CN106080263B - A kind of optimization method of electric wheel truck chassis system - Google Patents

A kind of optimization method of electric wheel truck chassis system Download PDF

Info

Publication number
CN106080263B
CN106080263B CN201610517268.1A CN201610517268A CN106080263B CN 106080263 B CN106080263 B CN 106080263B CN 201610517268 A CN201610517268 A CN 201610517268A CN 106080263 B CN106080263 B CN 106080263B
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
msup
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610517268.1A
Other languages
Chinese (zh)
Other versions
CN106080263A (en
Inventor
赵万忠
杨遵四
王春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201610517268.1A priority Critical patent/CN106080263B/en
Publication of CN106080263A publication Critical patent/CN106080263A/en
Application granted granted Critical
Publication of CN106080263B publication Critical patent/CN106080263B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

The invention discloses a kind of electric wheel truck chassis system and its optimization method, chassis system includes differential steering module, differential braking module and Active suspension module;Differential steering module includes steering wheel torque rotary angle transmitter, rack and pinion steering gear, two wheel hub motors, vehicle speed sensor, two wheel speed sensors, yaw-rate sensor and differential steering control ECU;Active suspension module includes flexible member, damping element, forcer and guiding mechanism;Differential braking module includes brake pedal position sensor and differential braking control ECU.Under steering/damped condition, using steering response, steering sensitivity, suspension ride comfort as performance indications, using the parameter of three modules of the invention as optimized variable, chassis system is optimized based on the algorithms of NSGA II, system is set to obtain preferable steering response and steering sensitivity while ensure automobile ride, so as to improve the whole synthesis performance of electric wheel truck chassis system.

