CN106083551A - A kind of hydroformylation of propene prepares the method for butyraldehyde - Google Patents

A kind of hydroformylation of propene prepares the method for butyraldehyde Download PDF

Info

Publication number
CN106083551A
CN106083551A CN201610516991.8A CN201610516991A CN106083551A CN 106083551 A CN106083551 A CN 106083551A CN 201610516991 A CN201610516991 A CN 201610516991A CN 106083551 A CN106083551 A CN 106083551A
Authority
CN
China
Prior art keywords
rhodium
butyraldehyde
autoclave
hydroformylation
triphenylphosphine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610516991.8A
Other languages
Chinese (zh)
Inventor
陈华
李贤均
黎耀忠
袁茂林
王勇
兰小航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU XINHUAYUAN SCIENCE AND TECHNOLOGY Co Ltd
Original Assignee
CHENGDU XINHUAYUAN SCIENCE AND TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU XINHUAYUAN SCIENCE AND TECHNOLOGY Co Ltd filed Critical CHENGDU XINHUAYUAN SCIENCE AND TECHNOLOGY Co Ltd
Priority to CN201610516991.8A priority Critical patent/CN106083551A/en
Publication of CN106083551A publication Critical patent/CN106083551A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • C07C45/505Asymmetric hydroformylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium

Abstract

The present invention relates to a kind of method that hydroformylation of propene prepares butyraldehyde; it is characterized in seeing rhodium phosphine complex and bidentate 2; 2 ' two (diphenyl phosphine methyl) 1; the complex catalyst system that 1 ' biphenyl (BISBI) and triphenylphosphine (TPP) form; and a kind of compound in toluene, hutanal or methyl phenyl ethers anisole makees solvent; add in autoclave; 35 times are replaced with synthesis gas; then at stagnation pressure 1~3MPa; under the stirring condition of temperature 80~130 DEG C, make propylene and synthesis gas (H2/ CO=1:1 mol ratio) carry out hydroformylation reaction and prepare butyraldehyde; the selectivity generating butyraldehyde reaches more than 97%; the mol ratio of regulation BISBI/TPP can make the ratio of the hutanal/isobutylaldehyde of generation carry out modulation in the range of 9:1~30:1; this catalyst through decompression Distillation recovery rhodium catalyst, and is returned reactor and recycles under synthesis gas is protected by rhodium catalyst and product.

