CN106073802A - 运动状态下的血氧饱和度监测装置 - Google Patents

运动状态下的血氧饱和度监测装置 Download PDF

Info

Publication number
CN106073802A
CN106073802A CN201610761296.8A CN201610761296A CN106073802A CN 106073802 A CN106073802 A CN 106073802A CN 201610761296 A CN201610761296 A CN 201610761296A CN 106073802 A CN106073802 A CN 106073802A
Authority
CN
China
Prior art keywords
module
blood oxygen
signal
oxygen saturation
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610761296.8A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610761296.8A priority Critical patent/CN106073802A/zh
Publication of CN106073802A publication Critical patent/CN106073802A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Cardiology (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Hematology (AREA)
  • Dentistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明提供了运动状态下的血氧饱和度监测装置,包括受试者运动状态监测模块、血氧饱和度信息采集模块、信号处理模块和无线通信模块;所述受试者运动状态监测模块与信号处理模块连接,用于监测受试者的运动状态,获取空间运动数据;所述血氧饱和度信息采集模块与信号处理模块连接,用于采集红光和红外光下的光电容积脉搏波信号、血氧信号和心率信息,并将采集的数据通过无线通信模块传送至信号处理模块。本发明的有益效果为:可有效消除血氧监测过程中运动噪声的影响,提高监测准确度,扩大装置使用范围。

Description

运动状态下的血氧饱和度监测装置
技术领域
本发明涉及医疗仪器技术领域,具体涉及运动状态下的血氧饱和度监测装置。
背景技术
相关技术中的血氧测量装置对血氧探头采集的血氧数据进行信号处理分析来实现岳阳饱和度的监测,该装置不包含监测受试者运动状态的模块,在不知道受试者实际运动信号的情况下依靠大量计算去除运动噪声,因此装置的运算量过大且只对部分特征明显的信号有效。
发明内容
为解决上述问题,本发明旨在提供运动状态下的血氧饱和度监测装置。
本发明的目的采用以下技术方案来实现:
运动状态下的血氧饱和度监测装置,包括受试者运动状态监测模块、血氧饱和度信息采集模块、信号处理模块和无线通信模块;所述受试者运动状态监测模块与信号处理模块连接,用于监测受试者的运动状态,获取空间运动数据;所述血氧饱和度信息采集模块与信号处理模块连接,用于采集红光和红外光下的光电容积脉搏波信号、血氧信号和心率信息,并将采集的数据通过无线通信模块传送至信号处理模块。
本发明的有益效果为:可有效消除血氧监测过程中运动噪声的影响,提高监测准确度,扩大装置使用范围,解决了上述技术问题。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明结构连接示意图;
图2是本发明传感器故障诊断模块的示意图。
附图标记:
受试者运动状态监测模块1、血氧饱和度信息采集模块2、信号处理模块3、无线通信模块4、传感器故障诊断模块5、信号采集滤波单元51、故障特征提取单元52、在线特征提取单元53、特征向量优选单元54、故障分类识别单元55、故障种类更新单元56、健康记录单元57。
具体实施方式
结合以下实施例对本发明作进一步描述。
应用场景1
参见图1、图2,本应用场景的一个实施例的运动状态下的血氧饱和度监测装置,包括受试者运动状态监测模块、血氧饱和度信息采集模块、信号处理模块和无线通信模块;所述受试者运动状态监测模块与信号处理模块连接,用于监测受试者的运动状态,获取空间运动数据;所述血氧饱和度信息采集模块与信号处理模块连接,用于采集红光和红外光下的光电容积脉搏波信号、血氧信号和心率信息,并将采集的数据通过无线通信模块传送至信号处理模块。
本发明的有益效果为:可有效消除血氧监测过程中运动噪声的影响,提高监测准确度,扩大装置使用范围,解决了上述技术问题。
优选的,所述受试者运动状态监测模块包括加速度传感器;优选的,所述空间运动数据为人体组织在空间三个相互垂直方向上的加速度大小。
本优选实施例利用加速度传感器测得人体组织在空间三个相互垂直方向上的加速度大小,量化了原本未知的运动噪声,从而有效控制光电容积脉搏波信号、血氧信号的降噪处理,减少了系统的计算量。
优选的,所述血氧饱和度监测装置还包括对加速度传感器及血氧饱和度信息采集模块中的传感器进行诊断的传感器故障诊断模块5,所述传感器故障诊断模块5包括信号采集滤波单元51、故障特征提取单元52、在线特征提取单元53、特征向量优选单元54、故障分类识别单元55、故障种类更新单元56和健康记录单元57。
本发明上述实施例设置传感器故障诊断模块5并实现了传感器故障诊断模块5的快速搭建,保证加速度传感器及血氧饱和度信息采集模块中的传感器的监测工作有效执行。
优选的,所述信号采集滤波单元51用于采集历史传感器信号和在线传感器测试信号,并采用组合形态滤波器对信号进行滤波处理;
本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的保留信号的原始特征信息。
优选的,所述故障特征提取单元52用于对滤波后的历史传感器信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:
(1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;
(2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传感器信号的本征模态函数和余项函数;
(3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;
(4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训练特征向量;
所述在线特征提取单元53用于对滤波后的在线传感器测试信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:
(1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的本征模态函数和余项函数;
(2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;
