information, path information and road information, and displays the real scene on the display interface to provide driving tips for drivers;

图22所示帧图像处理步骤Frame image processing steps shown in Figure 22

图像识别模块2分析如图22所示的关键帧图像文件,交通标示牌信息、道路交通标线信息和交通信号灯信息如图7所示,并存储信息;Image recognition module 2 analyzes the key frame image file as shown in Figure 22, traffic sign board information, road traffic marking information and traffic signal light information as shown in Figure 7, and store information;

判断道路交通标线信息是否是路口车道标示,是;Judging whether the road traffic marking information is an intersection lane marking, yes;

判断在时间阈值T1之内,T1=100秒,是否有交通标示牌信息,是;Judging whether there is traffic sign information within the time threshold T1, T1=100 seconds, yes;

判断从图20识别出的如图21所示的交通标示牌信息,从左至右依次为:直行1,直行2,直行右转;将其映射到从图22识别出的如图23所示的道路交通标线信息,从左至右依次为:直行1,直行2,直行右转;根据路径规划模块4提供的路口直行的提示,确定选择车道直行右转;Judging the traffic sign information shown in Figure 21 identified from Figure 20, from left to right: go straight 1, go straight 2, go straight and turn right; map it to the traffic sign information identified from Figure 22 as shown in Figure 23 The road traffic marking information, from left to right, is: go straight 1, go straight 2, go straight and turn right; according to the prompt of going straight at the intersection provided by the path planning module 4, it is determined to choose the lane to go straight and turn right;

判断从图22是否识别出交通信号灯信息,如图23所示,否;Judging whether the traffic signal light information is identified from Figure 22, as shown in Figure 23, no;

实景导航管理模块6集成实景图像识别信息,经纬度信息,路径信息和道路信息,并在展示界面实景显示,提供给司机车道选择提示。The real-scene navigation management module 6 integrates real-scene image recognition information, latitude and longitude information, path information and road information, and displays the real scene on the display interface to provide the driver with a lane selection prompt.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, references to the terms "one embodiment," "some embodiments," "exemplary embodiments," "example," "specific examples," or "some examples" are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications, substitutions and modifications can be made to these embodiments without departing from the principle and spirit of the present invention. The scope of the invention is defined by the claims and their equivalents.

Claims (4)

1. the automobile real scene navigation apparatus of an image recognition, it is characterised in that include analysis module, image recognition mould Block, GPS locating module, path planning module, management map module, real scene navigation management module;
Described analysis module is connected with picture recognition module;
Described real scene navigation management module is advised with picture recognition module, GPS locating module, management map module, path respectively Draw module to connect;
The outdoor scene video information that described analysis module gathers for analytical equipment, extracts key frame of video, is stored as closing Key two field picture file;
Described picture recognition module is for identifying the traffic marking board information in key frame images file, road traffic marking Information, traffic light information;
Described GPS locating module is for providing the latitude and longitude information of running car;
Described path planning module arrives at the routing information of needs for providing;
Described management map module is for providing the related roads information in running car region;
Described real scene navigation management module is for integrated real scene image identification information, latitude and longitude information, routing information and road Information, and showing that interface shows in real time.
The automobile real scene navigation apparatus of a kind of image recognition the most according to claim 1, it is characterised in that described GPS L1 carrier wave that locating module uses frequency to be 1575.42MHz and L2 carrier wave that frequency is 1227.60MHz.
3. the automobile real scene navigation method of an image recognition, it is characterised in that comprise the following steps:
Step S1, GPS locating module extracts the latitude and longitude information of running car;
Step S2, management map module is for providing the related roads information in running car region;
Step S3, path planning module is according to latitude and longitude information, the related roads information of running car and arrives at needs Routing information, it is provided that automobile is to turn around, turn left, keep straight on or the track selection mode such as right-hand bend at previous crossing;
Step S4, analysis module gathers the real-time video information of automobilism, analyzes and extract key frame of video, storage For key frame images file;
Step S5, picture recognition module analysis of key two field picture file, analyze the current moment, if day mode, turn Enter step S6, be otherwise night mode, proceed to step S7;
Step S6, arranges day mode parameter, proceeds to step S8;
Step S7, arranges night mode parameter, proceeds to step S8;
Step S8, picture recognition module analysis of key two field picture file, traffic marking board information, road traffic marking information and friendship Ventilating signal lamp information, and store information;
Step S9, it is judged that whether road traffic marking information is that road junction roadway indicates, if it is, proceed to step S10, if it does not, Proceed to step 12;
Step S10, it is judged that within time threshold T1, if having traffic marking board information, if it is, proceed to step S11, as The most no, proceed to step 12;
Step S11, it is judged that turning around, turn left, keep straight on or turning right in traffic marking board information, maps that to road and hands over Logical graticule information turns around, turns left, keeps straight on or turns right, and the choosing lane mode provided according to path planning module determines Choosing lane information;
Step S12, it may be judged whether have traffic light information, if it has, proceed to step S13, if it does not, proceed to step 16;
Step S13, it is judged that within time threshold T2, if having choosing lane information, if it is, proceed to step S14, if No, proceed to step 15;
Step S14, judges the track clearance sign situation in traffic light information: travel or stay according to choosing lane information Car, proceeds to step S16;
Step S15, directly judges the track clearance sign situation in traffic light information: travel or parking;
Step S16, real scene navigation management module integrated real scene image identification information, latitude and longitude information, routing information and road letter Breath, and showing that interface outdoor scene shows, it is provided that to driver's choosing lane, travel or parking prompting.
The automobile real scene navigation method of a kind of image recognition the most according to claim 3, it is characterised in that described step S8 Method particularly includes: eliminate in key frame images file initially with the medium filtering in image recognition and Morphological scale-space method Noise, then use the method identification zone boundary of the structure Polygonal Boundary in image recognition and identify objectives, Finally using and calculate objectives invariant moment features and traffic marking board, road traffic marking, the not bending moment of traffic light is special The distance levied, it is judged that the actual information of objectives.
CN201610461454.8A 2016-06-22 2016-06-22 The automobile real scene navigation apparatus of a kind of image recognition and method Pending CN106092114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610461454.8A CN106092114A (en) 2016-06-22 2016-06-22 The automobile real scene navigation apparatus of a kind of image recognition and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610461454.8A CN106092114A (en) 2016-06-22 2016-06-22 The automobile real scene navigation apparatus of a kind of image recognition and method