Description

A kind of hydroformylation of propene prepares the method for butyraldehyde
Technical field
The present invention relates to petrochemicals preparing technical field, be specifically related to a kind of hydroformylation of propene and prepare butyraldehyde Method.
Background technology
Preparing aldehyde by alkene hydroformylation is one of reaction important during petrochemicals produce.Prepared by hydroformylation of propene Butyraldehyde, butyraldehyde Hydrogenation for butanol, and butyraldehyde through condensation, Hydrogenation for isooctanol, be the main way of commercial production fourth, capryl alcohol Footpath, butanol and capryl alcohol annual production are more than 10,000,000 tons in the world.Hydroformylation of propene produces butyraldehyde and uses carbonyl cobalt the earliest Catalyst, reaction to be carried out at high temperature under high pressure, reaction temperature 110~180 DEG C, stagnation pressure 20~35MPa, the ratio of just/isobutylaldehyde It is 80/20, butyraldehyde selectivity only 80%, butanol selectivity 10%.Use phosphine-modified HCo (CO)3(PR3) Co catalysts, though So total pressure drop is to 5~10MPa, but the selectivity generating butyraldehyde is low, and primary product butanol accounts for 80%.[oxo process chemistry, Chapter 1, OXO course of reaction, Chemical Industry Press, 1996.1.7], catalyst separates employing distillation under pressure method with product, Troublesome poeration, condition is harsh, and research later finds that rhodium-phosphine complex catalyst is the highest to hydroformylation of propene activity, good stability, Reaction condition is gentle, and temperature and pressure is more much lower than cobalt catalyst system, and the selectivity generating aldehyde is good, hutanal and isobutyl The ratio of aldehyde is high, and the hydroformylation of propene therefore built after the seventies in last century produces butyraldehyde method, be the most all use rhodium- Triphenylphosphine complex catalyst (following triphenylphosphine is abbreviated as TPP), its industrial manufacture process is mainly UCC/Davy/JMC connection Running the homogeneous catalysis technology sent out jointly, this is referred to as low pressure oxo synthesis, and rhodium-phosphine complex catalyst is HRh (CO) (PPh3)3, mainly Response parameter is: temperature 85~120 DEG C, stagnation pressure 1.5~2.0MPa, and rhodium concentration is low 2~3 orders of magnitude, triphenyl than cobalt concentration The mol ratio of phosphine/rhodium catalyst is more than 250, and generating butyraldehyde selectivity is 96%, butyraldehyde just/Isomer ratio reaches 90/10, substantially without Butanol generates.[E.Wiebus, et al., Chem.Ing.Tech. (Ger), 66 (7), 916 (1994);US 4593127 (1986);US 4731486(1988);Chem.Week, 146 (10), 67 (1990);Process Technology, 71 (4), 21 (1990)], catalyst separates employing high pressure falling liquid film with product and low pressure falling liquid film two-stage separates, and is recycled by catalyst;Day This Rhizoma Sparganii chemical conversion company almost develops the low pressure oxo process technology of Rhodium Phosphine catalyst with union carbide corporation of the U.S. simultaneously, but Rhizoma Sparganii Company law reaction pressure is higher, and catalyst stability is poor, so use is little, and [Japanese Laid-Open Patent Publication, clear 50- 41805(1975);Mitsubishi Chemical Industries Limited, chemistry workshop, 24 (1), 90 (1980)].
Using bidentate phosphine ligands 2,2 '-two (diphenyl phosphine methyl)-1,1 '-biphenyl (hereinafter referred to as BISBI) and Rh form Catalyst system research have been reported [Hughes, O.R..et al.J.Mol.Catal., 12,71 (1981);WO 8707600 (1987);US 694109(1987);US 4879416(1989);US 5332846 (1994), DE 4333307 (1994); Casey, C.P.et al.J.Am.Chem.Soc, 114,5535 (1995)], it is when propene hydroformylation reaction, with Under the reaction condition that Rh-TPP catalyst system is identical, although response speed is slightly slow, but generate butyraldehyde just/different ratio is up to 20:1 More than (mol ratio).Complicated yet with BISBI preparation process, expensive, therefore application is seldom.
Summary of the invention
It is an object of the invention to overcome defect of the prior art, design and a kind of be intended to keep biphosphine ligand BISBI Under the conditions of excellent properties, reduce expensive BISBI consumption, reduce catalyst cost, drastically reduce the area UCC/Davy/ simultaneously The TPP consumption used in JMC technology.Therefore the composite catalyst body being made up of Rh complex-BISBI-TPP has been researched and developed System, has reached catalytic quickening, and according to market demand, can will generate the ratio of just/isobutylaldehyde at 9:1 to 30:1 The method that the hydroformylation of propene of the flexible modulation of (mol ratio) range above prepares butyraldehyde.