(3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作为待测特征向量。
本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效的消除模态混叠现象,分解的效果较好。
优选的,所述特征向量优选单元54分别对训练特征向量和待测特征向量进行相似性度量,对于相似度高的特征向量进行剔除,包括:
(1)定义两向量相似度函数S(X,Y):
S ( X , Y ) = cov ( X , Y ) D ( X ) D ( Y )
式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、Y标准差;
对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);
(2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。
本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。
优选的,所述故障分类识别单元55用于采用优化的最小二乘支持向量机对所述待测特征向量进行故障分类识别,包括参数选择优化子模块、训练子模块和识别子模块,具体为:
所述参数选择优化子模块用于构造最小二乘支持向量机的核函数,并对最小二乘支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;
所述训练子模块,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训练,并构建传感器故障诊断模型;
所述识别子模块用于采用所述传感器故障诊断模型对所述待测特征向量进行故障分类识别;
其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函数构造为:
K=(1-δ)(xxi+1)p+δexp(-‖x-xi22)
式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶数,σ2为RBF核函数参数。
其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:
(1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始位置和初始速度,定义适应度函数为:
S = 1 N Σ i = 1 N | q i W q i W + ( 1 - q i ) T | × 100 %
式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自设定的权重系数,qi的取值范围设定为[0.4,0.5];
(2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;
(3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速度,生成最优粒子序列;
(4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,直至达到最大迭代次数或者满足适应度函数的误差要求。
其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:
(1)计算所有训练样本的标准方差和两个类别j、间的分离性测度;
(2)输出最小分离性测度对应的j、
(3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;
(4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;
(5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训练样本进行分类效果测试。
本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。
优选地,所述故障种类更新单元56用于对训练集进行更新,不断优化传感器故障诊断模型,包括:
(1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征向量作为新的训练特征向量;
(2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持向量机进行训练,并构建出新的传感器故障诊断模型;
(3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成故障种类更新。
本优选实施例设置故障种类更新单元56,以提高模型的适应能力和应用范围。
优选的,所述健康记录单元57包括存储子模块和安全访问子模块,所述存储子模块采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,所述安全访问子模块用于对信息进行访问,具体地,对应于存储子模块,将数据下载到本地,采用相应密钥进行解锁后,再进行解压以读取信息。
本优选实施例设置健康记录单元57,一方面保证了信息安全,另一方面能够随时对故障进行访问,便于查找问题。
在此应用场景中,设定阈值T1的取值为0.96,传感器故障诊断模块5的监测速度相对提高了10%,传感器故障诊断模块5的监测精度相对提高了12%。
应用场景2
参见图1、图2,本应用场景的一个实施例的运动状态下的血氧饱和度监测装置,包括受试者运动状态监测模块、血氧饱和度信息采集模块、信号处理模块和无线通信模块;所述受试者运动状态监测模块与信号处理模块连接,用于监测受试者的运动状态,获取空间运动数据;所述血氧饱和度信息采集模块与信号处理模块连接,用于采集红光和红外光下的光电容积脉搏波信号、血氧信号和心率信息,并将采集的数据通过无线通信模块传送至信号处理模块。
本发明的有益效果为:可有效消除血氧监测过程中运动噪声的影响,提高监测准确度,扩大装置使用范围,解决了上述技术问题。
优选的,所述受试者运动状态监测模块包括加速度传感器;优选的,所述空间运动数据为人体组织在空间三个相互垂直方向上的加速度大小。
本优选实施例利用加速度传感器测得人体组织在空间三个相互垂直方向上的加速度大小,量化了原本未知的运动噪声,从而有效控制光电容积脉搏波信号、血氧信号的降噪处理,减少了系统的计算量。
优选的,所述血氧饱和度监测装置还包括对加速度传感器及血氧饱和度信息采集模块中的传感器进行诊断的传感器故障诊断模块5,所述传感器故障诊断模块5包括信号采集滤波单元51、故障特征提取单元52、在线特征提取单元53、特征向量优选单元54、故障分类识别单元55、故障种类更新单元56和健康记录单元57。
本发明上述实施例设置传感器故障诊断模块5并实现了传感器故障诊断模块5的快速搭建,保证加速度传感器及血氧饱和度信息采集模块中的传感器的监测工作有效执行。
优选的,所述信号采集滤波单元51用于采集历史传感器信号和在线传感器测试信号,并采用组合形态滤波器对信号进行滤波处理;
本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的保留信号的原始特征信息。
优选的,所述故障特征提取单元52用于对滤波后的历史传感器信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:
(1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;
(2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传感器信号的本征模态函数和余项函数;
(3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;
(4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训练特征向量;
所述在线特征提取单元53用于对滤波后的在线传感器测试信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:
(1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的本征模态函数和余项函数;
(2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;
(3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作为待测特征向量。
本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效的消除模态混叠现象,分解的效果较好。
优选的,所述特征向量优选单元54分别对训练特征向量和待测特征向量进行相似性度量,对于相似度高的特征向量进行剔除,包括:
(1)定义两向量相似度函数S(X,Y):
S ( X , Y ) = cov ( X , Y ) D ( X ) D ( Y )
式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、Y标准差;
对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);
(2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。
本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。
优选的,所述故障分类识别单元55用于采用优化的最小二乘支持向量机对所述待测特征向量进行故障分类识别,包括参数选择优化子模块、训练子模块和识别子模块,具体为:
所述参数选择优化子模块用于构造最小二乘支持向量机的核函数,并对最小二乘支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;
所述训练子模块,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训练,并构建传感器故障诊断模型;
所述识别子模块用于采用所述传感器故障诊断模型对所述待测特征向量进行故障分类识别;
其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函数构造为:
K=(1-δ)(xxi+1)p+δexp(-‖x-xi22)
式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶数,σ2为RBF核函数参数。
其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:
(1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始位置和初始速度,定义适应度函数为:
S = 1 N Σ i = 1 N | q i W q i W + ( 1 - q i ) T | × 100 %
式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自设定的权重系数,qi的取值范围设定为[0.4,0.5];
(2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;
(3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速度,生成最优粒子序列;
(4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,直至达到最大迭代次数或者满足适应度函数的误差要求。
其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:
(1)计算所有训练样本的标准方差和两个类别j、间的分离性测度;
(2)输出最小分离性测度对应的j、
(3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;
(4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;
(5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训练样本进行分类效果测试。
本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。
优选地,所述故障种类更新单元56用于对训练集进行更新,不断优化传感器故障诊断模型,包括:
(1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征向量作为新的训练特征向量;
(2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持向量机进行训练,并构建出新的传感器故障诊断模型;
(3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成故障种类更新。
本优选实施例设置故障种类更新单元56,以提高模型的适应能力和应用范围。
优选的,所述健康记录单元57包括存储子模块和安全访问子模块,所述存储子模块采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,所述安全访问子模块用于对信息进行访问,具体地,对应于存储子模块,将数据下载到本地,采用相应密钥进行解锁后,再进行解压以读取信息。
本优选实施例设置健康记录单元57,一方面保证了信息安全,另一方面能够随时对故障进行访问,便于查找问题。
在此应用场景中,设定阈值T1的取值为0.95,传感器故障诊断模块5的监测速度相对提高了11%,传感器故障诊断模块5的监测精度相对提高了11%。
应用场景3
参见图1、图2,本应用场景的一个实施例的运动状态下的血氧饱和度监测装置,包括受试者运动状态监测模块、血氧饱和度信息采集模块、信号处理模块和无线通信模块;所述受试者运动状态监测模块与信号处理模块连接,用于监测受试者的运动状态,获取空间运动数据;所述血氧饱和度信息采集模块与信号处理模块连接,用于采集红光和红外光下的光电容积脉搏波信号、血氧信号和心率信息,并将采集的数据通过无线通信模块传送至信号处理模块。
本发明的有益效果为:可有效消除血氧监测过程中运动噪声的影响,提高监测准确度,扩大装置使用范围,解决了上述技术问题。
优选的,所述受试者运动状态监测模块包括加速度传感器;优选的,所述空间运动数据为人体组织在空间三个相互垂直方向上的加速度大小。