Description

A kind of optimization method of electric wheel truck chassis system
Technical field
The present invention relates to automobile steering system, suspension system, brakes field, specifically a kind of electric wheel truck chassis System and its optimization method.
Background technology
This body structure of Electric Motor Wheel technology has good advantage, it is widely used on electric automobile.Due to Electric Motor Wheel technology eliminates the mechanisms such as speed changer, differential mechanism, simplifies transmission system, not only increases transmission efficiency, and subtract The interior space that small transmission system takes;Motor and reducing gear are directly become one with wheel, are advantageous to vehicle Arrangement.
Electric wheel truck is employed different from traditional steering and brake structure, using differential power-assisted steering and differential braking Technology, by changing the output torque of left and right wheelses wheel hub motor, carry out the force transfering characteristic of control system, realize power-assisted steering work( Energy;The additional rotation angle provided by wheel hub motor, carrys out the displacement transmission characteristic of control system, realizes active steering function;Pass through Change input hub current of electric size, control brake drag square size, realize differential braking function.Above-mentioned function is all by taking turns Hub motor is realized, but because motor and fixed speed ratio deceleration device are formed integrally, tire is directly installed on deceleration device In output end, in this configuration, Electric Motor Wheel quality is all as nonspring carried mass so that the dynamics of nonspring carried mass Change, influence ride comfort of the nonspring carried mass in motion process.
Steering, suspension system and brakes are three important subsystems in electric wheel truck chassis, its performance The vehicle combination property such as control stability, ride comfort and driving safety of electric wheel truck is directly affected, in three subsystems Dependency structure parameter directly affects its performance indications, so as to influence vehicle combination property.Generally to electric wheel truck chassis three When the performance of big subsystem optimizes analysis, people's custom is relatively independent influencing each other between them, i.e., to Electric Motor Wheel Automobile steering system, suspension system and brakes are established relatively independent kinetic model and analyzed.For example, analysis automobile During the vibration ride comfort of suspension, often ignore the influence of side force of tire and longitudinal force to it;Or in analysis automotive steering System weaving and ignore vertical factor caused by road roughness input and body vibrations and body roll during lateral movement Influence.Such analysis simplifies the complexity of kinetic model with hypothesis to a certain extent, reduces the difficulty of performance evaluation Degree, but the practical performance of electric wheel truck global optimization is decreased simultaneously.
Automobile the yaw velocity of steering situation under body, damped condition under body the performance indications such as the angle of pitch to outstanding Frame performance has important influence;Turn to simultaneously, the optimization of brakes is also influenceed by suspension optimization.Due to three subsystems Certain coupled relation between system be present, influence each other between subsystem, mutually restrict, simple serial optimized overlap-add can not Obtain the optimal whole synthesis performance of integrated system.
The content of the invention
The technical problems to be solved by the invention are to be directed to the defects of involved in background technology, there is provided a kind of Electric Motor Wheel Automobile chassis system and its optimization method, according to obtained by sensor speed, wheel speed, steering wheel angle, steering moment, yaw The information such as angular speed, brake pedal position, road surface input, under steering/damped condition, consider to turn to yaw moment and lateral Power, the braking influence such as longitudinal force and the angle of pitch, suspension roll, tire vertical load, road excitation and differential steering module machinery The influences of the factor to electric wheel truck overall performance such as parameter, Active suspension modular structure parameter, differential braking mechanical parameter, it is right Chassis system optimizes.
The present invention uses following technical scheme to solve above-mentioned technical problem:
A kind of electric wheel truck chassis system, include differential steering module, differential braking module and Active suspension module;
The differential steering module include steering wheel torque rotary angle transmitter, rack and pinion steering gear, two wheel hub motors, Vehicle speed sensor, two wheel speed sensors, yaw-rate sensor and differential steering control ECU;
The steering wheel assembly of automobile is connected by steering column with rack and pinion steering gear, and rack and pinion steering gear passes through steering The axletree of drag link and vehicle front connects;
The steering wheel torque rotary angle transmitter is arranged on steering column, for obtaining the torque of vehicle steering and turning Angle;
Described two wheel hub motors are respectively used to the driving and braking of two front-wheels;
The vehicle speed sensor is used for the speed for obtaining automobile;
Described two wheel speed sensors are separately positioned on two front-wheels, are respectively used to obtain the angular speed of two front-wheels;
The yaw-rate sensor is used for the yaw velocity of automobile;
The differential steering control ECU senses with steering wheel torque rotary angle transmitter, two wheel hub motors, speed respectively Device, two wheel speed sensors, yaw-rate sensors are electrically connected, for the torque according to vehicle steering and corner, car Speed, angular speed, the yaw velocity of two front-wheels are adjusted, and send current signal to left and right wheel hub motor so that left and right wheels Hub motor exports different driving moments, to realize differential power-assisted steering;
The Active suspension module includes flexible member, damping element, forcer and guiding mechanism;
The vehicle body of automobile is connected by the guiding mechanism by flexible member, damping element, forcer with vehicle frame;
The differential braking module includes brake pedal position sensor and differential braking control ECU;
The brake pedal position sensor is used to obtain the stroke that automobile brake pedal is depressed;
The differential braking control ECU difference brake pedal position sensor, two wheel hub motors, vehicle speed sensor, two Individual wheel speed sensors, yaw-rate sensor are electrically connected, for depressed according to brake pedal stroke, speed, two Angular speed, the yaw velocity of front-wheel are adjusted, and send current signal to left and right wheel hub motor so that left and right wheel hub motor is defeated Go out different braking moments, to realize differential braking.
The invention also discloses a kind of optimization method of electric wheel truck chassis system, comprise the steps of:
Step 1), establish Active suspension modular model, differential steering modular model, Full Vehicle Dynamics model, differential braking Modular model, the differential steering modular model include steering wheel model, input shaft and output shaft model, rack-and-pinion model, Motor model, road surface input model and tire model.
Step 2), under damped condition, using steering response, steering sensitivity and suspension ride comfort as electric wheel truck chassis The Performance Evaluating Indexes of system, with steering stability, braking deceleration, suspension dynamic loading and spacing shifting for constraints, and build The object function of the performance indications of vertical differential steering module, differential braking module and Active suspension module:
Step 3), according to the target letter of the performance indications of differential steering module, differential braking module and Active suspension module Number establishes the Model for Multi-Objective Optimization of electric wheel truck chassis system;
Step 4), optimized variable, performance indications scope and constraint condition and range are set, based on the algorithms of NSGA- II to chassis System optimizes calculating, obtains Optimal Parameters of the chassis system about the optimized variable, and according to obtaining optimized variable Optimal Parameters correspond to parameter to chassis system and are adjusted.
As a kind of further prioritization scheme of optimization method of electric wheel truck chassis system of the present invention, the step 2) In:
1), the object function of differential steering module performance index:
In formula, f1(X) represent differential steering road feel in information of road surface effective frequency range (0, ω0) in frequency domain energy put down Average;ω0Represent the maximum frequency values of useful signal in information of road surface;E (s) is differential steering road feel transmission function:
In formula, Je、BeRespectively turn to output shaft and rack and pinion steering gear gear structure equivalent moment of inertia, damping;Th Steering wheel equivalent moment is acted on for driver;TwTo act on the moment of resistance of tire around pivot stud;KsPassed for steering wheel torque Sensor equivalent stiffness;rδFor the stub lateral offset of left and right two steering front wheel;R is radius of wheel;NlFor steering drag link with Distance between axletree;Jeq, BeqRespectively wheel hub motor and wheel set equivalent moment of inertia and damping;G is pinion and rack Gearratio;n2For the gearratio of steering screw to front-wheel;
2), the object function of differential braking module performance index:
In formula, f2(X) represent differential steering sensitivity in information of road surface effective frequency range (0, ω0) in frequency domain energy Average value;ω0Represent the maximum frequency values of useful signal in information of road surface;For differential steering sensitivity transmission function:
eωFor the distance of wheel center to stub;k1、k2For front-wheel cornering stiffness;Je、BeRespectively turn to output shaft and tooth Take turns rack steering gear gear structure equivalent moment of inertia, damping;E1For incline of front wheels steer coefficient;δ is front wheel steering angle;θsFor Steering wheel angle;β is side slip angle;ωrFor yaw velocity;For the angle of pitch;A automobiles barycenter to front axle distance;U is Automobile speed;
3), the object function of the performance indications of Active suspension module is:
In formula, w0、wi、wj+4For weight;s0、si、sj+4For scale factor;
σ2 xFor the frequency domain energy of three big evaluation index of ride comfort:
σxFor the standard deviation of vibratory response amount,For frequency,As amplitude versus frequency characte Gx(f) it is response quautity power spectral density,For the power spectral density of road surface input quantity;
For body vibrations acceleration transmission function:
For suspension dynamic deflection transmission function:
It is the relative dynamic loading transmission function of wheel:
m1iFor tire quality;m2iFor spring carried mass;k1iFor tire equivalent stiffness;k2iFor active suspension rate;c2iBased on Dynamic suspension damping;Subscript i is f or r, and f, r represent front and rear wheel respectively.
As a kind of further prioritization scheme of optimization method of electric wheel truck chassis system of the present invention, the step 3) The Model for Multi-Objective Optimization f (X) of middle electric wheel truck chassis system is:
In formula, f1(X) object function of differential steering module performance index is represented;f2(X) differential braking module performance is represented The object function of index;f3(X) object function of the performance indications of Active suspension module is represented;ω0Represent useful in information of road surface The maximum frequency values of signal, ω is taken in optimization design0=40Hz;Wi、w0、wi、wj+4For weight;Si、s0、si、sj+4For ratio because Son;σxFor the standard deviation of vibratory response amount.
As a kind of further prioritization scheme of optimization method of electric wheel truck chassis system of the present invention, the step 4) The optimized variable of middle setting is:
Output shaft and rack and pinion steering gear pinion structure equivalent moment of inertia J are turned in differential steering moduleeAnd resistance Buddhist nun Be, steering wheel torque sensor equivalent stiffness Ks, wheel hub motor and wheel set in differential steering module and differential braking module Equivalent moment of inertia JeqWith damping Beq, suspension rate coefficient k in Active suspension module2f、k2r, and suspension damping coefficient c2f、 c2f
As a kind of further prioritization scheme of optimization method of electric wheel truck chassis system of the present invention, the step 4) The constraints scope of middle setting is:
(1) in optimization process, the denominator of differential steering sensitivity transmission function should meet the constraint bar of Routh criterions Part;
(2) in optimization process, braking deceleration should meet a≤μrg;
(3) in optimization process, to prevent from resonating, suspension dynamic deflection ensures:fcr=(0.6~0.8) fcf, in formula: fcf =mfg/k2f, fcr=mrg/k2r
(4) in optimization process, according to the requirement of spacing shifting, relative damping factor meets ξ ∈ [0.25,0.35], wherein,
As a kind of further prioritization scheme of optimization method of electric wheel truck chassis system of the present invention, the step 4) The scope of the performance indications of middle setting is:
In optimization process, the object function of differential braking module performance index should meet 0.006≤f2(X)≤0.021。
The present invention compared with prior art, has following technique effect using above technical scheme:
1. a kind of electric wheel truck chassis system proposed by the present invention takes into full account differential steering module, Active suspension mould The relation that intercouples between block, differential braking module and module, while consider the integrated feature of steering, suspension and braking system And the influence of road surface input carries out the system integration, the degree of integration of electric wheel truck is improved, between more preferable analysis system Coupled relation and interaction;
2. the present invention carries out multiple-objection optimization using differential steering road feel, differential steering sensitivity, suspension ride comfort as target, Not only it is contemplated that the optimization of single subsystem, and global optimization parameter can be set, improve the entirety of electric wheel truck Optimization ability;
3. the present invention can be on the basis of vehicle ride performance, control stability and security be ensured, effective coordination Contradiction between ride performance and control stability of the vehicle under steering and damped condition, make vehicle equal under various operating modes The matched well of ride performance and operational stability can be realized, effectively improves Full Vehicle Dynamics performance, is the collection on chassis Provided fundamental basis into design and optimization.
Brief description of the drawings
Fig. 1 is differential steering of the present invention and differential braking module arrangement schematic diagram;
Fig. 2 is Active suspension module arrangement schematic diagram of the present invention;
Fig. 3 is chassis system Optimizing Flow figure of the present invention.
In figure, 1- steering wheel assemblies, 2- torque rotary angle transmitters, 3- steering wheel output shafts, 4- rack and pinion steering gears, 5- Track rod, 6- wheel hub motors, 7- wheels.
Embodiment
Technical scheme is described in further detail below in conjunction with the accompanying drawings:
The invention discloses a kind of electric wheel truck chassis system, comprising differential steering module, differential braking module and Active suspension module.
As shown in figure 1, differential steering module includes steering wheel torque rotary angle transmitter, rack and pinion steering gear, two wheels Hub motor, vehicle speed sensor, two wheel speed sensors, yaw-rate sensor and differential steering control ECU;The direction of automobile Disc assembly is connected by steering column with rack and pinion steering gear, and rack and pinion steering gear passes through track rod and vehicle front Axletree connects;Steering wheel torque rotary angle transmitter is arranged on steering column, for obtaining torque and the corner of vehicle steering;Two Individual wheel hub motor is respectively used to drive two front-drives;Vehicle speed sensor is used for the speed for obtaining automobile;Two wheel speed sensings Device is separately positioned on two front-wheels, is respectively used to obtain the angular speed of two front-wheels;Yaw-rate sensor is used for automobile Yaw velocity;Differential steering control ECU senses with steering wheel torque rotary angle transmitter, two wheel hub motors, speed respectively Device, two wheel speed sensors, yaw-rate sensors are electrically connected, for the torque according to vehicle steering and corner, car Speed, angular speed, the yaw velocity of two front-wheels are adjusted, and send current signal to left and right wheel hub motor so that left and right wheels Hub motor exports different torques, to realize differential power-assisted steering.
As shown in Fig. 2 Active suspension module includes flexible member, damping element, forcer and guiding mechanism, Guiding machine The vehicle body of automobile is connected by structure by flexible member, damping element, forcer with vehicle frame.