Publications (1)

Publication Number Publication Date
CN106092114A true CN106092114A (en) 2016-11-09

Family

ID=57253275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610461454.8A Pending CN106092114A (en) 2016-06-22 2016-06-22 The automobile real scene navigation apparatus of a kind of image recognition and method

Country Status (1)

Country Link
CN (1) CN106092114A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108109437A (en) * 2018-01-24 2018-06-01 广东容祺智能科技有限公司 It is a kind of that generation method is extracted from main shipping track based on the unmanned plane of map feature
CN108417028A (en) * 2017-02-09 2018-08-17 丰田自动车株式会社 Image processing system and image processing method
CN108871369A (en) * 2018-06-27 2018-11-23 威马智慧出行科技(上海)有限公司 Vehicular navigation map-indication method, electronic equipment, server and storage medium
CN109029488A (en) * 2018-06-29 2018-12-18 百度在线网络技术(北京)有限公司 Navigating electronic map generating method, equipment and storage medium
CN109540161A (en) * 2018-11-08 2019-03-29 东软睿驰汽车技术(沈阳)有限公司 A kind of air navigation aid and device of vehicle
CN109712423A (en) * 2018-12-21 2019-05-03 江苏大学 A kind of valet parking parking system and vehicle go out warehousing control method
WO2019119359A1 (en) * 2017-12-21 2019-06-27 Bayerische Motoren Werke Aktiengesellschaft Method, device and system for displaying augmented reality navigation information
CN110276971A (en) * 2019-07-03 2019-09-24 广州小鹏汽车科技有限公司 A kind of auxiliary control method of vehicle drive, system and vehicle
CN110320899A (en) * 2018-03-30 2019-10-11 比亚迪股份有限公司 Automobile and its travel control method
CN110481560A (en) * 2018-05-15 2019-11-22 Aptiv技术有限公司 Device and method for the lane that search vehicle can travel
CN110530385A (en) * 2019-08-21 2019-12-03 西安华运天成通讯科技有限公司 City navigation method and its system based on image recognition
CN110567476A (en) * 2019-09-23 2019-12-13 东软睿驰汽车技术(沈阳)有限公司 Navigation method and device
CN110715666A (en) * 2018-07-13 2020-01-21 上海博泰悦臻网络技术服务有限公司 High-precision navigation method, system, medium and vehicle-mounted terminal based on vehicle-mounted camera device
CN110736475A (en) * 2018-07-19 2020-01-31 上海博泰悦臻网络技术服务有限公司 Positioning optimization method and system based on vehicle-mounted camera device, storage medium and vehicle-mounted terminal
CN110979350A (en) * 2019-12-18 2020-04-10 奇瑞汽车股份有限公司 AR navigation based on automobile data recorder
CN111024115A (en) * 2019-12-27 2020-04-17 奇瑞汽车股份有限公司 Live-action navigation method, device, equipment, storage medium and vehicle-mounted multimedia system
CN111213031A (en) * 2018-12-06 2020-05-29 深圳市大疆创新科技有限公司 Navigation processing method and device and navigation processing equipment
CN111833629A (en) * 2019-04-23 2020-10-27 上海博泰悦臻网络技术服务有限公司 Special lane prompting method and system and vehicle
CN111968364A (en) * 2020-07-07 2020-11-20 王斌 Driving method based on road right distribution, electronic equipment and storage medium
CN112560728A (en) * 2020-12-22 2021-03-26 上海哔哩哔哩科技有限公司 Target object identification method and device
CN113237487A (en) * 2021-04-09 2021-08-10 烟台杰瑞石油服务集团股份有限公司 Vision-aided navigation method and device
CN114279451A (en) * 2020-09-28 2022-04-05 阿里巴巴集团控股有限公司 Navigation method, navigation device, electronic equipment and storage medium
CN115366899A (en) * 2022-10-25 2022-11-22 南京项尚车联网技术有限公司 Long-range on-vehicle route identification system based on big dipper

