CN106077692A - A kind of preparation method of metallic cobalt microsphere - Google Patents
A kind of preparation method of metallic cobalt microsphere Download PDFInfo
- Publication number
- CN106077692A CN106077692A CN201610379557.XA CN201610379557A CN106077692A CN 106077692 A CN106077692 A CN 106077692A CN 201610379557 A CN201610379557 A CN 201610379557A CN 106077692 A CN106077692 A CN 106077692A
- Authority
- CN
- China
- Prior art keywords
- cobalt
- micron
- metal
- microsphere
- spherical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 129
- 239000010941 cobalt Substances 0.000 title claims abstract description 81
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 81
- 239000004005 microsphere Substances 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 56
- 229910052751 metal Inorganic materials 0.000 claims abstract description 56
- 230000009467 reduction Effects 0.000 claims abstract description 46
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 claims abstract description 25
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 150000002500 ions Chemical class 0.000 claims abstract description 10
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims abstract description 8
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 71
- 239000000243 solution Substances 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 22
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 11
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 11
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 8
- 239000003345 natural gas Substances 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 2
- 239000003814 drug Substances 0.000 claims 2
- 229940079593 drug Drugs 0.000 claims 2
- 230000014759 maintenance of location Effects 0.000 claims 2
- 230000008030 elimination Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 claims 1
- 239000010413 mother solution Substances 0.000 claims 1
- 208000011580 syndromic disease Diseases 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 31
- 238000006243 chemical reaction Methods 0.000 abstract description 20
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 238000001816 cooling Methods 0.000 abstract description 7
- 230000005611 electricity Effects 0.000 abstract description 7
- 230000003068 static effect Effects 0.000 abstract description 7
- 239000012452 mother liquor Substances 0.000 abstract description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 47
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 29
- 239000001257 hydrogen Substances 0.000 description 29
- 229910052739 hydrogen Inorganic materials 0.000 description 29
- 239000000047 product Substances 0.000 description 18
- MULYSYXKGICWJF-UHFFFAOYSA-L cobalt(2+);oxalate Chemical compound [Co+2].[O-]C(=O)C([O-])=O MULYSYXKGICWJF-UHFFFAOYSA-L 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 10
- 239000002243 precursor Substances 0.000 description 9
- 238000005054 agglomeration Methods 0.000 description 8
- 230000002776 aggregation Effects 0.000 description 8
- 229910001429 cobalt ion Inorganic materials 0.000 description 8
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 150000001868 cobalt Chemical class 0.000 description 4
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 4
- -1 cobalt oxyhydroxide Chemical compound 0.000 description 4
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011362 coarse particle Substances 0.000 description 3
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical class [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- ZJRWDIJRKKXMNW-UHFFFAOYSA-N carbonic acid;cobalt Chemical compound [Co].OC(O)=O ZJRWDIJRKKXMNW-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- 229940044175 cobalt sulfate Drugs 0.000 description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 238000005272 metallurgy Methods 0.000 description 2
- 239000002077 nanosphere Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- RSBNPUNXBGVNNB-UHFFFAOYSA-M S(=O)(=O)([O-])[O-].[NH4+].[Co+] Chemical compound S(=O)(=O)([O-])[O-].[NH4+].[Co+] RSBNPUNXBGVNNB-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000009690 centrifugal atomisation Methods 0.000 description 1
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical group 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920002523 polyethylene Glycol 1000 Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 238000004917 polyol method Methods 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
- B22F9/22—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明涉及一种金属钴微球的制备方法,步骤如下:(1)由硝酸钴和EDTA制备钴源母液,然后添加氨水和水,使溶液的pH值为12.4;然后将上述溶液转移到反应釜中,加入高纯度金属钴板作为基板,90‑120℃下水热反应,然后冲洗、干燥;(2)将上述微米级球形氢氧化钴连同金属钴板直接送入马弗炉中,升温速度控制在1‑10℃每分钟,最终温度控制在250‑350℃,保温时间3‑5小时;(3)将冷却至200℃左右的微米级球形四氧化三钴连同金属钴板直接送入还原炉,气压控制在0.24‑0.35Mpa,升温速度控制在10‑20℃每分钟,最终温度控制在600‑800℃,保温时间2‑3小时;(4)采用离子风机消除冷却后金属钴微球的静电,接着将金属钴微球进行多级气流风选消除20μm以上的大颗粒。
The present invention relates to a kind of preparation method of metal cobalt microsphere, and the steps are as follows: (1) prepare cobalt source mother liquor by cobalt nitrate and EDTA, then add ammoniacal liquor and water, make the pH value of solution 12.4; Then above-mentioned solution is transferred to reaction Add a high-purity metal cobalt plate into the kettle as a substrate, and react hydrothermally at 90-120°C, then rinse and dry; (2) Send the above-mentioned micron-sized spherical cobalt hydroxide together with the metal cobalt plate directly into the muffle furnace, and the heating rate Control at 1-10°C per minute, the final temperature at 250-350°C, and the holding time for 3-5 hours; (3) Send the micron-sized spherical cobalt tetroxide cooled to about 200°C together with the metal cobalt plate directly into the reduction furnace. Control at 0.24-0.35Mpa, control the heating rate at 10-20°C per minute, control the final temperature at 600-800°C, and hold the holding time for 2-3 hours; (4) Use an ion fan to eliminate the static electricity of the metal cobalt microspheres after cooling, Then, the metal cobalt microspheres are subjected to multi-stage airflow winnowing to eliminate large particles larger than 20 μm.
Description
技术领域technical field
本发明涉及一种金属钴微球的制备方法。The invention relates to a preparation method of metal cobalt microspheres.
背景技术Background technique
球形金属粉末现有的应用领域有粉末冶金、3D金属打印、电池、电子封装、精密制备等。目前金属球形粒子的制备方法,主要是粉碎法(由粗颗粒或熔融液体粉碎获得细粉)和合成法(由离子、原子、分子,通过反应、成核和成长、收集、后处理获得细粉体方法)两个大类。前者,粉碎法大致可以分为三类:基于液滴喷射凝固成球的气体雾化法和离心雾化法;基于机械剪切成球的切丝或打孔重熔法;均匀液滴喷射法和脉冲小孔喷射法。上述方法的主要缺点是静电作用下粒子团聚非常严重,杂质多,粒子粒径分布范围过大,微粒子球形度不高,难以制备尺寸小于100μm以下的金属球。因此需要进一步的筛分等后续处理,增大了上述方法的成本。The existing application fields of spherical metal powder include powder metallurgy, 3D metal printing, battery, electronic packaging, precision preparation, etc. At present, the preparation methods of spherical metal particles are mainly crushing method (obtaining fine powder by crushing coarse particles or molten liquid) and synthesis method (obtaining fine powder by reaction, nucleation and growth, collection and post-treatment of ions, atoms and molecules). body method) two categories. For the former, the pulverization method can be roughly divided into three categories: gas atomization method and centrifugal atomization method based on droplet jet solidification into balls; shredding or punching remelting method based on mechanical shearing into balls; uniform droplet injection method and pulsed orifice jetting. The main disadvantages of the above method are that the particle agglomeration is very serious under electrostatic action, there are many impurities, the particle size distribution range is too large, the sphericity of the microparticles is not high, and it is difficult to prepare metal balls with a size of less than 100 μm. Therefore, subsequent treatments such as further sieving are required, which increases the cost of the above method.