本优选实施例利用加速度传感器测得人体组织在空间三个相互垂直方向上的加速度大小,量化了原本未知的运动噪声,从而有效控制光电容积脉搏波信号、血氧信号的降噪处理,减少了系统的计算量。
优选的,所述血氧饱和度监测装置还包括对加速度传感器及血氧饱和度信息采集模块中的传感器进行诊断的传感器故障诊断模块5,所述传感器故障诊断模块5包括信号采集滤波单元51、故障特征提取单元52、在线特征提取单元53、特征向量优选单元54、故障分类识别单元55、故障种类更新单元56和健康记录单元57。
本发明上述实施例设置传感器故障诊断模块5并实现了传感器故障诊断模块5的快速搭建,保证加速度传感器及血氧饱和度信息采集模块中的传感器的监测工作有效执行。
优选的,所述信号采集滤波单元51用于采集历史传感器信号和在线传感器测试信号,并采用组合形态滤波器对信号进行滤波处理;
本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的保留信号的原始特征信息。
优选的,所述故障特征提取单元52用于对滤波后的历史传感器信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:
(1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;
(2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传感器信号的本征模态函数和余项函数;
(3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;
(4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训练特征向量;
所述在线特征提取单元53用于对滤波后的在线传感器测试信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:
(1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的本征模态函数和余项函数;
(2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;
(3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作为待测特征向量。
本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效的消除模态混叠现象,分解的效果较好。
优选的,所述特征向量优选单元54分别对训练特征向量和待测特征向量进行相似性度量,对于相似度高的特征向量进行剔除,包括:
(1)定义两向量相似度函数S(X,Y):
S ( X , Y ) = cov ( X , Y ) D ( X ) D ( Y )
式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、Y标准差;
对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);
(2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。
本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。
优选的,所述故障分类识别单元55用于采用优化的最小二乘支持向量机对所述待测特征向量进行故障分类识别,包括参数选择优化子模块、训练子模块和识别子模块,具体为:
所述参数选择优化子模块用于构造最小二乘支持向量机的核函数,并对最小二乘支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;
所述训练子模块,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训练,并构建传感器故障诊断模型;
所述识别子模块用于采用所述传感器故障诊断模型对所述待测特征向量进行故障分类识别;
其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函数构造为:
K=(1-δ)(xxi+1)p+δexp(-‖x-xi22)
式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶数,σ2为RBF核函数参数。
其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:
(1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始位置和初始速度,定义适应度函数为:
S = 1 N Σ i = 1 N | q i W q i W + ( 1 - q i ) T | × 100 %
式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自设定的权重系数,qi的取值范围设定为[0.4,0.5];
(2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;
(3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速度,生成最优粒子序列;
(4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,直至达到最大迭代次数或者满足适应度函数的误差要求。
其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:
(1)计算所有训练样本的标准方差和两个类别j、间的分离性测度;
(2)输出最小分离性测度对应的j、
(3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;
(4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;
(5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训练样本进行分类效果测试。
本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。
优选地,所述故障种类更新单元56用于对训练集进行更新,不断优化传感器故障诊断模型,包括:
(1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征向量作为新的训练特征向量;
(2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持向量机进行训练,并构建出新的传感器故障诊断模型;
(3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成故障种类更新。
本优选实施例设置故障种类更新单元56,以提高模型的适应能力和应用范围。