For achieving the above object, the hydroformylation of propene of the present invention prepares the homogeneous catalytic reaction method of butyraldehyde is by following Technical measures realize, and wherein said raw material number, in addition to specified otherwise, is molfraction.
A kind of hydroformylation of propene prepares the method for butyraldehyde, said method comprising the steps of:
The first step, is 5 × 10 by concentration-4~6 × 10-3The rhodium compound of mol/L, is 1~40 with the mol ratio of rhodium Bidentate phosphine ligands 2,2 '-two (diphenyl phosphine methyl)-1,1 '-biphenyl, with answering that the triphenylphosphine that mol ratio is 2~20 of rhodium forms Close catalyst, be dissolved in toluene or hutanal or methyl phenyl ethers anisole, add in the autoclave of belt stirrer and temperature controller Stirring;
Second step, adds hydrogen in autoclave and carbon monoxide mole ratios is the synthesis gas of 1:1, air 3~5 in displacement still Secondary;
3rd step, after the air in second step has been replaced, adds in autoclave by pump by propylene, makes propylene and rhodium Mol ratio be 500~6000;
4th step, after the 3rd step completes, then adds synthesis gas that to keep stagnation pressure in still in autoclave be 1~3MPa, React under conditions of temperature 80~130 DEG C;
5th step, after four-step reaction stops, being cooled to room temperature by the mixture solution in autoclave, and sampling is carried out point Analysis, product is steamed under synthesis gas is protected by reaction mixture solution through decompression distillation;
6th step, after the product in the 5th step steams, can reuse in catalyst solution returns autoclave.
Wherein preferably technical scheme is, the Phosphine ligands in the described first step be 2,2 '-two (diphenyl phosphine methyl)-1,1 '- Biphenyl (be called for short: BISBI) and triphenylphosphine (abbreviation: the TPP) complex formed:
Wherein P is phosphorus, and Ph is phenyl, and Phosphine ligands is 10~60 with total mol ratio of rhodium, and 2,2 '-two (diphenyl phosphine first Base)-1, the mol ratio of 1 '-biphenyl and triphenylphosphine is 1:10~10:1, can hutanal and isobutylaldehyde in product as required Ratio be adjusted.
Preferably technical scheme also has, and the rhodium complex in the described first step is: double (triphenylphosphine) carbonyl radium chloride [RhCl(CO)(TPP)2], three (triphenylphosphine) radium chloride [RhCl (TPP)3], three (triphenylphosphine) carbonyl hydrogenation Rh [HRh (CO) (TPP)3], carbonyl-triphenylphosphine-acetylacetone,2,4-pentanedione rhodium [Rh (CO) (TPP) (acac)], dicarbonyl rhodium acetylacetonate [Rh (CO)2 (acac) any one or a combination thereof in], wherein acac represents acetylacetone,2,4-pentanedione.
Further preferred technical scheme also has, and the concentration of rhodium compound is 1.5 × 10-3~4 × 10-3Mol/L.
Preferably technical scheme also has, and the reaction pressure in described 4th step is 1.6~2.2MPa.
Preferably technical scheme also has, and the optimum temperature of the reaction in described 4th step is 85~110 DEG C.
Preferably technical scheme also has, and the rhodium phosphine complex catalyst in described 6th step is under synthesis gas is protected, permissible Decompression separated goes out product, is continuing with in then returning again to autoclave.
Use gas chromatographic analysis product assay: propylene conversion 90~98%, generate butyraldehyde selectivity 97~98%, positive fourth The ratio scalable of aldehyde and isobutylaldehyde is between 9~30.
Hydroformylation of propene of the present invention is prepared the advantage of the method for butyraldehyde and has the beneficial effects that:
(1) to be used alone triphenylphosphine more than UCC/Davy/JMC Technology few for Phosphine ligands consumption, Phosphine ligands total amount with Rhodium complex mol ratio is 10~60, and the triphenylphosphine and the rhodium complex that use in UCC/Davy/JMC Technology mole Ratio is more than 250, owing to triphenylphosphine is in reaction solution during therefore the present invention can overcome UCC/Davy/JMC Technology Concentration is high, is susceptible to the shortcoming blocking pipeline.
(2) in complex catalyst system, the mol ratio of BISBI and triphenylphosphine is 1:10 to 10:1.Both costliness had been decreased BISBI consumption, is conducive to again protection BISBI to be difficult to oxidized.
(3) complex catalyst system separates with product butyraldehyde, the method that can use low-pressure distillation, because bidentate phosphine ligands More more stable with the complex that rhodium is formed than triphenylphosphine with the complex that rhodium is formed.
(4) just/isobutylaldehyde in the mixing butyraldehyde of generation can be regulated by the mol ratio change of triphenylphosphine with BISBI Ratio, to adapt to the demand in market.