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519475A (en) * 2011-12-12 2012-06-27 杨志远 Intelligent navigation method and equipment based on augmented reality technology
CN102889892A (en) * 2012-09-13 2013-01-23 东莞宇龙通信科技有限公司 Live-action navigation method and navigation terminal
KR20130040361A (en) * 2011-10-14 2013-04-24 주식회사 엘지유플러스 Method, server, and recording medium for providing traffic information based on ar navigation
CN103105174A (en) * 2013-01-29 2013-05-15 四川长虹佳华信息产品有限责任公司 AR (augmented reality)-based vehicle-mounted live-action safe navigation method
CN105547319A (en) * 2015-12-11 2016-05-04 上海卓易科技股份有限公司 Route planning implementation method adopting image recognition for live-action navigation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130040361A (en) * 2011-10-14 2013-04-24 주식회사 엘지유플러스 Method, server, and recording medium for providing traffic information based on ar navigation
CN102519475A (en) * 2011-12-12 2012-06-27 杨志远 Intelligent navigation method and equipment based on augmented reality technology
CN102889892A (en) * 2012-09-13 2013-01-23 东莞宇龙通信科技有限公司 Live-action navigation method and navigation terminal
CN103105174A (en) * 2013-01-29 2013-05-15 四川长虹佳华信息产品有限责任公司 AR (augmented reality)-based vehicle-mounted live-action safe navigation method
CN105547319A (en) * 2015-12-11 2016-05-04 上海卓易科技股份有限公司 Route planning implementation method adopting image recognition for live-action navigation