优选的,所述健康记录单元57包括存储子模块和安全访问子模块,所述存储子模块采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,所述安全访问子模块用于对信息进行访问,具体地,对应于存储子模块,将数据下载到本地,采用相应密钥进行解锁后,再进行解压以读取信息。
本优选实施例设置健康记录单元57,一方面保证了信息安全,另一方面能够随时对故障进行访问,便于查找问题。
在此应用场景中,设定阈值T1的取值为0.94,传感器故障诊断模块5的监测速度相对提高了12%,传感器故障诊断模块5的监测精度相对提高了10%。
应用场景4
参见图1、图2,本应用场景的一个实施例的运动状态下的血氧饱和度监测装置,包括受试者运动状态监测模块、血氧饱和度信息采集模块、信号处理模块和无线通信模块;所述受试者运动状态监测模块与信号处理模块连接,用于监测受试者的运动状态,获取空间运动数据;所述血氧饱和度信息采集模块与信号处理模块连接,用于采集红光和红外光下的光电容积脉搏波信号、血氧信号和心率信息,并将采集的数据通过无线通信模块传送至信号处理模块。
本发明的有益效果为:可有效消除血氧监测过程中运动噪声的影响,提高监测准确度,扩大装置使用范围,解决了上述技术问题。
优选的,所述受试者运动状态监测模块包括加速度传感器;优选的,所述空间运动数据为人体组织在空间三个相互垂直方向上的加速度大小。
本优选实施例利用加速度传感器测得人体组织在空间三个相互垂直方向上的加速度大小,量化了原本未知的运动噪声,从而有效控制光电容积脉搏波信号、血氧信号的降噪处理,减少了系统的计算量。
优选的,所述血氧饱和度监测装置还包括对加速度传感器及血氧饱和度信息采集模块中的传感器进行诊断的传感器故障诊断模块5,所述传感器故障诊断模块5包括信号采集滤波单元51、故障特征提取单元52、在线特征提取单元53、特征向量优选单元54、故障分类识别单元55、故障种类更新单元56和健康记录单元57。
本发明上述实施例设置传感器故障诊断模块5并实现了传感器故障诊断模块5的快速搭建,保证加速度传感器及血氧饱和度信息采集模块中的传感器的监测工作有效执行。
优选的,所述信号采集滤波单元51用于采集历史传感器信号和在线传感器测试信号,并采用组合形态滤波器对信号进行滤波处理;
本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的保留信号的原始特征信息。
优选的,所述故障特征提取单元52用于对滤波后的历史传感器信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:
(1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;
(2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传感器信号的本征模态函数和余项函数;
(3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;
(4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训练特征向量;
所述在线特征提取单元53用于对滤波后的在线传感器测试信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:
(1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的本征模态函数和余项函数;
(2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;
(3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作为待测特征向量。
本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效的消除模态混叠现象,分解的效果较好。
优选的,所述特征向量优选单元54分别对训练特征向量和待测特征向量进行相似性度量,对于相似度高的特征向量进行剔除,包括:
(1)定义两向量相似度函数S(X,Y):
S ( X , Y ) = cov ( X , Y ) D ( X ) D ( Y )
式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、Y标准差;
对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);
(2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。
本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。
优选的,所述故障分类识别单元55用于采用优化的最小二乘支持向量机对所述待测特征向量进行故障分类识别,包括参数选择优化子模块、训练子模块和识别子模块,具体为:
所述参数选择优化子模块用于构造最小二乘支持向量机的核函数,并对最小二乘支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;
所述训练子模块,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训练,并构建传感器故障诊断模型;
所述识别子模块用于采用所述传感器故障诊断模型对所述待测特征向量进行故障分类识别;
其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函数构造为:
K=(1-δ)(xxi+1)p+δexp(-‖x-xi22)
式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶数,σ2为RBF核函数参数。
其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:
(1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始位置和初始速度,定义适应度函数为:
S = 1 N Σ i = 1 N | q i W q i W + ( 1 - q i ) T | × 100 %
式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自设定的权重系数,qi的取值范围设定为[0.4,0.5];
(2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;
(3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速度,生成最优粒子序列;
(4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,直至达到最大迭代次数或者满足适应度函数的误差要求。
其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:
(1)计算所有训练样本的标准方差和两个类别j、间的分离性测度;
(2)输出最小分离性测度对应的j、
(3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;
(4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;