Detailed description of the invention
Below in conjunction with embodiment, the detailed description of the invention of the present invention is further described.Following example are only used for more Add and clearly demonstrate technical scheme, and can not limit the scope of the invention with this.
The present invention is a kind of method that hydroformylation of propene prepares butyraldehyde, said method comprising the steps of:
The first step, is 5 × 10 by concentration-4~6 × 10-3The rhodium compound of mol/L, is 1~40 with the mol ratio of rhodium Bidentate phosphine ligands 2,2 '-two (diphenyl phosphine methyl)-1,1 '-biphenyl, with answering that the triphenylphosphine that mol ratio is 2~20 of rhodium forms Close catalyst, be dissolved in toluene or hutanal or methyl phenyl ethers anisole, add in the autoclave of belt stirrer and temperature controller Stirring;
Second step, adds hydrogen in autoclave and carbon monoxide mole ratios is the synthesis gas of 1:1, air 3~5 in displacement still Secondary;
3rd step, after the air in second step has been replaced, adds in autoclave by pump by propylene, makes propylene and rhodium Mol ratio be 500~6000;
4th step, after the 3rd step completes, then adds synthesis gas that to keep stagnation pressure in still in autoclave be 1~3MPa, React under conditions of temperature 80~130 DEG C;
5th step, after four-step reaction stops, being cooled to room temperature by the mixture solution in autoclave, and sampling is carried out point Analysis, product is steamed under synthesis gas is protected by reaction mixture solution through decompression distillation;
6th step, after the product in the 5th step steams, can reuse in catalyst solution returns autoclave.
The preferred embodiment of the invention is, the Phosphine ligands in the described first step is 2,2 '-two (diphenyl phosphine methyl)-1, 1 '-biphenyl (be called for short: BISBI) and triphenylphosphine (abbreviation: the TPP) complex formed:
Wherein P is phosphorus, and Ph is phenyl, and Phosphine ligands is 10~60 with total mol ratio of rhodium, and 2,2 '-two (diphenyl phosphine first Base)-1, the mol ratio of 1 '-biphenyl and triphenylphosphine is 1:10~10:1, can hutanal and isobutylaldehyde in product as required Ratio be adjusted.
The preferred embodiment of the invention also has, and the rhodium complex in the described first step is: double (triphenylphosphine) carbonyl chlorine Change rhodium [RhCl (CO) (TPP)2], three (triphenylphosphine) radium chloride [RhCl (TPP)3], three (triphenylphosphine) carbonyl hydrogenation Rh [HRh (CO)(TPP)3], carbonyl-triphenylphosphine-acetylacetone,2,4-pentanedione rhodium [Rh (CO) (TPP) (acac)], dicarbonyl rhodium acetylacetonate [Rh (CO)2(acac) any one or a combination thereof in], wherein acac represents acetylacetone,2,4-pentanedione.
Further preferred embodiment of the present invention also has, and the concentration of rhodium compound is 1.5 × 10-3~4 × 10-3Mole/ Rise.
The preferred embodiment of the invention also has, and the reaction pressure in described 4th step is 1.6~2.2MPa.
The preferred embodiment of the invention also has, and the optimum temperature of the reaction in described 4th step is 85~110 DEG C.
The preferred embodiment of the invention also has, and the rhodium phosphine complex catalyst in described 6th step is protected at synthesis gas Under, the separated that can reduce pressure goes out product, is continuing with in then returning again to autoclave.
Use gas chromatographic analysis product assay: propylene conversion 90~98%, generate butyraldehyde selectivity 97~98%, positive fourth The ratio scalable of aldehyde and isobutylaldehyde is between 9~30.
Embodiment 1:
By 100 grams of toluene, molar concentration is respectively 1.5 × 10-3The rhodium catalyst HRh (CO) (TPP) of mol/L3, 6 × 10-2The biphosphine ligand BISBI of mol/L, 3 × 10-3The TPP of mol/L, adds in 250 milliliters of autoclaves of belt stirrer, H is used in autoclave2: the synthesis gas of CO=1:1 (mol ratio) is replaced 3~5 times, is subsequently adding propylene 27 grams, adds synthesis gas Stagnation pressure 1.6MPa to still, reaction temperature 85 DEG C, reacts 1 hour under mixing speed 200rpm, is cooled to room temperature, discharges not After the gas reacted, reactant liquor gas chromatogram being analyzed, trying to achieve propylene conversion is 85%, and the butyraldehyde of generation selects Property be 98%, wherein the mol ratio of hutanal and isobutylaldehyde is 25:1.
Embodiment 2:
By 125 grams of methyl phenyl ethers anisoles, molar concentration is respectively 2 × 10-3The rhodium catalyst RhCl (CO) (TPP) of mol/L2, 4 × 10-2The BISBI of mol/L, 6 × 10-3The TPP of mol/L adds in 250 milliliters of autoclaves of belt stirrer, uses in autoclave H2: the synthesis gas of CO=1:1 (mol ratio) is replaced 3~5 times, is subsequently adding propylene 30 grams, adds synthesis gas to stagnation pressure in still 1.8MPa, reaction temperature 90 DEG C, mixing speed 200rpm is reacted 1 hour, after reactant liquor is cooled to room temperature in autoclave, is released Releasing the gas that unreacted is complete, take out reactant liquor gas chromatogram and be analyzed, trying to achieve propylene conversion is 94%, generates butyraldehyde Selectivity 97%, wherein the mol ratio of hutanal and isobutylaldehyde is 21:1.
Embodiment 3:
By 100 grams of hutanals, molar concentration is respectively 2.5 × 10-3The rhodium catalyst Rh (CO) of mol/L2(acac), 8 ×10-3The BISBI of mol/L, 5 × 10-2The TPP of mol/L adds in 250 milliliters of autoclaves of belt stirrer, in autoclave Use H2: the synthesis gas of CO=1:1 (mol ratio) is replaced 3~5 times, is subsequently adding propylene 40 grams, adds synthesis gas to total in still Pressure 2.0MPa, reaction temperature 100 DEG C, mixing speed 200rpm is reacted 1 hour, and in treating autoclave, reactant liquor is cooled to room temperature After, discharge the gas that unreacted is complete, take out reactant liquor gas chromatogram and be analyzed, trying to achieve propylene conversion is 96%, raw Become butyraldehyde selectivity 97%, the most just/isobutylaldehyde ratio be 15:1.
Embodiment 4:
By 100 grams of hutanals, molar concentration is respectively 3 × 10-3The rhodium catalyst Rh (CO) (acac) (TPP) of mol/L, 3×10-2The BISBI of mol/L, 6 × 10-2The TPP of mol/L adds in 250 milliliters of autoclaves of belt stirrer, autoclave Inside use H2: the synthesis gas of CO=1:1 (mol ratio) is replaced 3~5 times, is subsequently adding propylene 60 grams, adds synthesis gas in still Stagnation pressure 1.8MPa, reaction temperature 95 DEG C, mixing speed 250rpm is reacted 2 hours, and in treating autoclave, reactant liquor is cooled to room temperature After, discharge the gas that unreacted is complete, take out reactant liquor gas chromatogram and be analyzed, trying to achieve propylene conversion is 92%, raw Become butyraldehyde selectivity 98%, the most just/isobutylaldehyde ratio be 19:1.
Embodiment 5:
By 100 grams of toluene, molar concentration is respectively 1.7 × 10-3The rhodium catalyst HRh (CO) (TPP) of mol/L3, 5 × 10-2Part BISBI of mol/L, 2 × 10-2The TPP of mol/L adds in 250 milliliters of autoclaves of belt stirrer, in autoclave Use H2: the synthesis gas of CO=1:1 (mol ratio) is replaced 3~5 times, is subsequently adding propylene 32 grams, adds synthesis gas to total in still Pressure 2.0MPa, reaction temperature 100 DEG C, mixing speed 200rpm is reacted 1 hour, and in treating autoclave, reactant liquor is cooled to room temperature After, discharge the gas that unreacted is complete, take out reactant liquor gas chromatogram and be analyzed, trying to achieve propylene conversion is 95%, raw Become butyraldehyde selectivity 97%, the most just/isobutylaldehyde ratio be 23:1.
Embodiment 6:
By 100 grams of hutanals, molar concentration is respectively 2.3 × 10-3The rhodium catalyst HRh (CO) of mol/L2(BISBI), 1×10-2The BISBI of mol/L, 9 × 10-2The TPP of mol/L adds in 250 milliliters of autoclaves of belt stirrer, autoclave Inside use H2: the synthesis gas of CO=1:1 (mol ratio) is replaced 3~5 times, is subsequently adding propylene 35 grams, adds synthesis gas in still Stagnation pressure 2.0MPa, reaction temperature 100 DEG C, mixing speed 200rpm is reacted 2 hours, and in treating autoclave, reactant liquor is cooled to room temperature After, discharge the gas that unreacted is complete, take out reactant liquor gas chromatogram and be analyzed, trying to achieve propylene conversion is 95%, raw Become butyraldehyde selectivity 98%, the most just/isobutylaldehyde ratio be 14:1.
Embodiment 7:
By the reactant liquor of embodiment 2 after distilling out butyraldehyde, the catalyst solution of gained adds 250 milliliters of belt stirrer In autoclave, in autoclave, use H2: the synthesis gas of CO=1:1 (mol ratio) is replaced 3~5 times, is subsequently adding propylene 30 grams, then adds Entering synthesis gas to stagnation pressure 2.0MPa in still, reaction temperature 90 DEG C, mixing speed 200rpm is reacted 1 hour, anti-in treating autoclave After answering liquid to be cooled to room temperature, discharge the gas that unreacted is complete, take out reactant liquor gas chromatogram and be analyzed, try to achieve propylene and turn Rate is 96%, generate butyraldehyde selectivity 97%, the most just/isobutylaldehyde ratio be 22:1.
The above is only the preferred embodiment of the present invention, it is noted that for the ordinary skill people of the art For Yuan, on the premise of without departing from the technology of the present invention principle, it is also possible to make some improvements and modifications, these improvements and modifications Also should be regarded as protection scope of the present invention.