而合成法在制备球形超细钴粉,目前比较有效的是氢还原法,该方法所制备的钴粉粒度小、均匀、流动性及混合效果较好,所以国内生产的钴粉基本属于氢还原钴粉。氢还原法包括高温固相氢还原法和高压氢还原法两种。高温固相氢还原法是将钴的氧化物或沉淀产物用氢气在高温下还原,制得金属钴粉,这是目前制备钴粉的产业化方法,但其产物一般团聚严重,颗粒较粗,含氧量较高,较难获得超细钴粉。高压氢还原法是在高压条件下,用氢气还原钴的溶液或浆体制备超细钴粉。该法要求的氢压较高,纯度也只能达到95%左右,很难达到超细钴粉产品的要求,且形貌为树枝状,球形钴粉极少。The synthesis method is currently more effective in the preparation of spherical ultrafine cobalt powder is the hydrogen reduction method. The cobalt powder prepared by this method has a small particle size, uniformity, good fluidity and mixing effect, so the cobalt powder produced in China basically belongs to the hydrogen reduction method. cobalt powder. Hydrogen reduction methods include high-temperature solid-phase hydrogen reduction method and high-pressure hydrogen reduction method. The high-temperature solid-phase hydrogen reduction method is to reduce cobalt oxides or precipitated products with hydrogen at high temperature to obtain metal cobalt powder. This is the current industrial method for preparing cobalt powder, but its products generally have serious agglomeration and coarse particles. The oxygen content is higher, and it is difficult to obtain ultra-fine cobalt powder. The high-pressure hydrogen reduction method is to prepare ultra-fine cobalt powder by reducing cobalt solution or slurry with hydrogen under high pressure conditions. The hydrogen pressure required by this method is high, and the purity can only reach about 95%. It is difficult to meet the requirements of ultrafine cobalt powder products, and the shape is dendritic, and the spherical cobalt powder is very little.
针对上述问题,企业界和高校科研机构从以下几个方面进行了很多的尝试和研究。In response to the above problems, the business community and scientific research institutions in universities have made many attempts and researches from the following aspects.
首先是高温固相氢还原法方面,早先一般是多数是采用草酸钴氧化后得到的氧化钴再进行氢还原的方法生产,草酸钴直接还原制备的钴粉较为普遍。株洲硬质合金厂袁平在《草酸钴沉淀工艺对钴粉粒度影响的研究》(硬质合金,2001年,第18卷,第1期)中草酸钴的形貌决定钴粉的形貌,草酸钴的晶粒呈棒状纤维结构,钴粉的链状较短,呈不规则粒状;草酸钴沉淀工艺对钴粉粒度影响的主要影响因素是CoCl2溶液密度和反应时的温度,其次是加入草酸铵的流速;生产细颗粒草酸钴和钴粉的条件是溶液密度小,反应温度低,流速大,反之颗粒就粗。金川有色金属集团镍钴新产品公司汪锦瑞等人在《草酸钴还原制备钴粉的试验研究》(甘肃冶金,2004年9月第26卷第3期)中提出采用井式炉装置,以氢气和氮气为混合还原性气氛还原,在控制温度、还原时间及还原气体流量的情况下,使钴粉的松比控制在0.4~0.6g/cm3,氢损小于0.3%,钴粉的形貌呈非常良好的树枝状结构。北京矿冶研究总院黄利伟等人在《草酸钴的氧化条件对氧化钴及还原钴粉性能的影响》(有色金属(冶炼部分), 2005年2期)中提出了草酸钴氧化为氧化钴再进行氢还原的钴粉,其粉末粒度与草酸钴的氧化温度有关,与氧化过程设备、操作方法有关。草酸钴直接还原得到的钴粉比草酸钴氧化后再还原得到的钴粉更细。生产过程中,自然地产出β-Co相钴粉,但在适当条件下可产出主相为α-Co钴粉。此外,也有人改变了前驱物,如中南大学粉末冶金国家重点实验室罗崇玲等人在《碳酸钴制备超细球形钴粉的工艺探讨》(硬质合金,2007年02期)中采用钢带式连续还原炉,以碳酸钴为原料,用氢气还原法制备钴粉;该制备的钴粉呈球形或类球形,而非树枝状;四川大学杜小华等人在《室温球磨固相化学反应法-氢还原法制备超细球形钴粉》(热加工工艺,2013,42卷,24期)中提出采用室温球磨固相化学反应法制备前驱物为CoCO3,然后中温焙烧,用氢气还原制得超细球形钴粉,该方法中采用球磨导致其团聚十分严重。The first is the high-temperature solid-phase hydrogen reduction method. In the early days, cobalt oxide obtained after cobalt oxalate oxidation was generally used for hydrogen reduction. Cobalt powder prepared by direct reduction of cobalt oxalate is more common. Yuan Ping of Zhuzhou Cemented Carbide Factory in "Study on the Effect of Cobalt Oxalate Precipitation Process on the Particle Size of Cobalt Powder" (Cemented Carbide, 2001, Volume 18, Issue 1), the morphology of cobalt oxalate determines the morphology of cobalt powder, The crystal grains of cobalt oxalate are rod-like fiber structure, and the chain shape of cobalt powder is shorter and irregular granular ; the main influencing factors of cobalt oxalate precipitation process on the particle size of cobalt powder are the density of CoCl2 solution and the temperature during reaction, followed by adding The flow rate of ammonium oxalate; the conditions for producing fine-grained cobalt oxalate and cobalt powder are low solution density, low reaction temperature and high flow rate, otherwise the particles will be coarse. Jinchuan Nonferrous Metals Group Nickel and Cobalt New Product Company Wang Jinrui and others proposed the use of a pit furnace device in the "Experimental Research on the Preparation of Cobalt Powder by Cobalt Oxalate Reduction" (Gansu Metallurgy, Volume 26, Issue 3, September 2004), using hydrogen and Nitrogen is a mixed reducing atmosphere for reduction. Under the condition of controlling temperature, reduction time and reducing gas flow rate, the loose ratio of cobalt powder is controlled at 0.4-0.6g/cm 3 , the hydrogen loss is less than 0.3%, and the appearance of cobalt powder is Very good dendritic structure. Huang Liwei and others of Beijing General Research Institute of Mining and Metallurgy proposed that cobalt oxalate is oxidized to cobalt oxide and re- The particle size of the cobalt powder for hydrogen reduction is related to the oxidation temperature of cobalt oxalate, and related to the oxidation process equipment and operation method. The cobalt powder obtained by the direct reduction of cobalt oxalate is finer than the cobalt powder obtained by oxidation and re-reduction of cobalt oxalate. During the production process, β-Co phase cobalt powder is naturally produced, but under appropriate conditions, the main phase can be produced as α-Co cobalt powder. In addition, some people have changed the precursors. For example, Luo Chongling, the State Key Laboratory of Powder Metallurgy of Central South University, etc., adopted a steel belt type in the "Process Discussion on the Preparation of Ultrafine Spherical Cobalt Powder from Cobalt Carbonate" (Cemented Carbide, Issue 02, 2007). A continuous reduction furnace uses cobalt carbonate as raw material to prepare cobalt powder by hydrogen reduction method; the prepared cobalt powder is spherical or quasi-spherical, not dendritic; Du Xiaohua of Sichuan University et al. Preparation of ultrafine spherical cobalt powder by reduction method" (Thermal Processing Technology, 2013, Volume 42, Issue 24) proposes that the precursor is CoCO 3 prepared by room temperature ball milling solid-phase chemical reaction method, then roasted at medium temperature, and reduced with hydrogen to obtain ultrafine cobalt powder. Spherical cobalt powder, adopting ball milling in this method causes its agglomeration to be very serious.