Differential braking module includes brake pedal position sensor and differential braking control ECU;Brake pedal position senses Device is used for the stroke depressed for obtaining automobile brake pedal;Differential braking control ECU difference brake pedal position sensor, two Wheel hub motor, vehicle speed sensor, two wheel speed sensors, yaw-rate sensors are electrically connected, for according to brake pedal Travel speed, angular speed, the yaw velocity of two front-wheels depressed is adjusted, and electric current letter is sent to left and right wheel hub motor Number so that left and right wheel hub motor exports different torques, to realize differential braking function.
As shown in figure 3, the present invention develops a kind of multiple target integrated optimization method based on electric wheel truck chassis system.
First, Active suspension modular model, differential steering modular model, Full Vehicle Dynamics model, differential braking mould are established Block models;Then chassis system optimization aim performance function is obtained, determines the parameter that had a great influence in chassis system to performance function As optimized variable, variable parameter, constraints, the border of performance indications are set, chassis system entered based on the algorithms of NSGA- II Row multiple-objection optimization.
When establishing model, differential steering modular model includes steering wheel model, input shaft and output shaft model, rack-and-pinion Model, motor model, road surface input model and tire model.
Under damped condition, using steering response, steering sensitivity and suspension ride comfort as electric wheel truck chassis system Performance Evaluating Indexes, with steering stability, braking deceleration, suspension dynamic loading and spacing shifting for constraints, and establish differential The quantitative formula of the Performance Evaluating Indexes of steering module, differential braking module and Active suspension module:
1), differential steering road feel Performance Evaluating Indexes quantitative formula is:
In formula, Je、BeRespectively turn to output shaft and rack and pinion steering gear gear structure equivalent moment of inertia, damping;Th Steering wheel equivalent moment is acted on for driver;TwTo act on the moment of resistance of tire around pivot stud;E (s) is differential steering Road feel transmission function;KsFor steering wheel torque sensor equivalent stiffness;rδFor the stub lateral offset of left and right two steering front wheel; R is radius of wheel;NlThe distance between steering drag link and axletree;Jeq, BeqRespectively wheel hub motor and equivalent turn of wheel set Dynamic inertia and damping;G is the gearratio of pinion and rack;n2For the gearratio of steering screw to front-wheel;
The object function of differential steering module performance index:
In formula, f1(X) represent differential steering road feel in information of road surface effective frequency range (0, ω0) in frequency domain energy put down Average;ω0Represent the maximum frequency values of useful signal in information of road surface.
2), differential steering sensitivity behaviour evaluation index quantitative formula is:
In formula, eωFor the distance of wheel center to stub;k1、k2For front-wheel cornering stiffness;Je、BeRespectively turn to output Axle and rack and pinion steering gear gear structure equivalent moment of inertia, damping;E1For incline of front wheels steer coefficient;δ is front-wheel steer Angle;β is side slip angle;ωrFor yaw velocity;For the angle of pitch;A automobiles barycenter to front axle distance;U is automobile speed;
The object function of differential braking module performance index:
In formula, f2(X) represent differential steering sensitivity in information of road surface effective frequency range (0, ω0) in frequency domain energy Average value;ω0Represent the maximum frequency values of useful signal in information of road surface.
3), body vibrations acceleration transmission function:
Suspension dynamic deflection transmission function:
Wheel is with respect to dynamic loading transmission function:
In formula, m1iFor tire quality;m2iFor spring carried mass;k1iFor tire equivalent stiffness;k2iFor active suspension rate;c2i For active suspension damping;Following table i is f or r, represents front and back wheel relevant parameter respectively;
For Active suspension vibrational system discussed above, road surface inputs by four wheels to system, it is contemplated that Function of road surface roughness is stationary random process, the vibratory response under linear system stationary random excitation, including body vibrations plus SpeedThe dynamic deflection δ of suspensiondWith dynamic wheel load FdThree vibratory response amounts, their power spectral density and road surface input quantity Power spectral density be represented by:
In formula:For frequency,As amplitude versus frequency characteGx(f) it is response quautity power Spectrum density;For the power spectral density of road surface input quantity;
Due to body vibrations accelerationThe dynamic deflection δ of suspensiondWith dynamic wheel load FdThree vibratory responses measure just, The probability of negative value is identical, so its mean approximation is zero.Therefore according to random vibration theory, response mean-square value is that Active suspension is put down Pliable Performance Evaluating Indexes quantitative formula is:
In formula, σxFor the standard deviation of vibratory response amount.
The object function of the performance indications of Active suspension module is:
In formula, w0、wi、wj+4For weight;s0、si、sj+4For scale factor.
Using steering response, steering sensitivity, suspension ride comfort as optimization aim, with steering stability, braking deceleration, hang Frame dynamic loading and spacing move are constraints, establish the Model for Multi-Objective Optimization of electric wheel truck chassis system, its optimization aim Function f (X) is:
In formula, f1(X) object function of the performance indications of differential steering module is represented;f2(X) differential steering module is represented The object function of performance indications;f3(X) object function of the performance indications of Active suspension module is represented;ω0Represent in information of road surface The maximum frequency values of useful signal, ω is taken in optimization design0=40Hz;Wi、w0、wi、wj+4For weight;Si、s0、si、sj+4For than The example factor;σxFor the standard deviation of vibratory response amount.
The scope of performance indications is:
In optimization process, the object function of differential braking module performance index should meet 0.006≤f2(X)≤0.021。
The multiple-objection optimization constraints of electric wheel truck chassis system is:
(1) in optimization process, the denominator of differential steering sensitivity transmission function should meet the constraint bar of Routh criterions Part;
(2) in optimization process, braking deceleration should meet a≤μrg;
(3) in optimization process, to prevent from resonating, suspension dynamic deflection ensures:fcr=(0.6~0.8) fcf, in formula: fcf =mfg/k2f, fcr=mrg/k2r
(4) in optimization process, according to the requirement of spacing shifting, relative damping factor meets ξ ∈ [0.25,0.35], wherein,
Output shaft and rack and pinion steering gear pinion structure equivalent moment of inertia J will be turned in differential steering moduleeWith Damp Be, steering wheel torque sensor equivalent stiffness Ks, wheel hub motor and wheel are total in differential steering module and differential braking module Into equivalent moment of inertia JeqWith damping Beq, suspension rate coefficient k in Active suspension module2f、k2r, suspension damping coefficient c2f、c2f For the design variable of electric wheel truck chassis system.
Optimized variable, performance indications scope, constraints scope are set, based on the algorithm algorithms of NSGA- II, with isight Software, design is optimized to chassis system, if meeting chassis system best performance, obtains chassis system Optimal Parameters, Otherwise return and re-start calculating, untill chassis system performance is optimal, finally give chassis system Optimal Parameters.
Those skilled in the art of the present technique are it is understood that unless otherwise defined, all terms used herein (including skill Art term and scientific terminology) with the general understanding identical meaning with the those of ordinary skill in art of the present invention.Also It should be understood that those terms defined in such as general dictionary should be understood that with the context of prior art The consistent meaning of meaning, and unless defined as here, will not be explained with the implication of idealization or overly formal.
Above-described embodiment, the purpose of the present invention, technical scheme and beneficial effect are carried out further Describe in detail, should be understood that the embodiment that the foregoing is only the present invention, be not limited to this hair It is bright, within the spirit and principles of the invention, any modification, equivalent substitution and improvements done etc., it should be included in the present invention Protection domain within.