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417028A (en) * 2017-02-09 2018-08-17 丰田自动车株式会社 Image processing system and image processing method
WO2019119359A1 (en) * 2017-12-21 2019-06-27 Bayerische Motoren Werke Aktiengesellschaft Method, device and system for displaying augmented reality navigation information
US11761783B2 (en) 2017-12-21 2023-09-19 Bayerische Motoren Werke Aktiengesellschaft Method, device and system for displaying augmented reality navigation information
CN108109437B (en) * 2018-01-24 2021-01-12 广东容祺智能科技有限公司 Unmanned aerial vehicle autonomous route extraction and generation method based on map features
CN108109437A (en) * 2018-01-24 2018-06-01 广东容祺智能科技有限公司 It is a kind of that generation method is extracted from main shipping track based on the unmanned plane of map feature
CN110320899A (en) * 2018-03-30 2019-10-11 比亚迪股份有限公司 Automobile and its travel control method
CN110481560B (en) * 2018-05-15 2023-05-30 Aptiv技术有限公司 Device and method for searching for a lane on which a vehicle can travel
CN110481560A (en) * 2018-05-15 2019-11-22 Aptiv技术有限公司 Device and method for the lane that search vehicle can travel
CN108871369A (en) * 2018-06-27 2018-11-23 威马智慧出行科技(上海)有限公司 Vehicular navigation map-indication method, electronic equipment, server and storage medium
CN108871369B (en) * 2018-06-27 2022-08-19 威马智慧出行科技(上海)有限公司 Vehicle navigation map display method, electronic device, server and storage medium
CN109029488A (en) * 2018-06-29 2018-12-18 百度在线网络技术(北京)有限公司 Navigating electronic map generating method, equipment and storage medium
CN110715666A (en) * 2018-07-13 2020-01-21 上海博泰悦臻网络技术服务有限公司 High-precision navigation method, system, medium and vehicle-mounted terminal based on vehicle-mounted camera device
CN110736475A (en) * 2018-07-19 2020-01-31 上海博泰悦臻网络技术服务有限公司 Positioning optimization method and system based on vehicle-mounted camera device, storage medium and vehicle-mounted terminal
CN109540161A (en) * 2018-11-08 2019-03-29 东软睿驰汽车技术(沈阳)有限公司 A kind of air navigation aid and device of vehicle
CN111213031A (en) * 2018-12-06 2020-05-29 深圳市大疆创新科技有限公司 Navigation processing method and device and navigation processing equipment
CN109712423A (en) * 2018-12-21 2019-05-03 江苏大学 A kind of valet parking parking system and vehicle go out warehousing control method
CN109712423B (en) * 2018-12-21 2021-05-25 江苏大学 A valet parking lot system and vehicle access control method
CN111833629A (en) * 2019-04-23 2020-10-27 上海博泰悦臻网络技术服务有限公司 Special lane prompting method and system and vehicle
CN110276971A (en) * 2019-07-03 2019-09-24 广州小鹏汽车科技有限公司 A kind of auxiliary control method of vehicle drive, system and vehicle
CN110530385A (en) * 2019-08-21 2019-12-03 西安华运天成通讯科技有限公司 City navigation method and its system based on image recognition
CN110567476A (en) * 2019-09-23 2019-12-13 东软睿驰汽车技术(沈阳)有限公司 Navigation method and device
CN110979350A (en) * 2019-12-18 2020-04-10 奇瑞汽车股份有限公司 AR navigation based on automobile data recorder
CN111024115A (en) * 2019-12-27 2020-04-17 奇瑞汽车股份有限公司 Live-action navigation method, device, equipment, storage medium and vehicle-mounted multimedia system
CN111968364A (en) * 2020-07-07 2020-11-20 王斌 Driving method based on road right distribution, electronic equipment and storage medium
CN114279451A (en) * 2020-09-28 2022-04-05 阿里巴巴集团控股有限公司 Navigation method, navigation device, electronic equipment and storage medium
CN112560728A (en) * 2020-12-22 2021-03-26 上海哔哩哔哩科技有限公司 Target object identification method and device
CN112560728B (en) * 2020-12-22 2023-07-11 上海幻电信息科技有限公司 Target object identification method and device
CN113237487A (en) * 2021-04-09 2021-08-10 烟台杰瑞石油服务集团股份有限公司 Vision-aided navigation method and device
CN115366899A (en) * 2022-10-25 2022-11-22 南京项尚车联网技术有限公司 Long-range on-vehicle route identification system based on big dipper

Similar Documents

Publication Publication Date Title
CN106092114A (en) The automobile real scene navigation apparatus of a kind of image recognition and method
Bock et al. The ind dataset: A drone dataset of naturalistic road user trajectories at german intersections
Creß et al. A9-dataset: Multi-sensor infrastructure-based dataset for mobility research
CN108196535B (en) Automatic driving system based on reinforcement learning and multi-sensor fusion
US9652980B2 (en) Enhanced clear path detection in the presence of traffic infrastructure indicator
US10296795B2 (en) Method, apparatus, and system for estimating a quality of lane features of a roadway
US11521487B2 (en) System and method to generate traffic congestion estimation data for calculation of traffic condition in a region
JP7645341B2 (en) Emergency Vehicle Detection
Yang et al. Generating lane-based intersection maps from crowdsourcing big trace data
JP5198835B2 (en) Method and system for presenting video images
CN110717433A (en) A traffic violation analysis method and device based on deep learning
CN115004257A (en) System and method for vehicle navigation involving traffic lights and traffic signs
DE112020002592T5 (en) SYSTEMS AND METHODS FOR VEHICLE NAVIGATION BASED ON IMAGE ANALYSIS
EP3647733A1 (en) Automatic annotation of environmental features in a map during navigation of a vehicle
CN114518122B (en) Driving navigation method, device, computer equipment, storage medium and computer program product
CN107449440A (en) The display methods and display device for prompt message of driving a vehicle
CN107122385A (en) Mapping road lighting
KR20170126909A (en) Directions for autonomous driving
US20230316789A1 (en) Object labeling in images using dense depth maps
CN106778548A (en) Method and apparatus for detecting barrier
CN114450735B (en) System and method for jointly predicting moving object track
JP5522475B2 (en) Navigation device
Wang et al. Road edge detection in all weather and illumination via driving video mining
DE102022128968A1 (en) IMAGE COLLECTION SYSTEMS AND METHODS FOR VEHICLE NAVIGATION
CN115394089A (en) A method for fusion display of vehicle information, a non-inductive traffic system and a storage medium

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161109