在实际生产方面,浙江华友钴业股份有限公司是目前中国最大的钴化学品生产商,申请并拥有多项相关的钴业生产专利。其核心专利之一是《一种制备超细球形钴粉的方法》(ZL200810121121.6)提出以钴矿为原料,采用均相沉淀-热还原法连续生产单分散、超细球形钴粉的方法,其特征在于它包括提供60-160g/L钴盐溶液和沉淀剂溶液的步骤,所述沉淀剂选用碳酸氢铵、碳酸铵中的一种,经溶解、过滤后配成质量浓度80-200g/L的溶液,并按以下步骤执行:(a).向上述钴液中加入聚乙烯基吡咯烷酮(PVP)、聚乙烯醇(PVA)、十六烷基三甲基溴化铵(CTAB)、聚乙二醇PEG(1000)、水溶性淀粉中的一种或几种,作为均相钴盐溶液;(b).将均相钴盐溶液和理论反应量1.1~1.3倍的沉淀剂溶液用并流加料法加入反应釜,控制合成反应温度为40-90℃,反应pH值为6.0-8.5,加料速度为200-1000L/h,搅拌速度为500-1500rpm,以均相沉淀法制得超细球形碳酸钴沉淀物;(c).沉淀物经过滤洗涤、闪蒸干燥后得到超细球形碳酸钴粉末,粒度为0.6~1.0μm;过滤后的尾液,采用集成膜和蒸发结晶综合处理后,淡水返回生产使用,副产物以结晶盐形式回收,所述集成膜处理为反渗透+电渗析处理;(d).将上述碳酸钴粉末,送入还原炉中,在400-550℃下进行连续热还原得到超细球形钴粉。然后是对前驱物的相关发明专利,如碳酸盐《一种球形碳酸盐的制备方法》(ZL 201010209990.1)和《一种连续制备大粒径球形碳酸钴的方法》(申请号:201510151958.5);羟基氧化钴《球形羟基氧化钴-四氧化三钴复合材料的制备方法》(申请号:201510152081.1);氢氧化钴等。其中氢氧化钴相对技术成熟,拥有《一种在无络合剂体系下制备球形氢氧化钴的方法》(ZL200910307676.4)中提出以纯水为底液,在搅拌下将钴液和氢氧化钠溶液同时加入底液中发生沉淀反应,在并流滴加钴液和氢氧化钠过程中溶液的pH值保持在5-7,终点时溶液的pH值为10.5-13.5;然后往溶液中添加抗氧化剂防其氧化,氢氧化钴浆料经洗涤和干燥后,得球形氢氧化钴产品;《一种连续化制备高松比氢氧化钴的方法》(ZL 201310290589.9)提出采用含钴矿料为原料,经浸出净化,得到氯化钴溶液;以NaOH为底液,将NaOH、氯化钴和络合剂溶液并流加入反应釜,并流过程中迅速将pH值控制在8~12,温度控制在30~90℃,搅拌速度在200~1000rpm,反应6~40h后,打开反应釜的溢流阀,开始连续化生产,产品优良,形貌呈多孔球状,粒度呈正态分布。In terms of actual production, Zhejiang Huayou Cobalt Industry Co., Ltd. is currently the largest cobalt chemical manufacturer in China, and has applied for and owned a number of related cobalt industry production patents. One of its core patents is "A Method for Preparing Ultrafine Spherical Cobalt Powder" (ZL200810121121.6), which proposes a method of continuously producing monodisperse, ultrafine spherical cobalt powder using cobalt ore as raw material and adopting homogeneous precipitation-thermal reduction method , is characterized in that it includes the step of providing 60-160g/L cobalt salt solution and precipitating agent solution, and described precipitating agent selects a kind of in ammonium bicarbonate, ammonium carbonate, is made into mass concentration 80-200g after dissolving and filtering /L solution, and carry out as follows: (a). Add polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), cetyltrimethylammonium bromide (CTAB), One or more of polyethylene glycol PEG (1000) and water-soluble starch are used as a homogeneous cobalt salt solution; (b). Use a homogeneous cobalt salt solution and a precipitant solution with a theoretical reaction volume of 1.1 to 1.3 times Feed into the reactor by cocurrent feeding method, control the synthesis reaction temperature at 40-90°C, the reaction pH value at 6.0-8.5, the feeding speed at 200-1000L/h, the stirring speed at 500-1500rpm, and obtain superfine Spherical cobalt carbonate precipitate; (c). Ultrafine spherical cobalt carbonate powder is obtained after the precipitate is filtered, washed, and flash-dried, with a particle size of 0.6-1.0 μm; the filtered tail liquid is comprehensively treated by integrated film and evaporative crystallization , fresh water is returned to production, and by-products are recovered in the form of crystalline salts. The integrated membrane treatment is reverse osmosis + electrodialysis treatment; (d). The above-mentioned cobalt carbonate powder is sent to a reduction furnace and carried out at 400-550 ° C. Continuous thermal reduction to obtain ultrafine spherical cobalt powder. Then there are related invention patents on precursors, such as carbonate "A Preparation Method for Spherical Carbonate" (ZL 201010209990.1) and "A Method for Continuously Preparing Large-Size Spherical Cobalt Carbonate" (Application No.: 201510151958.5) ; cobalt oxyhydroxide "Preparation method of spherical cobalt oxyhydroxide-cobalt trioxide composite material" (application number: 201510152081.1); cobalt hydroxide, etc. Among them, cobalt hydroxide is relatively mature in technology, and "A method for preparing spherical cobalt hydroxide without complexing agent system" (ZL200910307676.4) proposes to use pure water as the bottom liquid, and oxidize cobalt liquid and hydroxide under stirring. The sodium solution is added to the bottom liquid at the same time to cause a precipitation reaction, and the pH value of the solution is maintained at 5-7 during the co-current dropwise addition of cobalt liquid and sodium hydroxide, and the pH value of the solution at the end is 10.5-13.5; then add to the solution Antioxidant to prevent its oxidation, cobalt hydroxide slurry is washed and dried to obtain spherical cobalt hydroxide product; "A method for continuous preparation of cobalt hydroxide with high loose ratio" (ZL 201310290589.9) proposes to use cobalt-containing ore as raw material , and purified by leaching to obtain a cobalt chloride solution; using NaOH as the bottom liquid, add NaOH, cobalt chloride and complexing agent solutions into the reaction kettle in parallel, and quickly control the pH value at 8-12 during the parallel flow process, and control the temperature At 30-90°C, the stirring speed is 200-1000rpm, after reacting for 6-40 hours, open the overflow valve of the reactor and start continuous production. The product is excellent, the shape is porous spherical, and the particle size is normally distributed.