Claims (7)

1. the method that a hydroformylation of propene prepares butyraldehyde, it is characterised in that said method comprising the steps of:
The first step, is 5 × 10 by concentration-4~6 × 10-3The rhodium compound of mol/L, with the bidentate that mol ratio is 1~40 of rhodium Phosphine ligands 2,2 '-two (diphenyl phosphine methyl)-1,1 '-biphenyl, with compound the urging of the triphenylphosphine composition that the mol ratio of rhodium is 2~20 Agent, is dissolved in toluene or hutanal or methyl phenyl ethers anisole, adds in the autoclave of belt stirrer and temperature controller and stirs;
Second step, adding hydrogen and carbon monoxide mole ratios in autoclave is the synthesis gas of 1:1, air 3~5 times in displacement still;
3rd step, after the air in second step has been replaced, adds in autoclave by pump by propylene, makes rubbing of propylene and rhodium Your ratio is 500~6000;
4th step, after the 3rd step completes, then adds synthesis gas that to keep stagnation pressure in still in autoclave be 1~3MPa, in temperature React under conditions of 80~130 DEG C;
5th step, after four-step reaction stops, being cooled to room temperature by the mixture solution in autoclave, and sampling is analyzed, Product is steamed under synthesis gas is protected by reaction mixture solution through decompression distillation;
6th step, after the product in the 5th step steams, can reuse in catalyst solution returns autoclave.
2. the method that hydroformylation of propene as claimed in claim 1 prepares butyraldehyde, it is characterised in that the phosphine in the described first step Part is 2,2 '-two (diphenyl phosphine methyl)-1,1 '-biphenyl (abbreviation: BISBI) (be called for short: TPP) form is compound with triphenylphosphine Thing:
Wherein P is phosphorus, and Ph is phenyl, and Phosphine ligands is 10~60 with total mol ratio of rhodium, and 2,2 '-two (diphenyl phosphine methyl)-1, The mol ratio of 1 '-biphenyl and triphenylphosphine is 1:10~10:1, can enter by the ratio of hutanal and isobutylaldehyde in product as required Row regulation.
3. the method that hydroformylation of propene as claimed in claim 1 prepares butyraldehyde, it is characterised in that the rhodium in the described first step Complex is: double (triphenylphosphine) carbonyl radium chloride [RhCl (CO) (TPP)2], three (triphenylphosphine) radium chloride [RhCl (TPP)3], three (triphenylphosphine) carbonyl hydrogenation Rh [HRh (CO) (TPP)3], carbonyl-triphenylphosphine-acetylacetone,2,4-pentanedione rhodium [Rh (CO) (TPP) (acac)], dicarbonyl rhodium acetylacetonate [Rh (CO)2(acac) any one or a combination thereof in], wherein acac represents Acetylacetone,2,4-pentanedione.
4. the method that hydroformylation of propene prepares butyraldehyde as claimed in claim 3, it is characterised in that the concentration of rhodium compound is 1.5×10-3~4 × 10-3Mol/L.
5. the method that hydroformylation of propene prepares butyraldehyde as claimed in claim 1, it is characterised in that the reaction in described 4th step Pressure is 1.6~2.2MPa.
6. the method that hydroformylation of propene prepares butyraldehyde as claimed in claim 1, it is characterised in that the reaction in described 4th step Optimum temperature be 85~110 DEG C.
7. the method that hydroformylation of propene prepares butyraldehyde as claimed in claim 1, it is characterised in that the rhodium phosphine in described 6th step Complex compound catalyst is under synthesis gas is protected, and the separated that can reduce pressure goes out product, is continuing with in then returning again to autoclave.
CN201610516991.8A 2016-06-30 2016-06-30 A kind of hydroformylation of propene prepares the method for butyraldehyde Pending CN106083551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610516991.8A CN106083551A (en) 2016-06-30 2016-06-30 A kind of hydroformylation of propene prepares the method for butyraldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610516991.8A CN106083551A (en) 2016-06-30 2016-06-30 A kind of hydroformylation of propene prepares the method for butyraldehyde