Claims (5)

1. a kind of optimization method of electric wheel truck chassis system, the electric wheel truck chassis system includes differential steering mould Block, differential braking module and Active suspension module;
The differential steering module includes steering wheel torque rotary angle transmitter, rack and pinion steering gear, two wheel hub motors, speeds Sensor, two wheel speed sensors, yaw-rate sensor and differential steering control ECU;
The steering wheel assembly of automobile is connected by steering column with rack and pinion steering gear, and rack and pinion steering gear is by turning to horizontal drawing The axletree of bar and vehicle front connects;
The steering wheel torque rotary angle transmitter is arranged on steering column, for obtaining torque and the corner of vehicle steering;
Described two wheel hub motors are respectively used to the driving and braking of two front-wheels;
The vehicle speed sensor is used for the speed for obtaining automobile;
Described two wheel speed sensors are separately positioned on two front-wheels, are respectively used to obtain the angular speed of two front-wheels;
The yaw-rate sensor is used for the yaw velocity of automobile;
Differential steering control ECU respectively with steering wheel torque rotary angle transmitter, two wheel hub motors, vehicle speed sensor, two Individual wheel speed sensors, yaw-rate sensor are electrically connected, for the torque according to vehicle steering and corner, speed, two Angular speed, the yaw velocity of individual front-wheel are adjusted, and send current signal to left and right wheel hub motor so that left and right wheel hub motor Different driving moments is exported, to realize differential power-assisted steering;
The Active suspension module includes flexible member, damping element, forcer and guiding mechanism;
The vehicle body of automobile is connected by the guiding mechanism by flexible member, damping element, forcer with vehicle frame;
The differential braking module includes brake pedal position sensor and differential braking control ECU;
The brake pedal position sensor is used to obtain the stroke that automobile brake pedal is depressed;
The differential braking control ECU difference brake pedal position sensor, two wheel hub motors, vehicle speed sensor, two wheels Fast sensor, yaw-rate sensor are electrically connected, for stroke, speed, two front-wheels depressed according to brake pedal Angular speed, yaw velocity be adjusted, current signal is sent to left and right wheel hub motor so that left and right wheel hub motor export not Same braking moment, to realize differential braking;
Characterized in that, the optimization method comprises the steps of:
Step 1), establish Active suspension modular model, differential steering modular model, Full Vehicle Dynamics model, differential braking module Model, the differential steering modular model include steering wheel model, input shaft and output shaft model, rack-and-pinion model, motor Model, road surface input model and tire model;
Step 2), under damped condition, using steering response, steering sensitivity and suspension ride comfort as electric wheel truck chassis system Performance Evaluating Indexes, with steering stability, braking deceleration, suspension dynamic loading and spacing shifting for constraints, and establish difference The object function of the performance indications of fast steering module, differential braking module and Active suspension module:
1), the object function of differential steering module performance index:
<mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msub> <mi>&amp;pi;&amp;omega;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> </msubsup> <mo>|</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msubsup> <mo>|</mo> <mrow> <mi>s</mi> <mo>=</mo> <mi>j</mi> <mi>&amp;omega;</mi> </mrow> <mn>2</mn> </msubsup> <mi>d</mi> <mi>&amp;omega;</mi> </mrow>
In formula, f1(X) represent differential steering road feel in information of road surface effective frequency range (0, ω0) in frequency domain energy average value; ω0Represent the maximum frequency values of useful signal in information of road surface;E (s) is differential steering road feel transmission function:
<mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>T</mi> <mi>h</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>T</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <msub> <mi>K</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>J</mi> <mi>e</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>r</mi> <mi>&amp;delta;</mi> </msub> <mrow> <msub> <mi>rN</mi> <mi>l</mi> </msub> </mrow> </mfrac> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>GJ</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>)</mo> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mo>(</mo> <msub> <mi>B</mi> <mi>e</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>r</mi> <mi>&amp;delta;</mi> </msub> <mrow> <msub> <mi>rN</mi> <mi>l</mi> </msub> </mrow> </mfrac> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>GB</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>)</mo> <mi>s</mi> <mo>+</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> </mrow> </mfrac> </mrow>
In formula, Je、BeRespectively turn to output shaft and rack and pinion steering gear gear structure equivalent moment of inertia, damping;ThTo drive The person of sailing acts on steering wheel equivalent moment;TwTo act on the moment of resistance of tire around pivot stud;KsFor steering wheel torque sensor Equivalent stiffness;rδFor the stub lateral offset of left and right two steering front wheel;R is radius of wheel;NlFor steering drag link and axletree Between distance;Jeq, BeqRespectively wheel hub motor and wheel set equivalent moment of inertia and damping;G is the biography of pinion and rack Dynamic ratio;n2For the gearratio of steering screw to front-wheel;
2), the object function of differential braking module performance index:
<mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msub> <mi>&amp;pi;&amp;omega;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> </msubsup> <mrow> <mo>|</mo> <mfrac> <mrow> <mi>&amp;delta;</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>&amp;theta;</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msubsup> <mo>|</mo> <mrow> <mi>s</mi> <mo>=</mo> <mi>j</mi> <mi>&amp;omega;</mi> </mrow> <mn>2</mn> </msubsup> </mrow> <mi>d</mi> <mi>&amp;omega;</mi> </mrow>