而高压氢还原法方面,Sherritt公司是高压氢还原制备金属钴粉的首创者,自上世纪五十 年代始,就成功地采用湿法加压氢还原技术,直接从硫酸铵钴溶液中生产高纯金属钴粉,得到的产品粒度较粗。我国上海冶炼厂,从1985年开始也将该工艺用于钴粉生产。Westaim公司其前身为Sherritt公司的一部分,1992年开始,对该技术加以改进,以生产亚微米级窄粒级分布的超细钴粉。改进后的工艺过程为,先将金属钴溶解在硫酸中,生成CoSO4溶液,然后加入液氨转化为硫酸铵钴,在加入氨的过程中,同时也生成了部分碱式硫酸钴。部分碱式硫酸钴的生成能促进形核反应发生。最后一步为从过饱和溶液中置换沉淀出超细钴粉。高压氢还原生产的钴粉粒度可在亚微米至微米间调节,与草酸盐沉淀-热分解工艺比较,能生产类球形、超细、振实密度高的钴粉是其优势。目前,UMICORE公司也采用高压氢还原法,生产优质钴粉供应高端硬质合金市场。两种方法生产的钴粉,除晶体结构不同外,化学沉淀的钴粉其硬度高于草酸盐热分解法的。国内开展这方面的研究较少。昆明理工大学材料科学与工程学院昝林寒等在《材料科学与工程学报》(2010年,第28卷,126期)发表了《氢还原法制备超细钴粉》,提出了采用CoSO4加过量NaOH制取的Co(OH)2浆液,在低氢气分压(1MPa)下,水热氢还原法制得了平均粒度120nm,纯度96%的类球形超细钴粉;并对超细钴粉进行二次高温(700摄氏度)氢还原,粒径只长大到200nm左右,纯度高达99.68%;通过控制二次还原温度可以得到密排六方、面心立方两种结构的钴粉,对Co(OH)2浆体氢还原的机理进行了初步探索。借鉴在液相中进行还原反应的思路,国内高校中也进行了一定的尝试,如兰州理工大学刘鹏成《超细钴粉的制备工艺与表面改性技术研究》(2006年,兰州理工大学硕士论文)中提出多元醇液相还原法,在液相中实现了一步还原法制备超细钴粉;不同钴盐制备的前驱体Co(OH)2对后续反应有一定的影响,但影响不是很大;产品具有纯度高、粒度细、分布均匀、呈球形等特征。中南大学毕丹丹在《多元醇法制备超细钴粉的研究》(2008年,中南大学硕士论文)中以草酸钴300摄氏度下煅烧得到的以四氧化三钴粉末为前驱体用甘油还原制备出纯度较高和粒度分布均匀的球形钴粉,其形貌与前驱体的形貌无继承性。As for the high-pressure hydrogen reduction method, Sherritt is the pioneer in the preparation of metal cobalt powder by high-pressure hydrogen reduction. Since the 1950s, it has successfully adopted wet pressurized hydrogen reduction technology to produce high-grade cobalt powder directly from ammonium sulfate solution. Pure metal cobalt powder, the obtained product has a coarse particle size. my country's Shanghai Smelter has also used this process for the production of cobalt powder since 1985. Westaim Company, formerly part of Sherritt Company, began to improve the technology in 1992 to produce ultrafine cobalt powder with submicron narrow particle size distribution. The improved process is as follows: first dissolve metal cobalt in sulfuric acid to generate CoSO 4 solution, and then add liquid ammonia to convert it into ammonium cobalt sulfate. During the process of adding ammonia, part of basic cobalt sulfate is also generated. The formation of some basic cobalt sulfate can promote the nucleation reaction. The last step is to replace and precipitate ultrafine cobalt powder from the supersaturated solution. The particle size of cobalt powder produced by high-pressure hydrogen reduction can be adjusted from submicron to micron. Compared with the oxalate precipitation-thermal decomposition process, it can produce spherical, ultra-fine, and high-tap density cobalt powder is its advantage. At present, UMICORE also adopts the high-pressure hydrogen reduction method to produce high-quality cobalt powder for the high-end cemented carbide market. The cobalt powders produced by the two methods have different crystal structures, and the hardness of the chemically precipitated cobalt powder is higher than that of the oxalate thermal decomposition method. Domestic research in this area is less. Zan Linhan, School of Materials Science and Engineering, Kunming University of Science and Technology published "Preparation of Ultrafine Cobalt Powder by Hydrogen Reduction Method" in "Journal of Materials Science and Engineering" (2010, Volume 28, Issue 126), and proposed the use of CoSO 4 plus excess NaOH The prepared Co(OH) 2 slurry, under the low hydrogen partial pressure (1MPa), the hydrothermal hydrogen reduction method has produced the spherical ultrafine cobalt powder with an average particle size of 120nm and a purity of 96%; and the ultrafine cobalt powder is subjected to secondary High temperature (700 degrees Celsius) hydrogen reduction, the particle size only grows to about 200nm, and the purity is as high as 99.68%. By controlling the secondary reduction temperature, cobalt powder with two structures of hexagonal close-packed and face-centered cubic can be obtained. Co(OH) 2 The mechanism of slurry hydrogen reduction was preliminarily explored. Drawing on the idea of reducing reaction in the liquid phase, certain attempts have also been made in domestic universities, such as "Research on the Preparation Technology and Surface Modification Technology of Ultrafine Cobalt Powder" by Liu Pengcheng of Lanzhou University of Technology (2006, master's thesis of Lanzhou University of Technology ) proposed a polyol liquid-phase reduction method, and realized a one-step reduction method in the liquid phase to prepare ultra-fine cobalt powder; the precursor Co(OH) 2 prepared by different cobalt salts has a certain impact on the subsequent reaction, but the impact is not great ; The product has the characteristics of high purity, fine particle size, uniform distribution, and spherical shape. Bi Dandan of Central South University in "Research on the Preparation of Ultrafine Cobalt Powder by Polyol Method" (2008, Master's Thesis of Central South University) used cobalt oxalate powder calcined at 300 degrees Celsius as a precursor to prepare cobalt tetroxide powder with relatively high purity by reducing it with glycerol. Spherical cobalt powder with high and uniform particle size distribution has no inheritance from the morphology of the precursor.
本专利所公开的技术涉及的生产环节可以提供中间产物作为商品,经济价值高,并且该工艺生产的金属钴微球团聚少,堆积密度高。The production links involved in the technology disclosed in this patent can provide intermediate products as commodities with high economic value, and the metal cobalt microspheres produced by this process have less agglomeration and high bulk density.
发明内容Contents of the invention
为了实现上述的目的,本发明的目的提供一种金属钴微球的制备方法,该方法生产的金属钴微球,纯度高,团聚少,粒径分布合理,堆积密度和松装密度高等优点。In order to achieve the above-mentioned purpose, the object of the present invention provides a method for preparing cobalt metal microspheres, the cobalt metal microspheres produced by the method have the advantages of high purity, less agglomeration, reasonable particle size distribution, high bulk density and bulk density.