Publications (1)

Publication Number Publication Date
CN106083551A true CN106083551A (en) 2016-11-09

Family

ID=57211900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610516991.8A Pending CN106083551A (en) 2016-06-30 2016-06-30 A kind of hydroformylation of propene prepares the method for butyraldehyde

Country Status (1)

Country Link
CN (1) CN106083551A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109456154A (en) * 2018-11-14 2019-03-12 成都欣华源科技有限责任公司 A method of fatty aldehyde is prepared by hydroformylation reaction
CN112844488A (en) * 2021-01-13 2021-05-28 成都欣华源科技有限责任公司 Catalyst composition and application thereof in styrene hydroformylation reaction
CN113087601A (en) * 2019-12-23 2021-07-09 内蒙古伊泰煤基新材料研究院有限公司 High-carbon ether preparation method based on Fischer-Tropsch olefins and high-carbon ether phase change material
CN113387780A (en) * 2021-07-26 2021-09-14 济南烟港技术咨询有限公司 Method and system for producing butyraldehyde by liquid-phase two-stage circulation rhodium-method propylene hydroformylation
US11130725B2 (en) 2018-05-30 2021-09-28 Dow Technology Investments Llc Methods for slowing deactivation of a catalyst and/or slowing tetraphosphine ligand usage in hydroformylation processes
CN113480415A (en) * 2021-06-30 2021-10-08 中国成达工程有限公司 Process for synthesizing butanedialdehyde by acrolein hydroformylation
US11344869B2 (en) 2018-05-30 2022-05-31 Dow Technology Investments Llc Methods of controlling hydroformylation processes
CN114988991A (en) * 2022-05-31 2022-09-02 中海油天津化工研究设计院有限公司 Method for preparing isomeric aldehyde by olefin hydroformylation
EP4121406A4 (en) * 2020-03-19 2024-05-01 Univ North Carolina State Aldehyde generation via alkene hydroformylation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627439A1 (en) * 1993-06-01 1994-12-07 Eastman Chemical Company Hydroformylation process using novel phosphine-rhodium catalyst system
CN1106816A (en) * 1993-09-30 1995-08-16 赫彻斯特股份公司 Cyclic compound of three valent phosphors
JP2006312612A (en) * 2005-05-09 2006-11-16 Mitsubishi Chemicals Corp Method for producing alcohol
JP2012188413A (en) * 2010-10-20 2012-10-04 Mitsubishi Chemicals Corp Process for producing aldehyde, and process for producing alcohol
CN102911021A (en) * 2012-11-12 2013-02-06 青岛三力本诺化学工业有限公司 Method for preparing aldehyde through linear chain olefin hydroformylation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627439A1 (en) * 1993-06-01 1994-12-07 Eastman Chemical Company Hydroformylation process using novel phosphine-rhodium catalyst system
CN1106816A (en) * 1993-09-30 1995-08-16 赫彻斯特股份公司 Cyclic compound of three valent phosphors
JP2006312612A (en) * 2005-05-09 2006-11-16 Mitsubishi Chemicals Corp Method for producing alcohol
JP2012188413A (en) * 2010-10-20 2012-10-04 Mitsubishi Chemicals Corp Process for producing aldehyde, and process for producing alcohol
CN102911021A (en) * 2012-11-12 2013-02-06 青岛三力本诺化学工业有限公司 Method for preparing aldehyde through linear chain olefin hydroformylation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130725B2 (en) 2018-05-30 2021-09-28 Dow Technology Investments Llc Methods for slowing deactivation of a catalyst and/or slowing tetraphosphine ligand usage in hydroformylation processes
US11344869B2 (en) 2018-05-30 2022-05-31 Dow Technology Investments Llc Methods of controlling hydroformylation processes
CN109456154A (en) * 2018-11-14 2019-03-12 成都欣华源科技有限责任公司 A method of fatty aldehyde is prepared by hydroformylation reaction
CN113087601A (en) * 2019-12-23 2021-07-09 内蒙古伊泰煤基新材料研究院有限公司 High-carbon ether preparation method based on Fischer-Tropsch olefins and high-carbon ether phase change material
CN113087601B (en) * 2019-12-23 2023-12-26 内蒙古伊泰煤基新材料研究院有限公司 Fischer-Tropsch olefin-based high-carbon ether preparation method and high-carbon ether phase change material
EP4121406A4 (en) * 2020-03-19 2024-05-01 Univ North Carolina State Aldehyde generation via alkene hydroformylation
CN112844488B (en) * 2021-01-13 2023-03-10 成都欣华源科技有限责任公司 Catalyst composition and application thereof in styrene hydroformylation reaction
CN112844488A (en) * 2021-01-13 2021-05-28 成都欣华源科技有限责任公司 Catalyst composition and application thereof in styrene hydroformylation reaction
CN113480415B (en) * 2021-06-30 2023-10-24 中国成达工程有限公司 Process for synthesizing glyoxal by hydroformylation of acrolein
CN113480415A (en) * 2021-06-30 2021-10-08 中国成达工程有限公司 Process for synthesizing butanedialdehyde by acrolein hydroformylation
CN113387780A (en) * 2021-07-26 2021-09-14 济南烟港技术咨询有限公司 Method and system for producing butyraldehyde by liquid-phase two-stage circulation rhodium-method propylene hydroformylation
CN114988991A (en) * 2022-05-31 2022-09-02 中海油天津化工研究设计院有限公司 Method for preparing isomeric aldehyde by olefin hydroformylation
CN114988991B (en) * 2022-05-31 2024-02-09 中海油天津化工研究设计院有限公司 Method for preparing isomeric aldehyde by hydroformylation of olefin