(5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训练样本进行分类效果测试。
本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。
优选地,所述故障种类更新单元56用于对训练集进行更新,不断优化传感器故障诊断模型,包括:
(1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征向量作为新的训练特征向量;
(2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持向量机进行训练,并构建出新的传感器故障诊断模型;
(3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成故障种类更新。
本优选实施例设置故障种类更新单元56,以提高模型的适应能力和应用范围。
优选的,所述健康记录单元57包括存储子模块和安全访问子模块,所述存储子模块采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,所述安全访问子模块用于对信息进行访问,具体地,对应于存储子模块,将数据下载到本地,采用相应密钥进行解锁后,再进行解压以读取信息。
本优选实施例设置健康记录单元57,一方面保证了信息安全,另一方面能够随时对故障进行访问,便于查找问题。
在此应用场景中,设定阈值T1的取值为0.93,传感器故障诊断模块5的监测速度相对提高了13%,传感器故障诊断模块5的监测精度相对提高了9%。
应用场景5
参见图1、图2,本应用场景的一个实施例的运动状态下的血氧饱和度监测装置,包括受试者运动状态监测模块、血氧饱和度信息采集模块、信号处理模块和无线通信模块;所述受试者运动状态监测模块与信号处理模块连接,用于监测受试者的运动状态,获取空间运动数据;所述血氧饱和度信息采集模块与信号处理模块连接,用于采集红光和红外光下的光电容积脉搏波信号、血氧信号和心率信息,并将采集的数据通过无线通信模块传送至信号处理模块。
本发明的有益效果为:可有效消除血氧监测过程中运动噪声的影响,提高监测准确度,扩大装置使用范围,解决了上述技术问题。
优选的,所述受试者运动状态监测模块包括加速度传感器;优选的,所述空间运动数据为人体组织在空间三个相互垂直方向上的加速度大小。
本优选实施例利用加速度传感器测得人体组织在空间三个相互垂直方向上的加速度大小,量化了原本未知的运动噪声,从而有效控制光电容积脉搏波信号、血氧信号的降噪处理,减少了系统的计算量。
优选的,所述血氧饱和度监测装置还包括对加速度传感器及血氧饱和度信息采集模块中的传感器进行诊断的传感器故障诊断模块5,所述传感器故障诊断模块5包括信号采集滤波单元51、故障特征提取单元52、在线特征提取单元53、特征向量优选单元54、故障分类识别单元55、故障种类更新单元56和健康记录单元57。
本发明上述实施例设置传感器故障诊断模块5并实现了传感器故障诊断模块5的快速搭建,保证加速度传感器及血氧饱和度信息采集模块中的传感器的监测工作有效执行。
优选的,所述信号采集滤波单元51用于采集历史传感器信号和在线传感器测试信号,并采用组合形态滤波器对信号进行滤波处理;
本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的保留信号的原始特征信息。
优选的,所述故障特征提取单元52用于对滤波后的历史传感器信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:
(1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;
(2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传感器信号的本征模态函数和余项函数;
(3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;
(4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训练特征向量;
所述在线特征提取单元53用于对滤波后的在线传感器测试信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:
(1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的本征模态函数和余项函数;
(2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;
(3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作为待测特征向量。
本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效的消除模态混叠现象,分解的效果较好。
优选的,所述特征向量优选单元54分别对训练特征向量和待测特征向量进行相似性度量,对于相似度高的特征向量进行剔除,包括:
(1)定义两向量相似度函数S(X,Y):
S ( X , Y ) = cov ( X , Y ) D ( X ) D ( Y )
式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、Y标准差;
对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);
(2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。
本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。
优选的,所述故障分类识别单元55用于采用优化的最小二乘支持向量机对所述待测特征向量进行故障分类识别,包括参数选择优化子模块、训练子模块和识别子模块,具体为:
所述参数选择优化子模块用于构造最小二乘支持向量机的核函数,并对最小二乘支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;
所述训练子模块,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训练,并构建传感器故障诊断模型;
所述识别子模块用于采用所述传感器故障诊断模型对所述待测特征向量进行故障分类识别;
其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函数构造为:
K=(1-δ)(xxi+1)p+δexp(-‖x-xi22)
式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶数,σ2为RBF核函数参数。
其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:
(1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始位置和初始速度,定义适应度函数为:
S = 1 N Σ i = 1 N | q i W q i W + ( 1 - q i ) T | × 100 %
式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自设定的权重系数,qi的取值范围设定为[0.4,0.5];
(2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;
(3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速度,生成最优粒子序列;
(4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,直至达到最大迭代次数或者满足适应度函数的误差要求。
其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:
(1)计算所有训练样本的标准方差和两个类别j、间的分离性测度;
(2)输出最小分离性测度对应的j、
(3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;
(4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;
(5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训练样本进行分类效果测试。
本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。
优选地,所述故障种类更新单元56用于对训练集进行更新,不断优化传感器故障诊断模型,包括:
(1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征向量作为新的训练特征向量;
(2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持向量机进行训练,并构建出新的传感器故障诊断模型;
(3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成故障种类更新。
本优选实施例设置故障种类更新单元56,以提高模型的适应能力和应用范围。
优选的,所述健康记录单元57包括存储子模块和安全访问子模块,所述存储子模块采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,所述安全访问子模块用于对信息进行访问,具体地,对应于存储子模块,将数据下载到本地,采用相应密钥进行解锁后,再进行解压以读取信息。
本优选实施例设置健康记录单元57,一方面保证了信息安全,另一方面能够随时对故障进行访问,便于查找问题。
在此应用场景中,设定阈值T1的取值为0.92,传感器故障诊断模块5的监测速度相对提高了14%,传感器故障诊断模块5的监测精度相对提高了8%。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (3)

1.运动状态下的血氧饱和度监测装置,其特征是,包括受试者运动状态监测模块、血氧饱和度信息采集模块、信号处理模块和无线通信模块;所述受试者运动状态监测模块与信号处理模块连接,用于监测受试者的运动状态,获取空间运动数据;所述血氧饱和度信息采集模块与信号处理模块连接,用于采集红光和红外光下的光电容积脉搏波信号、血氧信号和心率信息,并将采集的数据通过无线通信模块传送至信号处理模块。
2.根据权利要求1所述的运动状态下的血氧饱和度监测装置,其特征是,所述受试者运动状态监测模块包括加速度传感器。
3.根据权利要求2所述的运动状态下的血氧饱和度监测装置,其特征是,所述空间运动数据为人体组织在空间三个相互垂直方向上的加速度大小。
CN201610761296.8A 2016-08-29 2016-08-29 运动状态下的血氧饱和度监测装置 Pending CN106073802A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610761296.8A CN106073802A (zh) 2016-08-29 2016-08-29 运动状态下的血氧饱和度监测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610761296.8A CN106073802A (zh) 2016-08-29 2016-08-29 运动状态下的血氧饱和度监测装置

Publications (1)

Publication Number Publication Date
CN106073802A true CN106073802A (zh) 2016-11-09

Family

ID=57224361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610761296.8A Pending CN106073802A (zh) 2016-08-29 2016-08-29 运动状态下的血氧饱和度监测装置

Country Status (1)

Country Link
CN (1) CN106073802A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107874765A (zh) * 2017-11-06 2018-04-06 成都菲斯普科技有限公司 具有自补偿功能的医疗手环及自补偿方法
CN108937957A (zh) * 2018-06-05 2018-12-07 武汉久乐科技有限公司 检测方法、装置及检测设备
CN111899502A (zh) * 2020-08-05 2020-11-06 安徽理工大学 一种电力载波结合Wi-Fi通信的区域型智能化老人监护系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101390747A (zh) * 2008-11-06 2009-03-25 杭州海利赢医疗技术有限公司 远程无线网络生理多参数监测仪
CN101803925A (zh) * 2010-03-31 2010-08-18 上海交通大学 运动状态下的血氧饱和度监测装置
CN201611881U (zh) * 2010-04-06 2010-10-20 四川东林科技有限公司 个人健康数据中继装置
CN201879675U (zh) * 2010-04-14 2011-06-29 浙江好络维医疗技术有限公司 一种手持式无线健康监测仪
EP2116183B1 (en) * 2008-05-07 2012-02-01 CSEM Centre Suisse d'Electronique et de Microtechnique SA Robust opto-electrical ear located cardiovascular monitoring device
KR20130075933A (ko) * 2011-12-28 2013-07-08 썬메디텍 (주) 모바일 응급환자 모니터링 시스템
CN203234745U (zh) * 2012-08-24 2013-10-16 秦皇岛市康泰医学系统有限公司 具有计步器功能的血氧饱和度检测装置