为了实现上述的目的,本发明的制备思路:水热环境下水溶性金属钴盐在金属基板上诱导生长微米级球形氢氧化钴;利用形貌继承的原则,在特定温度下球形氢氧化钴热分解成微米级球形四氧化三钴;最后在还原炉下,采用天然气还原四氧化三钴得到金属钴微球。上述 方案的优点,每一步的产品均可以成为特定用途的原料,反应操作和过程简单容易控制,产品的质量能够得到保障。In order to achieve the above purpose, the preparation idea of the present invention: induce the growth of micron-sized spherical cobalt hydroxide on the metal substrate in a hydrothermal environment; use the principle of shape inheritance, thermally decompose the spherical cobalt hydroxide at a specific temperature into micron-scale spherical cobalt tetroxide; finally, under the reduction furnace, use natural gas to reduce cobalt tetroxide to obtain metal cobalt microspheres. The advantage of the above scheme is that the product of each step can become a raw material for a specific purpose, the reaction operation and process are simple and easy to control, and the quality of the product can be guaranteed.
本发明的目的是通过以下技术方案来实现的,一种金属钴微球的制备方法,该方法包括的步骤如下:The purpose of the present invention is achieved by the following technical solutions, a method for preparing metal cobalt microspheres, the method comprising the following steps:
(1)水热法制备微米级球形氢氧化钴(1) Preparation of micron-sized spherical cobalt hydroxide by hydrothermal method
首先由硝酸钴和EDTA制备钴源母液,硝酸钴物质的量浓度为2molL-1,EDTA浓度为1molL-1,然后添加氨水和水,使溶液的pH值约12.4;然后将上述溶液转移到水热反应釜中,加入纯度>99.99%的金属钴板作为基板,保温炉中90-120摄氏度下水热反应5-20小时,取出金属钴板并对其用去离子水和乙醇反复地进行冲洗、干燥1-2小时,即可得到附着在金属钴板上的微米级球形氢氧化钴;First prepare the cobalt source mother liquor from cobalt nitrate and EDTA, the molar concentration of cobalt nitrate is 2molL -1 , and the concentration of EDTA is 1molL -1 , then add ammonia and water to make the pH of the solution about 12.4; then transfer the above solution to water Add a metal cobalt plate with a purity of >99.99% as a substrate in a thermal reaction kettle, conduct a hydrothermal reaction at 90-120 degrees Celsius for 5-20 hours in a holding furnace, take out the metal cobalt plate and repeatedly rinse it with deionized water and ethanol, After drying for 1-2 hours, the micron-sized spherical cobalt hydroxide attached to the metal cobalt plate can be obtained;
(2)热分解处理得到微米级球形四氧化三钴(2) Thermal decomposition treatment to obtain micron-sized spherical cobalt tetroxide
将上述微米级球形氢氧化钴连同金属钴板直接送入马弗炉中,升温速度控制在1-10℃每分钟,最终温度控制在250-350℃,保温时间3-5小时,然后自然冷却至200℃左右;The above-mentioned micron-sized spherical cobalt hydroxide and metal cobalt plate are directly sent into the muffle furnace, the heating rate is controlled at 1-10°C per minute, the final temperature is controlled at 250-350°C, the holding time is 3-5 hours, and then naturally cooled to about 200°C;
(3)天然气还原得到金属钴微球(3) Reduction of natural gas to obtain metal cobalt microspheres
将冷却至200℃左右的微米级球形四氧化三钴连同金属钴板直接送入还原炉,气压控制在0.24-0.35Mpa,升温速度控制在10-20℃每分钟,最终温度控制在600-800℃,保温时间2-3小时,热尾气直接排入放置反应釜的保温炉中;Send the micron-sized spherical cobalt tetroxide cooled to about 200°C together with the metal cobalt plate directly into the reduction furnace. The time is 2-3 hours, and the hot tail gas is directly discharged into the holding furnace where the reaction kettle is placed;
(4)多级气流风选消除大颗粒(4) Multi-stage air selection to eliminate large particles
采用离子风机消除冷却后金属钴微球的静电,接着将金属钴微球进行多级气流风选消除20μm以上的大颗粒。An ion fan is used to eliminate the static electricity of the metal cobalt microspheres after cooling, and then the metal cobalt microspheres are subjected to multi-stage airflow air selection to eliminate large particles above 20 μm.
本发明的增益效果如下:Gain effect of the present invention is as follows:
1、本发明一种金属钴微球的制备方法不同于氢还原法和金属高温退火凝固等方法,其设备、工艺难度和能耗成本大幅降低,有利于提高产品竞争力。1. The method for preparing cobalt metal microspheres of the present invention is different from methods such as hydrogen reduction method and metal high-temperature annealing and solidification, and its equipment, process difficulty and energy consumption cost are greatly reduced, which is conducive to improving product competitiveness.
2、本发明一种金属钴微球的制备方法采取分步生产,有利于各个环节的质量监控,同时各个生产环节的中间产物(微米级球形氢氧化钴和微米级球形四氧化三钴)也可以进行产品销售,有利于企业及时根据市场需求进行生产调整。2, the preparation method of a kind of metal cobalt microsphere of the present invention adopts step-by-step production, is conducive to the quality monitoring of each link, and the intermediate product (micron-order spherical cobalt hydroxide and micron-order spherical cobalt tetroxide) of each production link can also be produced simultaneously Sales are conducive to the timely adjustment of production according to market demand.
3、本发明一种金属钴微球的制备方法中采用了金属模板,有利于颗粒的收集,避免了二次污染,有利于产品纯度的提高,增强了自动化生产。3. A metal template is used in the preparation method of the metal cobalt microspheres of the present invention, which is beneficial to the collection of particles, avoids secondary pollution, is beneficial to the improvement of product purity, and enhances automatic production.
4、本发明一种金属钴微球的制备方法中高温还原的反应多余的热以尾气的形式供应给前期生产中保温炉等,降低了能耗,有利于节能环保。4. In the preparation method of metal cobalt microspheres of the present invention, the excess heat of the high-temperature reduction reaction is supplied to the holding furnace in the early stage of production in the form of tail gas, which reduces energy consumption and is conducive to energy saving and environmental protection.
5、本发明一种金属钴微球的制备方法中采用了多级气流风选消除大颗粒和离子风机消除冷却后金属钴微球的静电,有效降低了产品的团聚,提高了堆积密度。5. In the preparation method of the cobalt metal microspheres of the present invention, multi-stage airflow selection is adopted to eliminate large particles and an ion fan is used to eliminate the static electricity of the cobalt metal microspheres after cooling, which effectively reduces the agglomeration of the product and improves the bulk density.
附图说明Description of drawings
图1溶液中pH值与钴离子浓度之间的关系示意图。The schematic diagram of the relationship between pH value and cobalt ion concentration in Fig. 1 solution.
图2钴板上的微米级球形Co(OH)2的XRD衍射图谱。(a,5h;b,10h;c,15h;d,20h)Figure 2 XRD diffraction pattern of micron-sized spherical Co(OH) 2 on a cobalt plate. (a, 5h; b, 10h; c, 15h; d, 20h)
图3微米级球形Co(OH)2的平均直径随时间的变化示意图。Fig. 3 Schematic diagram of the change of the average diameter of micron-sized spherical Co(OH) 2 with time.
图4微米级球形Co(OH)2热重曲线。Figure 4. Thermogravimetric curve of micron-sized spherical Co(OH) 2 .