Similar Documents

Publication Publication Date Title
CN106083551A (en) A kind of hydroformylation of propene prepares the method for butyraldehyde
CN111606792B (en) Method for preparing high-carbon aldehyde
CN102911021A (en) Method for preparing aldehyde through linear chain olefin hydroformylation
AU2011275531A1 (en) Conversion of alcohols
CN103764607A (en) Single solvent gas expanded hydroformylation process
CN110981709B (en) Method for preparing aldehyde by hydroformylation of internal olefin
CN103561869A (en) Catalyst composition for hydroformylation reaction and hydroformylation method using same
CN113372206A (en) Method for synthesizing high-carbon aldehyde by using microchannel reaction device
CN101522598B (en) Process for coproduction of normal butanol and isobutyraldehyde
JP2984231B2 (en) Method for hydroformylation of olefinically unsaturated compounds
Cole-Hamilton et al. Homogeneous catalysis—advantages and problems
WO2013181255A1 (en) Rate and selectivity improvement in hydroformylation of allyl alcohol
CN108349863B (en) Method for producing aldehyde
CN107597192A (en) A kind of catalyst and hydroformylation reaction method for hydroformylation reaction
CN1171981A (en) Catalyst ststems based on rhodium complexes containing diphosphine ligands and their use preparation of aldehydes
Steinmetz et al. Study of Group VIII metal promoters in the cobalt-catalyzed carbonylation of methanol to acetaldehyde
CN114522740B (en) Method for preparing 3-acetoxypropanol from vinyl acetate
CN111729687B (en) Preparation method and application of hydroformylation catalyst
CN103896748A (en) Application of rhodium catalyst and aldehyde production method using same
JPH0662480B2 (en) Method for producing α, ω-dialdehyde
US11370737B2 (en) Co-feeding ethylene with allyl alcohol in hydroformylation to make 1,4-butanediol and n-propanol
TWI830181B (en) Methylcyclohexane as allyl alcohol hydroformylation solvent
EP2848604B1 (en) Method for producing branched chain aldehyde
Minchenkova Mechanistic investigation of CO2 hydroformylation methods
KR20160032528A (en) Aqueous hydroformylation having improved iso-aldehyde selectivity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161109