In formula, f2(X) represent differential steering sensitivity in information of road surface effective frequency range (0, ω0) in frequency domain energy be averaged Value;ω0Represent the maximum frequency values of useful signal in information of road surface;For differential steering sensitivity transmission function:
eωFor the distance of wheel center to stub;k1、k2For front-wheel cornering stiffness;Je、BeRespectively turn to output shaft and gear teeth Bar steering gear gear structure equivalent moment of inertia, damping;E1For incline of front wheels steer coefficient;δ is front wheel steering angle;θsFor direction Disk corner;β is side slip angle;ωrFor yaw velocity;For the angle of pitch;A automobiles barycenter to front axle distance;U is automobile Speed;
3), the object function of the performance indications of Active suspension module:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>w</mi> <mn>0</mn> </msub> <msub> <mi>s</mi> <mn>0</mn> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mover> <mi>Z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>s</mi> </msub> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <mfrac> <msub> <mi>w</mi> <mi>i</mi> </msub> <msub> <mi>s</mi> <mi>i</mi> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mi>&amp;delta;</mi> <mrow> <mi>d</mi> <mi>i</mi> </mrow> </msub> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <mfrac> <msub> <mi>w</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>4</mn> </mrow> </msub> <msub> <mi>s</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>4</mn> </mrow> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mi>F</mi> <mrow> <mi>d</mi> <mi>j</mi> </mrow> </msub> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <msub> <mi>w</mi> <mn>0</mn> </msub> <msub> <mi>s</mi> <mn>0</mn> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mover> <mi>Z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>s</mi> </msub> </msub> <mo>+</mo> <mfrac> <msub> <mi>w</mi> <mn>1</mn> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mi>&amp;delta;</mi> <mrow> <mi>d</mi> <mn>1</mn> </mrow> </msub> </msub> <mo>+</mo> <mfrac> <msub> <mi>w</mi> <mn>2</mn> </msub> <msub> <mi>s</mi> <mn>2</mn> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mi>&amp;delta;</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> </msub> <mo>+</mo> <mfrac> <msub> <mi>w</mi> <mn>3</mn> </msub> <msub> <mi>s</mi> <mn>3</mn> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mi>&amp;delta;</mi> <mrow> <mi>d</mi> <mn>3</mn> </mrow> </msub> </msub> <mo>+</mo> <mfrac> <msub> <mi>w</mi> <mn>4</mn> </msub> <msub> <mi>s</mi> <mn>4</mn> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mi>&amp;delta;</mi> <mrow> <mi>d</mi> <mn>4</mn> </mrow> </msub> </msub> <mo>+</mo> <mfrac> <msub> <mi>w</mi> <mn>5</mn> </msub> <msub> <mi>s</mi> <mn>5</mn> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mi>F</mi> <mrow> <mi>d</mi> <mn>1</mn> </mrow> </msub> </msub> <mo>+</mo> <mfrac> <msub> <mi>w</mi> <mn>6</mn> </msub> <msub> <mi>s</mi> <mn>6</mn> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mi>F</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> </msub> <mo>+</mo> <mfrac> <msub> <mi>w</mi> <mn>7</mn> </msub> <msub> <mi>s</mi> <mn>7</mn> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mi>F</mi> <mrow> <mi>d</mi> <mn>3</mn> </mrow> </msub> </msub> <mo>+</mo> <mfrac> <msub> <mi>w</mi> <mn>8</mn> </msub> <msub> <mi>s</mi> <mn>8</mn> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mi>F</mi> <mrow> <mi>d</mi> <mn>4</mn> </mrow> </msub> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
In formula, w0、wi、wj+4For weight;s0、si、sj+4For scale factor;
σ2 xFor the frequency domain energy of three big evaluation index of ride comfort:
<mrow> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <mi>x</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <msub> <mi>w</mi> <mn>0</mn> </msub> </msubsup> <mrow> <mo>|</mo> <mi>H</mi> <msub> <mrow> <mo>(</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mrow> <mi>x</mi> <mo>~</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <msub> <mi>G</mi> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>f</mi> <mo>,</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>=</mo> <msub> <mover> <mi>Z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mrow> <mi>d</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow> <mi>d</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
σxFor the standard deviation of vibratory response amount,For frequency,As amplitude versus frequency characteGx (f) it is response quautity power spectral density,For the power spectral density of road surface input quantity;
For body vibrations acceleration transmission function:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>H</mi> <mrow> <msub> <mover> <mi>z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>~</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mover> <mi>Z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>c</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mi>s</mi> </mrow> <mrow> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msup> <mi>s</mi> <mn>4</mn> </msup> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>c</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mi>s</mi> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mi>f</mi> <mo>,</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
For suspension dynamic deflection transmission function:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>H</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>z</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> <mo>~</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>z</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>z</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mi>s</mi> </mrow> <mrow> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msup> <mi>s</mi> <mn>4</mn> </msup> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>c</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mi>s</mi> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mi>f</mi> <mo>,</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