图5热分解处理得到微米级球形Co3O4的扫描电子显微镜照片。(a,250℃;b,300℃;c,350℃)Fig. 5 SEM photo of micron-sized spherical Co 3 O 4 obtained by pyrolysis treatment. (a, 250°C; b, 300°C; c, 350°C)
图6微米级球形Co3O4能谱测试。Figure 6 Energy spectrum test of micron-scale spherical Co 3 O 4 .
图7金属钴微球产品扫描电子显微镜照片。Fig. 7 Scanning electron micrograph of metal cobalt microsphere product.
具体实施方式detailed description
本发明提供的一种金属钴微球的制备方法,包含以下四个关键工艺步骤。A preparation method of metal cobalt microspheres provided by the present invention comprises the following four key process steps.
第一步是水热法制备微米级球形氢氧化钴。水热法制备各种形态的纳微米级氢氧化钴已经得到了普遍的认可。而制备球形氢氧化钴关键是体系中氢氧化钴的沉淀溶解平衡的温和进行,即在较低的温度下,控制合理的pH值和溶液中钴离子的浓度。本工艺中溶液存在钴离子,铵根离子,氢氧根,EDTA,氨分子,氢氧化钴等物质,并且上述分子或者离子之间存在各类反应平衡,并生成络合离子。通过计算相应的平衡系数和络合平衡常数,我们得到了钴离子和pH值得关系,如图1,为了保证体系中氢氧化钴的均匀成核并且均向生长,维持其较低的浓度非常有必要,即要求绝大多数钴离子以络合物形式存在,溶液中钴离子本身浓度降低至0.01molL-1(即图中钴离子浓度对数为-2的横线),此时pH值应该超过12.38。所以该步骤具体如下:首先由六水合硝酸钴和EDTA制备钴源母液,然后添加氨水和水,该溶液中初配钴离子浓度2molL-1,EDTA浓度为1molL-1,溶液pH值约为12.4;然后将上述溶液转移到水热反应釜中,加入作为基板的金属钴板,保温炉中90摄氏度下水热反应数个小时,取出金属钴板并对其用去离子水和乙醇反复地进行冲洗、干燥2小时,即可得到附着在金属钴板上的微米级球形氢氧化钴。考虑到产量,我们对水热反应的时间尤为关心,图2是水热反应时间钴板上的Co(OH)2粉末的XRD衍射图谱,从5-20小时,发现其氢氧化钴晶型基本没有发生变化,故实践中取5小时,同时发现随着时间的延长,氢氧化钴微球半径在增加,具体规律如图3所示。The first step is to prepare micron-sized spherical cobalt hydroxide by hydrothermal method. The preparation of various forms of nano-micron cobalt hydroxide by hydrothermal method has been generally recognized. The key to preparing spherical cobalt hydroxide is to carry out the precipitation and dissolution equilibrium of cobalt hydroxide in the system gently, that is, to control the reasonable pH value and the concentration of cobalt ions in the solution at a lower temperature. In this process, there are cobalt ions, ammonium ions, hydroxide ions, EDTA, ammonia molecules, cobalt hydroxide and other substances in the solution, and there are various reaction balances between the above molecules or ions, and complex ions are generated. By calculating the corresponding equilibrium coefficient and complexation equilibrium constant, we obtained the relationship between cobalt ion and pH value, as shown in Figure 1. In order to ensure the uniform nucleation and uniform growth of cobalt hydroxide in the system, it is very effective to maintain its low concentration Necessary, that is, require most of the cobalt ions to exist in the form of complexes, and the concentration of the cobalt ions in the solution is reduced to 0.01molL -1 (the horizontal line where the logarithm of the cobalt ion concentration is -2 in the figure), and the pH value should be over 12.38. Therefore, the steps are as follows: first, prepare the cobalt source mother liquor from cobalt nitrate hexahydrate and EDTA, then add ammonia and water, the initial concentration of cobalt ions in the solution is 2molL -1 , the concentration of EDTA is 1molL -1 , and the pH value of the solution is about 12.4 Then the above solution is transferred to the hydrothermal reaction kettle, and the metal cobalt plate as the substrate is added, and the hydrothermal reaction is carried out at 90 degrees Celsius in the holding furnace for several hours, and the metal cobalt plate is taken out and rinsed repeatedly with deionized water and ethanol and drying for 2 hours, the micron-sized spherical cobalt hydroxide attached to the metal cobalt plate can be obtained. Considering the yield, we are particularly concerned about the time of the hydrothermal reaction. Figure 2 is the XRD diffraction pattern of the Co(OH) powder on the cobalt plate during the hydrothermal reaction time. From 5-20 hours, it is found that the cobalt hydroxide crystal form is basically There is no change, so 5 hours is taken in practice, and it is found that the radius of cobalt hydroxide microspheres increases with the prolongation of time, and the specific law is shown in Figure 3.
第二步是热分解处理得到微米级球形四氧化三钴。从微米级球形Co(OH)2向微米级球形四氧化三钴是一个热分解反应,反应过程中希望保持原有的形貌没有发生改变,即热分解产生的水气能够稳定缓慢的释放,而不破坏原有的球形结构。该步骤的关键是建立合理的温度制度。该温度制度包括升温速度,最高温度和保温时间等,升温速度一般来说对于本样品而 言,控制在1℃每分钟。最高温度可以通过热重分析得知其热分解的状况。如图4,TG热重曲线图,在20~175℃间,样品约有7%的质量损失,此是因为样品脱除吸附水所引起的。并且随着温度的升高,在45~175℃间失水速率快速增大。在175℃~400℃之间出现大量失重,约为10.9%,这是因为前躯体脱羟基、氧化成氧化物。在400℃后TG曲线趋于平稳,表明前躯体已反应完毕。因此,前躯体在250℃、300℃和350℃下煅烧均能制得黑色Co3O4。图5是微米级球形Co(OH)2在马弗炉中经上述温度下热处理5小时的扫描电子显微镜照片。三张图均为微纳米球体,存在形貌的继承性。其中图5a发现250℃热处理得到的样品的分散度好,尺寸小。图5b,300℃的样品分散度好,纳米球尺寸发生少许增加。而图5c,350℃的样品发生了粘结现象,分散度大大的降低尺寸达到2μm。由此,可见高的烧结温度不利于产品的分散性,过高的温度导致烧结。考虑到分散性和产量问题,300℃为最佳温度,同时能谱EDS测试表明该样品的确是Co3O4,Co和O的质量比接近化学式Co3O4的理论值,测试位置和结果如图6。根据有色金属行业标准YS/T 633-2007中对Co3O4的检测要求,本工艺下制备的金属钴微球技术指标如下:The second step is thermal decomposition treatment to obtain micron-sized spherical cobalt tetroxide. From micron-scale spherical Co(OH) 2 to micron-scale spherical cobalt tetroxide is a thermal decomposition reaction. During the reaction, it is hoped to keep the original shape unchanged, that is, the water vapor generated by thermal decomposition can be released stably and slowly without destroying The original spherical structure. The key to this step is to establish a reasonable temperature regime. The temperature regime includes heating rate, maximum temperature and holding time, etc. Generally speaking, for this sample, the heating rate is controlled at 1°C per minute. The maximum temperature can be obtained by thermogravimetric analysis to know the state of its thermal decomposition. As shown in Figure 4, the TG thermogravimetric curve shows that between 20°C and 175°C, the sample has about 7% mass loss, which is caused by the removal of adsorbed water from the sample. And as the temperature increases, the water loss rate increases rapidly between 45°C and 175°C. A large amount of weight loss, about 10.9%, occurs between 175°C and 400°C, which is because the precursor is