US20150374328A1 (en) * 2014-02-24 2015-12-31 Jacques Ginestet Systems, methods and devices for remote fetal and maternal health monitoring
CN105310698A (zh) * 2015-12-10 2016-02-10 恩识医疗科技(上海)有限公司 一种耳道表贴血氧饱和度监测仪及其系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2116183B1 (en) * 2008-05-07 2012-02-01 CSEM Centre Suisse d'Electronique et de Microtechnique SA Robust opto-electrical ear located cardiovascular monitoring device
CN101390747A (zh) * 2008-11-06 2009-03-25 杭州海利赢医疗技术有限公司 远程无线网络生理多参数监测仪
CN101803925A (zh) * 2010-03-31 2010-08-18 上海交通大学 运动状态下的血氧饱和度监测装置
CN201611881U (zh) * 2010-04-06 2010-10-20 四川东林科技有限公司 个人健康数据中继装置
CN201879675U (zh) * 2010-04-14 2011-06-29 浙江好络维医疗技术有限公司 一种手持式无线健康监测仪
KR20130075933A (ko) * 2011-12-28 2013-07-08 썬메디텍 (주) 모바일 응급환자 모니터링 시스템
CN203234745U (zh) * 2012-08-24 2013-10-16 秦皇岛市康泰医学系统有限公司 具有计步器功能的血氧饱和度检测装置
US20150374328A1 (en) * 2014-02-24 2015-12-31 Jacques Ginestet Systems, methods and devices for remote fetal and maternal health monitoring
CN105310698A (zh) * 2015-12-10 2016-02-10 恩识医疗科技(上海)有限公司 一种耳道表贴血氧饱和度监测仪及其系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
丁国君: "动车组制动控制系统故障诊断方法研究", 《中国博士学位论文全文数据库 工程科技II辑》 *
董文智等: "基于EEMD能量熵和支持向量机的轴承故障诊断", 《机械研究与设计》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107874765A (zh) * 2017-11-06 2018-04-06 成都菲斯普科技有限公司 具有自补偿功能的医疗手环及自补偿方法
CN107874765B (zh) * 2017-11-06 2021-02-05 深圳市诚丰乐琪科技有限公司 具有自补偿功能的医疗手环及自补偿方法
CN108937957A (zh) * 2018-06-05 2018-12-07 武汉久乐科技有限公司 检测方法、装置及检测设备
CN108937957B (zh) * 2018-06-05 2021-11-09 武汉久乐科技有限公司 检测方法、装置及检测设备
CN111899502A (zh) * 2020-08-05 2020-11-06 安徽理工大学 一种电力载波结合Wi-Fi通信的区域型智能化老人监护系统

Similar Documents

Publication Publication Date Title
Yu et al. Ensemble additive margin softmax for speaker verification
US10339371B2 (en) Method for recognizing a human motion, method for recognizing a user action and smart terminal
Uddin et al. Human activity recognition from wearable sensors using extremely randomized trees
CN106951753B (zh) 一种心电信号的认证方法和认证装置
CN107688790B (zh) 人体行为识别方法、装置、存储介质及电子设备
CN112966773B (zh) 一种无人机飞行工况模式识别方法及系统
CN113295702B (zh) 电气设备故障诊断模型训练方法和电气设备故障诊断方法
CN110786849B (zh) 基于多视图鉴别分析的心电信号身份识别方法及系统
CN105139029A (zh) 一种监狱服刑人员的行为识别方法及装置
CN106073802A (zh) 运动状态下的血氧饱和度监测装置
CN113128585B (zh) 一种基于多尺寸卷积核的深度神经网络实现心电异常检测分类方法
Lara-Cueva et al. On the use of multi-class support vector machines for classification of seismic signals at Cotopaxi volcano
CN113705396A (zh) 一种电机故障诊断方法、系统及设备
Whitehill et al. Whosecough: In-the-wild cougher verification using multitask learning
CN106292282A (zh) 基于大数据的智能农业环境监控系统
Hussein et al. Robust human activity recognition using generative adversarial imputation networks
CN106175822A (zh) 一种基于声音传感器的肠电图检测系统
Ramakrishnan et al. Epileptic eeg signal classification using multi-class convolutional neural network
CN112699744A (zh) 跌倒姿态的分类识别方法、装置和可穿戴设备
CN115249377B (zh) 一种微表情的识别方法及装置
CN106355715A (zh) 一种无线语音识别门禁系统
CN114327045B (zh) 基于类别不平衡信号的跌倒检测方法及系统
Patil et al. IpSegNet: deep convolutional neural network based segmentation framework for iris and pupil
CN106225846A (zh) 大棚监测系统
CN115236272A (zh) 多工况条件下的气体传感器故障诊断方法、装置及存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161109