It is the relative dynamic loading transmission function of wheel:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>H</mi> <mrow> <msub> <mi>F</mi> <mrow> <mi>d</mi> <mi>i</mi> </mrow> </msub> <mo>/</mo> <mi>G</mi> <mo>~</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <msub> <mi>Gq</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msup> <mi>s</mi> <mn>4</mn> </msup> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>c</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> <mi>g</mi> <mo>&amp;lsqb;</mo> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msup> <mi>s</mi> <mn>4</mn> </msup> <mo>+</mo> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> <msub> <mi>c</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msup> <mi>s</mi> <mn>3</mn> </msup> <mo>+</mo> <mo>(</mo> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mi>s</mi> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mi>f</mi> <mo>,</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
m1iFor tire quality;m2iFor spring carried mass;k1iFor tire equivalent stiffness;k2iFor active suspension rate;c2iFor Active suspension Damping;Subscript i is f or r, and f, r represent front and rear wheel respectively;
Step 3), built according to the object function of the performance indications of differential steering module, differential braking module and Active suspension module The Model for Multi-Objective Optimization of vertical electric wheel truck chassis system;
Step 4), optimized variable, performance indications scope and constraint condition and range are set, based on the algorithms of NSGA- II to chassis system Calculating is optimized, obtains Optimal Parameters of the chassis system about the optimized variable, and according to obtaining the optimization of optimized variable Parameter corresponds to parameter to chassis system and is adjusted.
2. the optimization method of electric wheel truck chassis system according to claim 1, it is characterised in that in the step 3) The Model for Multi-Objective Optimization f (X) of electric wheel truck chassis system is:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>f</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> <mo>=</mo> <mstyle> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </munderover> </mstyle> <mfrac> <mrow> <msub> <mi>W</mi> <mi>i</mi> </msub> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msub> <mi>&amp;pi;&amp;omega;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> </msubsup> <mo>|</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msubsup> <mo>|</mo> <mrow> <mi>s</mi> <mo>=</mo> <mi>j</mi> <mi>&amp;omega;</mi> </mrow> <mn>2</mn> </msubsup> <mi>d</mi> <mi>&amp;omega;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>(</mo> <mi>X</mi> <mo>)</mo> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msub> <mi>&amp;pi;&amp;omega;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mstyle> <mrow> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> </msubsup> <mrow> <mo>|</mo> <mfrac> <mrow> <mi>&amp;delta;</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>&amp;theta;</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msubsup> <mo>|</mo> <mrow> <mi>s</mi> <mo>=</mo> <mi>j</mi> <mi>&amp;omega;</mi> </mrow> <mn>2</mn> </msubsup> <mi>d</mi> <mi>&amp;omega;</mi> </mrow> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mn>3</mn> </msub> <mo>(</mo> <mi>X</mi> <mo>)</mo> <mo>=</mo> <mfrac> <msub> <mi>w</mi> <mn>0</mn> </msub> <msub> <mi>s</mi> <mn>0</mn> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mover> <mi>Z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>s</mi> </msub> </msub> <mo>+</mo> <mstyle> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> </mstyle> <mfrac> <msub> <mi>w</mi> <mi>i</mi> </msub> <msub> <mi>s</mi> <mi>i</mi> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mi>&amp;delta;</mi> <mrow> <mi>d</mi> <mi>i</mi> </mrow> </msub> </msub> <mo>+</mo> <mstyle> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> </mstyle> <mfrac> <msub> <mi>w</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>4</mn> </mrow> </msub> <msub> <mi>s</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>4</mn> </mrow> </msub> </mfrac> <msub> <msup> <mi>&amp;sigma;</mi> <mn>2</mn> </msup> <msub> <mi>F</mi> <mrow> <mi>d</mi> <mi>j</mi> </mrow> </msub> </msub> </mtd> </mtr> </mtable> </mfenced>
In formula, f1(X) object function of differential steering module performance index is represented;f2(X) differential braking module performance index is represented Object function;f3(X) object function of the performance indications of Active suspension module is represented;ω0Represent useful signal in information of road surface Maximum frequency values, take ω in optimization design0=40Hz;Wi、w0、wi、wj+4For weight;Si、s0、si、sj+4For scale factor;σx For the standard deviation of vibratory response amount.
3. the optimization method of electric wheel truck chassis system according to claim 2, it is characterised in that in the step 4) The optimized variable of setting is:
Output shaft and rack and pinion steering gear pinion structure equivalent moment of inertia J are turned in differential steering moduleeWith damping Be、 Steering wheel torque sensor equivalent stiffness Ks, wheel hub motor and wheel set are equivalent in differential steering module and differential braking module Rotary inertia JeqWith damping Beq, suspension rate coefficient k in Active suspension module2f、k2r, and suspension damping coefficient c2f、c2f
4. the optimization method of electric wheel truck chassis system according to claim 3, it is characterised in that in the step 4) The constraints scope of setting is:
(1) in optimization process, the denominator of differential steering sensitivity transmission function should meet the constraints of Routh criterions;
(2) in optimization process, braking deceleration should meet a≤μrg;
(3) in optimization process, to prevent from resonating, suspension dynamic deflection ensures:fcr=(0.6~0.8) fcf, in formula:fcf=mfg/ k2f, fcr=mrg/k2r
(4) in optimization process, according to the requirement of spacing shifting, relative damping factor meets ξ ∈ [0.25,0.35], wherein,
5. the optimization method of electric wheel truck chassis system according to claim 4, it is characterised in that in the step 4) The scope of the performance indications of setting is:
In optimization process, the object function of differential braking module performance index should meet 0.006≤f2(X)≤0.021。
CN201610517268.1A 2016-07-04 2016-07-04 A kind of optimization method of electric wheel truck chassis system Active CN106080263B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610517268.1A CN106080263B (en) 2016-07-04 2016-07-04 A kind of optimization method of electric wheel truck chassis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610517268.1A CN106080263B (en) 2016-07-04 2016-07-04 A kind of optimization method of electric wheel truck chassis system