dehydroxylated and oxidized to oxides. After 400°C, the TG curve tends to be stable, indicating that the reaction of the precursor has been completed. Therefore, the precursor can be calcined at 250°C, 300°C and 350°C to produce black Co 3 O 4 . Figure 5 is a scanning electron micrograph of micron-sized spherical Co(OH) 2 heat-treated at the above temperature for 5 hours in a muffle furnace. The three pictures are all micro-nano spheres, and there is inheritance of morphology. Among them, it is found in Figure 5a that the samples obtained by heat treatment at 250°C have good dispersion and small size. As shown in Figure 5b, the sample at 300 °C has a good dispersion and a slight increase in the size of the nanospheres. However, in Fig. 5c, the sample at 350 °C has a cohesive phenomenon, and the dispersion is greatly reduced to a size of 2 μm. Thus, it can be seen that a high sintering temperature is not conducive to the dispersibility of the product, and an excessively high temperature leads to sintering. Considering the dispersibility and yield, 300°C is the best temperature. At the same time, the energy spectrum EDS test shows that the sample is indeed Co 3 O 4 , and the mass ratio of Co and O is close to the theoretical value of the chemical formula Co 3 O 4 . The test location and results Figure 6. According to the detection requirements of Co3O4 in the nonferrous metal industry standard YS/T 633-2007 , the technical indicators of cobalt metal microspheres prepared under this process are as follows:
第三步是天然气还原Co3O4得到金属钴微球,涉及一套天然气还原炉设备。该装置由加热炉体,还原炉管,推料装置,天然气流量计,控制装置,多路智能温控,电控系统等组成。 和一般的氢气还原炉不同,由于使用天然气,其安全性和经济性有所提高。尤其是加热装置部分,前一段工序是在马弗炉中热处理,因此可以使用推料装置将冷却至200℃左右的微米级球形四氧化三钴连同金属钴板直接送入还原炉中。通过控制气压在0.35Mpa保证还原炉管内CH4的含量,使其充分还原,其中心段还原温度控制600℃,保温时间3小时,升温速度控制在10-20℃每分钟。还原工序结束时,通过控制气压将炉内含有较高温度的热尾气直接排入放置反应釜的保温炉中。The third step is to reduce Co 3 O 4 by natural gas to obtain metal cobalt microspheres, which involves a set of natural gas reduction furnace equipment. The device is composed of heating furnace body, reduction furnace tube, material pushing device, natural gas flow meter, control device, multi-channel intelligent temperature control, electric control system and so on. Unlike general hydrogen reduction furnaces, safety and economy are improved by using natural gas. Especially for the heating device part, the previous process is heat-treated in a muffle furnace, so the micron-sized spherical cobalt tetroxide cooled to about 200°C can be directly sent into the reduction furnace together with the metal cobalt plate using the pusher device. By controlling the air pressure at 0.35Mpa, the content of CH 4 in the reduction furnace tube is guaranteed to make it fully reduced. The reduction temperature in the central section is controlled at 600°C, the holding time is 3 hours, and the heating rate is controlled at 10-20°C per minute. At the end of the reduction process, the hot tail gas containing higher temperature in the furnace is directly discharged into the holding furnace where the reaction kettle is placed by controlling the air pressure.
第四步是多级气流风选消除大颗粒。在前一道工序还原反应结束后,在冷去和收集过程中,金属钴微球表面温度低内部高,其热应力方向是由内而外的,具有膨胀的可能,其次整个还原反应过程中,反应生成的水蒸气带来了大量的带电基团,这些基团很有可能吸附于金属钴微球的表面缺陷点位,造成金属钴微球带上静电,导致冷却后的金属钴微球产品中含有少量团聚、颗粒长大的大颗粒或者二次颗粒。我们拟采用离子风机-多级气流风选-离子风机联用的去除大颗粒,对于球化冷却过程中的二次团聚和颗粒长大的大颗粒加以除去。第一次采用离子风机消除冷却后金属钴微球的静电,为接着将金属钴微球进行多级气流风选消除20μm以上的大颗粒创造条件;第二次离子风机是消除气流风选碰撞后新产生的静电。通过上述这道工序后,金属钴微球产品完全脱离了金属钴板,并且基本消除了静电,并且如图7所示,大于20μm的颗粒,完全没有。金属钴微球产品中位粒径5±2μm,粒径<4.00μm占20wt%以上,其粒径分布(<4.00μm占≥20wt%;<7.0μm占≥60wt%;<20μm占100wt%)基本符合尺寸颗粒的堆积理论Westman方程,有利于各种密堆积场合的应用。The fourth step is multi-stage air selection to eliminate large particles. After the reduction reaction in the previous process, during the cooling and collection process, the surface temperature of the metal cobalt microspheres is low and the interior is high, and the thermal stress direction is from the inside to the outside, with the possibility of expansion. Secondly, during the entire reduction reaction process, The water vapor generated by the reaction brings a large number of charged groups, and these groups are likely to be adsorbed on the surface defect points of the metal cobalt microspheres, causing the metal cobalt microspheres to be charged with static electricity, resulting in the cooling of the metal cobalt microsphere products. Contains a small amount of agglomeration, large particles or secondary particles with particle growth. We plan to use ion fan-multi-stage air separation-ion fan combination to remove large particles, and remove the secondary agglomeration and large particles that grow up during the spheroidization cooling process. For the first time, the ion fan was used to eliminate the static electricity of the metal cobalt microspheres after cooling, creating conditions for the subsequent multi-stage airflow winnowing of the metal cobalt microspheres to eliminate large particles above 20 μm; the second ion blower was to eliminate the airflow winnowing after the collision newly generated static electricity. After passing through the above process, the metal cobalt microsphere product is completely separated from the metal cobalt plate, and the static electricity is basically eliminated, and as shown in Figure 7, there are no particles larger than 20 μm at all. The median particle size of metal cobalt microsphere products is 5±2μm, and the particle size <4.00μm accounts for more than 20wt%, and its particle size distribution (<4.00μm accounts for ≥20wt%; <7.0μm accounts for ≥60wt%; <20μm accounts for 100wt%) It basically conforms to the Westman equation of the packing theory of size particles, which is beneficial to the application of various close packing occasions.
按行业标准YS/T255-2009,本工艺下制备的金属钴微球技术指标如下:According to the industry standard YS/T255-2009, the technical indicators of cobalt metal microspheres prepared under this process are as follows:
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610379557.XA CN106077692B (en) | 2016-05-30 | 2016-05-30 | A kind of preparation method of metallic cobalt microballoon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610379557.XA CN106077692B (en) | 2016-05-30 | 2016-05-30 | A kind of preparation method of metallic cobalt microballoon |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106077692A true CN106077692A (en) | 2016-11-09 |
CN106077692B CN106077692B (en) | 2017-12-19 |
Family
ID=57229802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610379557.XA Expired - Fee Related CN106077692B (en) | 2016-05-30 | 2016-05-30 | A kind of preparation method of metallic cobalt microballoon |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106077692B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110899718A (en) * | 2018-09-14 | 2020-03-24 | 上海铁路通信有限公司 | Preparation method of large-particle-size cobalt particles with shell-core structures |
CN111702184A (en) * | 2020-06-30 | 2020-09-25 | 荆门市格林美新材料有限公司 | Preparation method of large FSSS cobalt powder |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1376638A (en) * | 2002-04-22 | 2002-10-30 | 戴振华 | Process for preparing Co3O4 |
CN1686650A (en) * | 2005-05-18 | 2005-10-26 | 北京科技大学 | Precipitation reduction method of preparing nano-cobalt powder |
CN101269848A (en) * | 2008-03-05 | 2008-09-24 | 广州融捷材料科技有限公司 | High-density spherical cobaltic-cobaltous oxide and method for preparing the same |
JP2010138468A (en) * | 2008-12-15 | 2010-06-24 | Toyota Motor Corp | Method for manufacturing cobalt nanoparticle |
CN101829786A (en) * | 2009-03-13 | 2010-09-15 | 北京有色金属研究总院 | Cobalt powder with fine-grained aggregate morphology and preparation method thereof |
JP2011184725A (en) * | 2010-03-05 | 2011-09-22 | Tohoku Univ | Method for synthesizing cobalt nanoparticle by hydrothermal reduction process |
CN103224258A (en) * | 2013-04-26 | 2013-07-31 | 吉林化工学院 | Preparation of Co3O4 Nanospheres and β-Co(OH)2 Micron Flowers by a Simple Method |
CN103342394A (en) * | 2013-07-10 | 2013-10-09 | 浙江华友钴业股份有限公司 | Method for continuously preparing cobalt hydroxide with high bulk density |
CN104439280A (en) * | 2014-12-09 | 2015-03-25 | 英德佳纳金属科技有限公司 | Simultaneous preparing method of cobalt hydroxide and cobalt powder |
CN105271441A (en) * | 2015-09-30 | 2016-01-27 | 兰州金川新材料科技股份有限公司 | Preparation method of battery-grade large-grained cobaltosic oxide |
CN105304897A (en) * | 2014-11-29 | 2016-02-03 | 董亚伦 | Preparation method for large particle cobalt hydroxide battery material |
-
2016
- 2016-05-30 CN CN201610379557.XA patent/CN106077692B/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1376638A (en) * | 2002-04-22 | 2002-10-30 | 戴振华 | Process for preparing Co3O4 |
CN1686650A (en) * | 2005-05-18 | 2005-10-26 | 北京科技大学 | Precipitation reduction method of preparing nano-cobalt powder |
CN101269848A (en) * | 2008-03-05 | 2008-09-24 | 广州融捷材料科技有限公司 | High-density spherical cobaltic-cobaltous oxide and method for preparing the same |
JP2010138468A (en) * | 2008-12-15 | 2010-06-24 | Toyota Motor Corp | Method for manufacturing cobalt nanoparticle |
CN101829786A (en) * | 2009-03-13 | 2010-09-15 | 北京有色金属研究总院 | Cobalt powder with fine-grained aggregate morphology and preparation method thereof |
JP2011184725A (en) * | 2010-03-05 | 2011-09-22 | Tohoku Univ | Method for synthesizing cobalt nanoparticle by hydrothermal reduction process |
CN103224258A (en) * | 2013-04-26 | 2013-07-31 | 吉林化工学院 | Preparation of Co3O4 Nanospheres and β-Co(OH)2 Micron Flowers by a Simple Method |
CN103342394A (en) * | 2013-07-10 | 2013-10-09 | 浙江华友钴业股份有限公司 | Method for continuously preparing cobalt hydroxide with high bulk density |
CN105304897A (en) * | 2014-11-29 | 2016-02-03 | 董亚伦 | Preparation method for large particle cobalt hydroxide battery material |
CN104439280A (en) * | 2014-12-09 | 2015-03-25 | 英德佳纳金属科技有限公司 | Simultaneous preparing method of cobalt hydroxide and cobalt powder |
CN105271441A (en) * | 2015-09-30 | 2016-01-27 | 兰州金川新材料科技股份有限公司 | Preparation method of battery-grade large-grained cobaltosic oxide |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110899718A (en) * | 2018-09-14 | 2020-03-24 | 上海铁路通信有限公司 | Preparation method of large-particle-size cobalt particles with shell-core structures |
CN110899718B (en) * | 2018-09-14 | 2022-11-15 | 上海铁路通信有限公司 | Preparation method of large-particle-size cobalt particles with shell-core structures |
CN111702184A (en) * | 2020-06-30 | 2020-09-25 | 荆门市格林美新材料有限公司 | Preparation method of large FSSS cobalt powder |
Also Published As
Publication number | Publication date |
---|---|
CN106077692B (en) | 2017-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109128141B (en) | Preparation method of nano WC-Co composite powder | |
CN112207285B (en) | Preparation method and application of powder material | |
CN109261980B (en) | Preparation method of tungsten powder for high-density alloy | |
CN110722171A (en) | A method for preparing rare earth oxide doped tungsten and molybdenum spherical powder for 3D printing | |
CN104085858B (en) | The preparation method of metal oxide | |
CN108031856B (en) | Preparation method of high-cobalt nano/superfine WC-Co composite powder | |
CN113458405B (en) | Preparation method of large-particle-size metal molybdenum powder | |
CN102049527A (en) | Nanocrystal with core-shell structure and preparation method thereof | |
CN106670505A (en) | Method for preparing tungsten-cobalt-carbon composite powder through spray pyrolysis method | |
CN108788173B (en) | Hydrothermal preparation method of superfine yttrium oxide doped tungsten composite powder | |
CN103862038A (en) | Extra-coarse hard alloy parcel powder and preparation method thereof | |
CN112355317A (en) | Preparation method of superfine spherical cobalt powder | |
CN113798504B (en) | Preparation method of rare earth oxide dispersion reinforced tungsten powder for 3D printing | |
Roselina et al. | Synthesis of nickel nanoparticles via non-aqueous polyol method: effect of reaction time | |
CN104625082B (en) | Nanometer nickel powder preparation method | |
CN102941350A (en) | Preparation method of nano copper powder | |
CN106077692B (en) | A kind of preparation method of metallic cobalt microballoon | |
Cheng | Characterization of ZnSe microspheres synthesized under different hydrothermal conditions | |
CN116081696A (en) | Sodium ion battery precursor material and preparation method of sodium ion battery anode material | |
WO2017073392A1 (en) | Method for producing seed crystal of cobalt powder | |
CN106077691B (en) | A kind of metallic cobalt microballoon | |
CN106041111B (en) | The method that a kind of ammonium paratungstate or ammonium metatungstate containing arsenic and phosphorus prepare nano-tungsten powder | |
JP2017082270A5 (en) | ||
Bing | Preparation of micro-sized and uniform spherical Ag powders by novel wet-chemical method | |
Chen et al. | Facile synthesis of flake-like dihydrate zinc oxalate particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171219 |