Publications (2)

Publication Number Publication Date
CN106080263A CN106080263A (en) 2016-11-09
CN106080263B true CN106080263B (en) 2018-02-06

Family

ID=57211967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610517268.1A Active CN106080263B (en) 2016-07-04 2016-07-04 A kind of optimization method of electric wheel truck chassis system

Country Status (1)

Country Link
CN (1) CN106080263B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109969197A (en) * 2019-03-21 2019-07-05 南京航空航天大学 A kind of bounded-but-unknown uncertainty Multipurpose Optimal Method of electric wheel truck chassis system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106585709B (en) * 2016-12-21 2019-01-29 南京航空航天大学 A kind of automobile chassis integrated system and its optimization method
CN106844879A (en) * 2016-12-29 2017-06-13 上海合科科技有限公司 Automobile chassis analysis model construction method
CN106891992A (en) * 2017-01-16 2017-06-27 南京航空航天大学 A kind of composite turning system and its Multipurpose Optimal Method
CN106945719A (en) * 2017-01-16 2017-07-14 南京航空航天大学 A kind of composite turning system and its mode switching method
CN108146430A (en) * 2017-11-08 2018-06-12 南京航空航天大学 A kind of Active suspension and active steering integrated system and its robust control method
CN108128348A (en) * 2017-11-16 2018-06-08 南京航空航天大学 Electric boosting steering system and its Multipurpose Optimal Method based on flock of birds algorithm
CN108919114A (en) * 2018-04-26 2018-11-30 江苏大学 A kind of hub motor experimental stand device and its experimental system
CN109323867A (en) * 2018-09-07 2019-02-12 聊城大学 A kind of automotive electronics power-assisted steering and braking ability emulation experiment rack
CN109591888B (en) * 2018-11-26 2023-06-23 吉林大学 Five semitrailer initiative steering differential angle control system
CN109895577A (en) * 2019-03-04 2019-06-18 岭南师范学院 A kind of steering coupling Active suspension anti-side turns over integrated control device and its control method
CN109895579A (en) * 2019-03-04 2019-06-18 岭南师范学院 A kind of braking coupling Active suspension anti-side turns over integrated control device and its control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086159A (en) * 2006-09-28 2008-04-10 Bridgestone Corp Electric cart
CN101574979A (en) * 2009-06-11 2009-11-11 重庆大学 Electric motor car differential steeling control method based on slip rate control
CN101844511A (en) * 2010-05-14 2010-09-29 北汽福田汽车股份有限公司 Power output device of electric automobile
WO2011140857A1 (en) * 2010-05-14 2011-11-17 北汽福田汽车股份有限公司 Electric vehicle driving system
CN102602304A (en) * 2012-04-06 2012-07-25 南京南汽专用车有限公司 Hub motor hybrid driving control system and hub motor hybrid driving control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086159A (en) * 2006-09-28 2008-04-10 Bridgestone Corp Electric cart
CN101574979A (en) * 2009-06-11 2009-11-11 重庆大学 Electric motor car differential steeling control method based on slip rate control
CN101844511A (en) * 2010-05-14 2010-09-29 北汽福田汽车股份有限公司 Power output device of electric automobile
WO2011140857A1 (en) * 2010-05-14 2011-11-17 北汽福田汽车股份有限公司 Electric vehicle driving system
CN102602304A (en) * 2012-04-06 2012-07-25 南京南汽专用车有限公司 Hub motor hybrid driving control system and hub motor hybrid driving control method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
新型汽车动力转向技术发展综述;赵万忠,徐晓宏,赵婷等;《汽车工程学报》;20121130;第2卷(第6期);第395-397页 *
汽车转向与悬架集成系统多学科设计方法研究;赵婷;《工程科技Ⅱ辑》;20150115(第1期);第2章-第3章 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109969197A (en) * 2019-03-21 2019-07-05 南京航空航天大学 A kind of bounded-but-unknown uncertainty Multipurpose Optimal Method of electric wheel truck chassis system

Also Published As

Publication number Publication date
CN106080263A (en) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106080263B (en) A kind of optimization method of electric wheel truck chassis system
CN107380161B (en) A kind of active steering control device for aiding in driver to realize desired ride track
CN106585709B (en) A kind of automobile chassis integrated system and its optimization method
CN105015363B (en) A kind of distributed driving automotive control system and method based on hierarchical coordinative
CN104385873B (en) A kind of Multipurpose Optimal Method of automobile suspension system
Shino et al. Independent wheel torque control of small-scale electric vehicle for handling and stability improvement
CN107685767B (en) Multiaxis wheel-hub motor driven vehicle rear-wheel steering-by-wire driving device and forward method
JP4304345B2 (en) Front wheel steering control device
CN110606079B (en) Layered control vehicle rollover prevention method and multi-shaft distributed driving vehicle
Sharma Ride, eigenvalue and stability analysis of three-wheel vehicle using Lagrangian dynamics
CN103153728A (en) Vehicle braking/driving force control system and vehicle braking/driving force control method
CN101716952A (en) Electronic differential steering control system for realizing four-wheel steering by four-hub motor driving for electrical vehicle
CN207328578U (en) A kind of 4 wheel driven composite turning system in due course
CN107738691A (en) A kind of 4 wheel driven composite turning system and its Multipurpose Optimal Method in good time
Liu et al. Integrated torque vectoring control for a three-axle electric bus based on holistic cornering control method
CN106891992A (en) A kind of composite turning system and its Multipurpose Optimal Method
CN105966263A (en) Differential turning road sense control method of motor-wheel vehicle driven by hub motors
CN106882080A (en) A kind of differential steering system and its adaptive neural network fault tolerant control method
CN108128348A (en) Electric boosting steering system and its Multipurpose Optimal Method based on flock of birds algorithm
CN112319602B (en) 6X4 electric automobile chassis system capable of realizing all-wheel steering and steering control method
CN112026777B (en) Vehicle composite steering system and mode switching control method thereof
CN110745179B (en) Steering structure for steer-by-wire vehicle and control method thereof
CN206900467U (en) A kind of automobile chassis integrated system
CN205890595U (en) Electric wheel automobile chassis system
Passarella et al. Introducing SNAP: a novel pedal-assisted electric ultralight vehicle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant