CN106067485B - Metal - active layer - antireflection layer nanowire solar cell - Google Patents

Metal - active layer - antireflection layer nanowire solar cell Download PDF

Info

Publication number
CN106067485B
CN106067485B CN201610559814.8A CN201610559814A CN106067485B CN 106067485 B CN106067485 B CN 106067485B CN 201610559814 A CN201610559814 A CN 201610559814A CN 106067485 B CN106067485 B CN 106067485B
Authority
CN
China
Prior art keywords
layer
metal
active layer
anti
solar cell
Prior art date
Application number
CN201610559814.8A
Other languages
Chinese (zh)
Other versions
CN106067485A (en
Inventor
饶蕾
胡秀娟
Original Assignee
上海电机学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海电机学院 filed Critical 上海电机学院
Priority to CN201610559814.8A priority Critical patent/CN106067485B/en
Publication of CN106067485A publication Critical patent/CN106067485A/en
Application granted granted Critical
Publication of CN106067485B publication Critical patent/CN106067485B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明提供了一种金属‑有源层‑抗反射层纳米线太阳能电池,由半导体纳米线单元沿一维方向周期性放置,形成周期结构阵列;半导体纳米线单元由金属、有源层和抗反射层由内至外依次同轴设置构成。 The present invention provides a metal - active layer - antireflection layer nanowire solar cell, a semiconductor nanowire unit periodically placed along a one-dimensional direction, forming a periodic array of structures; semiconductor nanowire means a metal, an active layer and an anti- the reflective layer is from inside to outside are sequentially disposed coaxially configured. 光入射时,抗反射层增强光入射到有源层的能量;光入射至有源层时,激励出回音壁模式,满足该模式的光波在有源层内传播;当光波入射至有源层和金属交界面时,激励出金属表面等离子激元,满足波矢量匹配波长的光波被吸收。 When light is incident, enhanced anti-reflective layer to the light energy incident on the active layer; light is incident to the active layer, excited whispering gallery modes, the mode propagating light waves meet in the active layer; when the light wave is incident to the active layer and metal interface, the excited metal surface plasmon, the wave vector of light waves to meet the matching wavelength is absorbed. 本发明可实现对满足波矢量匹配波长的光波接近100%吸收率,同时抗反射层可作为正向电极,金属作为背向电极导电,在正向和背向电极之间加载电路可实现有效的光电转化。 The present invention can be realized to meet the wave vector matching wavelengths of light absorption rate close to 100%, while the anti-reflective layer may serve as a positive electrode, a back electrode conductive metal, between the forward and the back electrode of the load circuit effective photoelectric conversion. 本发明材料适用广泛,制造工艺简单,可实现全光谱高吸收率。 Material of the present invention is widely applicable, simple manufacturing process, can achieve the full spectrum of high absorption rate.

Description

一种金属一有源层一抗反射层纳米线太阳能电池 An active layer of a metal reflection layer nanowire solar cell

技术领域 FIELD

[0001] 本发明涉及一种太阳能电池,尤其涉及一种半导体材料厚度在几十纳米的薄膜型高吸收率太阳能电池。 [0001] The present invention relates to a solar cell, particularly to a semiconductor material in the thin-film thickness of the high absorption of the solar cell of tens of nanometers.

背景技术 Background technique

[0002] 随着纳米技术和纳米电子技术的快速发展,金属表面等离子激元(Surface Plasmon polaritons,SPPs)在近年来成为一个新兴的研宄方向。 [0002] With the rapid development of nanotechnology and nano-electronic technology, the metal surface plasmon (Surface Plasmon polaritons, SPPs) in recent years become a study based on a new direction. SPPs是当电磁波入射到金属与介质表面,在交界面处产生的表面电磁波振荡,其电场强度在金属表面最大,随着垂直于交界面的距离的增大而呈指数衰减。 When an electromagnetic wave is incident on the SPPs with the metal surface of the medium, the surface electromagnetic waves generated at the interface oscillation, the maximum field strength on the metal surface, with increasing distance perpendicular to the interface and decay exponentially. 因此,SPPs是一种表面波,它的电磁场被约束在金属与介质交界面附近的范围内。 Thus, the SPPs is a wave, its electromagnetic field is confined within the vicinity of the interface between metal and dielectric. SPPs可以突破衍射极限,把电磁波约束在亚波长尺寸范围内传播。 SPPs can break the diffraction limit, the constraint propagation of electromagnetic waves in a subwavelength size range. 金属材质、亚波长结构及金属表面介质都会对SPPs产生影响,目前,SPPs效应己经应用在太阳能、波导传输、谐振腔、激光放大、传感和成像等多个领域。 Metal material, subwavelength structure surface of the dielectric and the metal will have an impact on the SPPs, currently, the SPPs effect already applied in many fields of solar, transmission waveguide, resonator, laser amplification, sensing and imaging.

[0003]有专家在2014年提出抗反射层一半导体吸收层-银三层平面结构,其中半导体吸收层的厚度在几十纳米左右。 [0003] Some experts antireflection layer in a semiconductor absorber layer 2014 - three silver-planar structure, wherein the semiconductor absorber layer has a thickness of about several tens of nanometers. 当光波从空气侧入射时,满足波矢量匹配的光波在半导体吸收层和银交界面激励出SPPs,SPPs沿半导体吸收层和银交界面方向传播并被半导体吸收层吸收。 When the light wave is incident from the air side, satisfied light waves in the wave vector matching semiconductor absorber layer and a silver interface excite SPPs, SPPs along the semiconductor absorber layer and a silver interface propagating absorbent layer and the semiconductor. 该结构可实现对可见光波段(400纳米〜800纳米)中满足波矢量匹配的光波100%的吸收率,利用该结构可以实现太阳光能量的有效吸收。 This structure can realize the visible band (400 nm ~800 nm) in the absorption of light waves meet 100% of the wave vector matching, the use of the structure effectively absorb sunlight energy can be achieved. 但是该结构只能实现可见光波段对某些特定波长光波100 %能量的吸收。 However, this configuration can achieve visible light absorption of certain wavelengths of light wave energy of 100%.

[0004] 回音壁模式(whispering gallery modes,WGM)是一种可以绕凹曲面传播的波类型。 [0004] whispering gallery modes (whispering gallery modes, WGM) is a concave curved surface may be about the type of wave propagation. 最初发现WGM是在圣保罗大教堂回音廊里传播的声波。 WGM was originally discovered sound waves in the Whispering Gallery in St Paul's Cathedral. 近年来,工作在光波段的WGM谐振腔已成功地被研究及运用于激光器、滤波器、传感器和波混频器等多种光器件中。 In recent years, work has been studied and used in a variety of optical laser devices, filters, sensors, and mixers like wave in the wavelength band successfully WGM resonator. 在上述应用中,WGM谐振腔的品质因数⑼取值一般较高,范围从105-109,甚至更高,因为高Q值的WGM 谐振腔能量泄漏小、频率选择性高,但光耦合进入谐振腔的效率较低。 In such applications, the quality factor values ​​⑼ WGM resonator is generally higher, ranging from 105-109, or even higher, because the WGM resonator of a high Q energy leakage small, high frequency selectivity, but the light coupled into the resonator less efficient chamber. 与此相对,WGM同样可以应用于太阳光波段宽带吸波材料,这种应用则要求WGM谐振腔的特性具有高吸收率、低频率选择性和强耦合的特性,即WGM谐振腔Q值较低。 On the other hand, is equally applicable to sunlight WGM band broadband absorber, the WGM resonator properties for this application is required to have high absorption characteristics, low frequency selectivity and strong coupling, i.e. the WGM resonator Q value is low .

[0005] 有专家在2011年提出一种周期性排列的微晶硅材料球形纳米颗粒,纳米颗粒的厚度在50nm左右,这种几何形状结构具有低Q值WGM谐振模式,能促进太阳光耦合到WGM谐振模式,提高光在微晶硅材料中的光程,从而提高光的吸收率。 [0005] Some experts spherical nanoparticles microcrystalline silicon material is arranged in a cyclical 2011, a thickness of about 50 nm nanoparticles, this geometry structure having a low Q value WGM resonance mode is coupled to the sun can promote WGM resonance mode, improved light path in the microcrystalline silicon material, thereby increasing the light absorption ratio. 但是该结构正向和背向导电电极不易加工,使得生产太阳能电池器件较困难;虽然其正向和背向导电电极可分别加工在球形纳米颗粒的上下侧,但由于该结构形状为球形,在加工中极易导致正向和背向电极之间连通而造成短路。 Forward and away from the structure is difficult to process the conductive electrode, so that the production of solar cell device is difficult; although the forward and away from the conductive electrode may be respectively processed in the upper and lower sides of the spherical nanoparticles, but since the structure is spherical in shape, in processing can easily lead to communication between the forward and the back electrode and causing a short circuit.

[0006]当太阳光从空气入射至半导体有源层时,由于空气和半导体材料的折射率不同导致太阳光会在两者交界面产生反射损耗,常用的方法是在半导体材料表面镀上具有导电性的抗反射薄膜(Anti-reflection Coating,ARC),如掺锡氧化铟(IT0)或掺铝氧化锌(ZnO: A1)等透明导电薄膜,在实现增强光透射的同时作为正向电极导电。 [0006] When the sunlight is incident from the air to the semiconductor active layer, the refractive index of air and semiconductor material will produce different results in sunlight reflection loss, a method commonly used in both the interface is coated with a conductive surface of a semiconductor material having of antireflection film (Anti-reflection Coating, ARC), such as tin-doped indium oxide (IT0) or aluminum-doped zinc oxide (ZnO: A1) a transparent conductive film, while achieving enhanced light transmission as a positive electrode conductive.

[0007] 如何发挥SPPs、WGM及ARC的优势,同时克服SPPs、WGM的缺点,形成一种半导体材料厚度在亚波长范围内的薄膜型高吸收率太阳能电池,是本领域技术人员致力于解决的难题。 [0007] How to play SPPs, WGM and ARC advantages while overcoming the disadvantages SPPs, WGM, the thickness of the semiconductor material to form a thin film type solar cell of high absorption rate in a range of sub-wavelength, are skilled in the art to address the problem.

发明内容 SUMMARY

[0008] 本发明要解决的是薄膜型太阳能电池吸收特性不理想、对于全光谱的吸收不充分以及太阳能电池器件正负电极加工较困难的技术问题。 [0008] The present invention to a thin film type solar cell is not over the absorption properties, the absorption is insufficient, and the full spectrum solar cell device for processing the positive and negative electrodes more difficult technical problem.

[0009] 为了解决上述技术问题,本发明的技术方案是提供一种金属-有源层-抗反射层纳米线太阳能电池,其特征在于:由半导体纳米线单元沿一维方向周期性放置,形成周期结构阵列;所述半导体纳米线单元由金属、有源层和抗反射层由内至外依次同轴设置构成。 [0009] To solve the above technical problem, the technical solution of the present invention is to provide a metal - active layer - antireflection layer nanowire solar cell, comprising: periodically placing a semiconductor nanowire unit in one-dimensional direction, is formed periodic array of structures; the semiconductor nanowire means a metal, an active layer and an antireflection layer are formed of coaxially disposed inside to the outside.

[0010] 优选地,所述金属为圆柱形,所述有源层为圆柱环结构,所述抗反射层也为圆柱环结构。 [0010] Preferably, the metal is cylindrical, the active layer structure of a cylindrical ring, the anti-reflective layer is also a cylindrical ring structure.

[0011] 优选地,所述金属半径为100nm〜200nm。 [0011] Preferably, the radius of the metal 100nm~200nm.

[0012]优选地,所述有源层内径与所述金属外径相同,所述有源层外径比所述金属外径大30nm 〜lOOnm。 [0012] Preferably, the active layer of the same inner diameter and the outer diameter of the metal, the active layer is larger than the outer diameter of the metallic outer diameter 30nm ~lOOnm.

[0013]优选地,所述抗反射层内径与所述有源层外径相同,所述抗反射层外径比所述有源层外径大30nm〜lOOnm。 [0013] Preferably, the anti-reflective layer is the same as the inner diameter of the outer diameter of the active layer, the antireflection layer is an outer diameter larger than the outer diameter of said active layer 30nm~lOOnm.

[0014] 优选地,所述金属由电极银、金或铝制成。 [0014] Preferably, the metal electrode is made of silver, gold or aluminum.

[0015]优选地,所述有源层由半导体材料硅基、锗或砷化镓制成。 [0015] Preferably, the active layer of a semiconductor material, silicon, germanium or gallium arsenide.

[0016]优选地,所述抗反射层由抗反射透明导电材料IT0或ZnO: A1制成。 [0016] Preferably, the anti-reflective layer is formed of a transparent conductive material IT0 antireflective or ZnO: made of A1.

[0017]优选地,所述当可见光入射时,通过抗反射层增强光入射到有源层的能量;当光入射至有源层时,激励出回音壁模式,满足回音壁模式的光波在有源层内传播;当所述光波入射至有源层和金属的交界面时激励出金属表面等离子激元SPPs,SPPs沿有源层和金属的交界面传播,满足波矢量匹配波长的光波能力被吸收。 [0017] Preferably, when said visible light is incident, to enhance the light incident energy to the active layer through the anti-reflection layer; when light is incident to the active layer, whispering gallery modes is excited to meet with a whispering gallery mode in the optical wave Endogenous propagation layer; excited metal surface plasmon SPPs when the light wave is incident to the active layer and the metal interface, SPPs along the active layer and the metal interface of the communication, the ability to meet the light wave is the wave vector matching wavelength absorb.

[0018] 优选地,所述抗反射层作为正向电极导电,所述金属作为背向电极导电。 [0018] Preferably, the conductive anti-reflection layer as the positive electrode, a back electrode as a conductive metal.

[0019] 本发明将半导体纳米线沿一维方向周期性放置形成周期结构阵列,在半导体纳米线的内部引入金属柱,在半导体纳米线外部包裹具有导电性的抗反射层ARC,形成一种金属-有源层-抗反射层纳米线太阳能电池结构。 [0019] The present invention is a semiconductor nanowire-dimensional direction in a periodic array disposed periodic structure is formed, is introduced inside the metal pillar semiconductor nanowire, ARC antireflection layer having a conductive outer wrapping in the semiconductor nanowires are formed of a metal - active layer - antireflection layer nanowire solar cell structure. 当可见光入射至该结构时,ARC层可以增强光入射到半导体材料层和作为正向电极导电。 When visible light is incident to the structure, ARC layer may enhance the light incident on the semiconductor material layer and a positive electrode conductive. 金属柱能实现当太阳光入射时在半导体材料内部激励出SPPs和WGM模式,同时可作为背向金属电极导电,使得光程增加、光回收增强、光吸收增大。 Metal pillar can be achieved when the sun is incident excitation within the semiconductor material and the SPPs WGM mode while facing away from the metal as a conductive electrode, so that the optical path is increased, to enhance light recycling, light absorption is increased. 与具有相同结构尺寸的平板薄膜型太阳能电池相比,本太阳能电池的吸收率增强了62%。 Compared with the flat thin film type solar cell having the same overall size, this absorption rate of the solar cell is enhanced by 62%.

[0020]相比现有技术,本发明提供的太阳能电池结构具有如下有益效果: [0020] compared to the prior art, the solar cell structure provided by the present invention has the following advantages:

[0021] (1)本发明通过在具有一维周期排列分布的半导体材料纳米线内部引入金属柱, 当太阳光入射至半导体材料和金属柱的交界面时,能激励出Spps,通过参数优化可实现对满足波矢量匹配波长的光波接近100%吸收率。 [0021] (1) of the present invention, by having a one-dimensional periodic semiconductor material of the nanowire arranged distributed inside the introduction of the metal post, when sunlight is incident to the interface between the semiconductor material and the metal pillar can be excited SPPS, the parameter optimized achieve satisfying wave vector matching wavelengths of light absorption rate close to 100%.

[0022] (2)本发明通过在具有一维周期排列分布的半导体材料纳米线内部引入金属柱, 5得半导体材料纳米线形成纳米圆柱环,当太阳光入射至纳米圆柱环时可激励出WGM模式, ?两足WGM谐振検式的光波可以沿纳米圆柱环内部传播,从而提高光波在半导体材料内部的光程和光回收,提高太阳光的吸收效率。 [0022] (2) according to the present invention by introducing a metal post within the semiconductor material of the nanowire having arranged the distribution of one-dimensional period, 5 to obtain a semiconductor material of the nanowire is formed nano cylindrical ring, when sunlight is incident to the nano cylindrical ring when the can be excited WGM mode? bipedal ken WGM resonator type light wave propagates along the inner cylindrical ring nanometers, thereby improving the light path and an internal light recycling light waves in a semiconductor material, improving the absorption efficiency of solar light.

[0023] (3)在本发明中,半导体材料纳米线内部的金属柱具有激励SPPs和作为背向金属电极的功能,半导体材料纳米线外部包裹的抗反射层由透明导电材料制成,具有增强太阳光入射和作为正向导电电极的功能。 [0023] (3) In the present invention, inside the semiconductor material of the nanowire and a metal post having excitation SPPs facing away from the metal electrode functions as an external wrapping material of semiconductor nanowires antireflection layer is made of a transparent conductive material having enhanced as a function of incident sunlight and forward conductive electrodes. 通过在正向和背向电极之间加载电路可实现有效的光电转化。 Between the forward and back through the load circuit electrode allows for efficient photoelectric conversion.

[0024] (4)本发明对于半导体纳米线材料不严格依赖,许多在可见光波段具有高吸收率的硅基、锗、砷化镓、CIGS等半导体材料均可采用,同时内部金属柱材料可采用在太阳能电池中常用的银、金、铝等材料,这样受工艺限制的因素比较小。 [0024] (4) For the present invention, a semiconductor nanowire material is not strictly dependent on many silicon, germanium, gallium arsenide, the CIGS semiconductor material having a high absorption rate in visible light can be used, while the inner material can be metal pillar commonly used in solar cells, silver, gold, aluminum and other materials, such limited by technology factors is relatively small.

附图说明 BRIEF DESCRIPTION

[0025]图1为本实施例提供的金属-有源层-抗反射层纳米线太阳能电池在一个周期的示意图; The active layer - - [0025] FIG metal provided in the present embodiment schematic antireflection layer on a nanowire solar cell cycle;

[0026]图2为本实施例提供的金属-有源层-抗反射层纳米线太阳能电池整体结构示意图; The active layer - - [0026] FIG. 2 provided in the metal present embodiment schematic view of the entire anti-reflective layer nanowire solar cell;

[0027]图3为本实施例提供的太阳能电池与相同结构尺寸的平板单晶硅的光吸收率对比图。 [0027] FIG 3 single crystal silicon plate light absorption rate vs. the same structure as the solar cell dimensions provided in the present embodiment.

具体实施方式 Detailed ways

[0028]下面结合具体实施例,进一步阐述本发明。 [0028] The following embodiments with reference to specific embodiments, further illustrate the present invention. 应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。 It should be understood that these embodiments are illustrative only and the present invention is not intended to limit the scope of the invention. 此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。 Furthermore, it should be understood that, after reading the teachings of the present invention, those skilled in the art that various changes or modifications may be made to the present invention, and these equivalents also fall within the scope of the appended claims of the present application as defined.

[0029]如图1所示为本实施例提供的金属-有源层-抗反射层纳米线太阳能电池在一个周期的示意图,其结构由内而外分别为: [0029] As shown in FIG 1 according to an embodiment of the present metal - active layer - a schematic view of an antireflection layer on a nanowire solar cell cycle, its structure from the inside are:

[0030]金属1,其材料为银,半径为145nm; [0030] 1 metal, which material is silver, a radius 145nm;

[0031] 有源层2,其包裹在金属1的外侧,其材料为单晶硅,半径为225nm,厚度为80nm; [0032]抗反射层3,其包裹在有源层2的外侧,其材料为ZnO: A1,其在可见光波段的折射率通常为1 _92,半径为265nm,厚度为40nm。 [0031] The active layer 2, which is wrapped on the outside of the metal 1, which is single crystal silicon material, radius of 225nm, a thickness of 80nm; [0032] anti-reflection layer 3, which is wrapped in the outer side of the active layer 2, which is material is ZnO: A1, having a refractive index in visible light is usually 1 _92 radius of 265nm, a thickness of 40nm.

[0033]金属1、有源层2、抗反射层3构成一个整体结构,将该整体结构沿一维方向周期性排列形成本实施例提供的金属-有源层-抗反射层纳米线太阳能电池的实际结构,如图2所示,周期为460nm。 [0033] 1 metal, the active layer 2, the antireflection layer 3 constitutes an integral structure, the overall structure of periodically arranged in one-dimensional direction is formed according to an embodiment of the present metal - active layer - antireflection layer nanowire solar cell actual structure, as shown in Figure 2, a period of 460nm.

[0034]将抗反射层3放置在有源层2的外侧,可以促进入射太阳光从空气到有源层2的耦合。 [0034] The anti-reflection layer 3 is placed on the outside of the active layer 2 can be promoted from the air incident sunlight coupled to the active layer 2. 抗反射层3由透明导电材料形成,可同时作为太阳能电池的正向电极。 Anti-reflection layer 3 is formed of a transparent conductive material, at the same time as the forward electrode of a solar cell.

[0035]通过在有源层2内部引入金属1,使得有源层2形成圆柱环形结构,当太阳光入射至有源层2时可激励出WGM模式,满足WGM谐振模式的光波可以在有源层2内传播,光程增大,光吸收增强。 [0035] By introducing the metal in the interior of the active layer 21, an active layer 2 formed so that a cylindrical annular structure, when sunlight is incident to the active layer 2 can be excited WGM mode light wave meet WGM resonance modes can be active propagation inner layer 2, an optical path is increased, light absorption enhancement. 当太阳光入射至有源层2和金属1的交界面时,能激励出SPPs,SPPs沿有源层2和金属1的交界面传播,满足波矢量匹配波长的光波具有接近100%的光吸收率。 When sunlight is incident to the interface between the active layer 2 and the metal 1 can excite SPPs, SPPs propagating along the interface between the active layer 2 and the metal 1, the wave vector matching satisfies lightwave having a wavelength close to 100% of the light absorbing rate. 金属1可同时作为太阳能电池的背向电极。 1 can operate as back metal electrode of a solar cell.

[0036] 金属1、有源层2和抗反射层3的加工可以采用常规的物理化学气相沉积(PCVD)或飞秒激光刻蚀等方式,进而实现整体电池结构。 [0036] Metal 1, 2 and the processing of the active layer anti-reflection layer 3 may be conventional physical-chemical vapor deposition (a PCVD) or femtosecond laser etching, etc., so as to realize the overall cell structure.

[0037] TM偏振的太阳光正入射至本太阳能电池表面。 [0037] TM polarized normal incident sunlight to the solar cell surface present. 考虑到太阳光在AMI. 5条件下光强主要分布在可见光及红外波段,单晶硅的禁带宽度对应的光波长,本实施例所设定的参考光波段为300nm〜1100nm〇 Considering the light having a wavelength of sunlight at AMI. 5 mainly in conditions of light intensity visible and infrared, silicon band gap corresponding to the reference optical band embodiment of the present embodiment is set 300nm~1100nm〇

[0038]图3为厚度为80nm的平板单晶硅(背面镀有厚度为145nm的银,正面镀有厚度为40nm的ZnO:Al)的光吸收率和本实施例的太阳能电池的光吸收率对比图。 [0038] FIG. 3 is a flat plate having a thickness of 80nm of single crystal silicon (back surface plated with silver having a thickness of 145nm, a positive plate thickness of the ZnO 40nm: Al) of light absorption rate and optical absorptance of the solar cell of the present embodiment Compare FIG. 从图3可以看出, 本实施例的太阳能电池的光吸收率在参考光波段比具有相同结构尺寸的平板单晶硅要高。 As can be seen from Figure 3, the light absorption of the solar cell of the present embodiment has the same structure as the size of flat plate in the reference optical band higher than single crystal silicon. [0039] 采用短路电流密度对图3中两条曲线进行量化处理,可以得到本实施例的太阳能电池的短路电流密度为19.22mA/cm2,厚度为80nm的平板单晶硅的短路电流密度为11.86mA/cm2。 [0039] The short circuit current density of the two curves in FIG. 3 quantizes, short circuit current density can be obtained a solar cell of the present embodiment is 19.22mA / cm2, a thickness of the short circuit current density of the single crystal silicon plate is 80nm 11.86 mA / cm2. 与同结构尺寸的平板单晶硅相比,本实施例的太阳能电池的短路电流密度提高了62%。 Compared with the single crystal silicon plate with structural dimensions, short circuit current density of the solar cell of the present embodiment is improved by 62%.

Claims (8)

1. 一种金属一有源层一抗反射层纳米线太阳能电池,其特征在于^由半导体纳米线单元沿一维方向周期性放置,形成周期结构阵列•,所述半导体纳米线单元由金属(1)、有源层(2)和抗反射层(3)由内至外依次同轴设置构成; 当可见光入射时,通过抗反射层(3)增强光入射到有源层(2)的能量;当光入射至有源层⑵时,激励出回音壁模式,满足回音壁模式的光波在有源层内传播;当所述光波入射至有源层(2)和金属(1)的交界面时,激励出金属表面等离子激SSPPs,SPPs沿有源层⑵和金属(1)的交界面传播,满足波矢量匹配波长的光波能量被吸收; 所述抗反射层⑶作为正向电极导电,所述金属⑴作为背向电极导电' An active layer of a metal reflection layer nanowire solar cell, wherein ^ periodically placed by the semiconductor nanowire unit in one-dimensional direction, • forming a periodic array of structures, the semiconductor element of a metal nanowire ( 1), an active layer (2) and the anti-reflection layer (3) from inside to outside are sequentially disposed coaxially configuration; when visible light is incident, (3) enhance light incident energy to the active layer (2) through the antireflective layer ; when light is incident to the active layer ⑵, excite whispering gallery modes, light wave meet the whispering gallery modes propagating in the active layer; when the light wave incident to the interface between the active layer (2) and the metal (1) , the excited metal surface plasmons SSPPs, SPPs ⑵ along the active layer and the metal (1) is spread interface, to meet the energy light wave of wave vector matching wavelength is absorbed; ⑶ the antireflective layer as the positive electrode conductive, the said back electrode as a conductive metal ⑴ '
2. 如权利要求1所述的一种金属一有源层一抗反射层纳米线太阳能电池,其特征在于: 所述金属(1)为圆柱形,所述有源层(2)为圆柱环结构,所述抗反射层⑶也为圆柱环结构。 As claimed in claim 1 of a metal layer of an active anti-reflective layer nanowire solar cell, characterized in that: the metal (1) is cylindrical, the active layer (2) is a cylindrical ring structure, the anti-reflective layer ⑶ also a cylindrical ring structure.
3. 如权利要求2所述的一种金属一有源层一抗反射层纳米线太阳能电池,其特征在于: 所述金属⑴半径为l〇〇nm〜2〇Onm。 As claimed in claim 2 of a metal layer of an active anti-reflective layer nanowire solar cell, characterized in that: said radius l〇〇nm~2〇Onm ⑴ metal.
4. 如权利要求3所述的一种金属一有源层一抗反射层纳米线太阳能电池,其特征在于: 所述有源层(2)内径与所述金属(1)外径相同,所述有源层(2)外径比所述金属(1)外径大30nm 〜lOOnm。 As claimed in claim 3 of a metal layer of an active anti-reflective layer nanowire solar cell, characterized in that: the active layer (2) with an inner diameter of said metal (1) the same outer diameter, the said active layer (2) is larger than the outer diameter of the metal (1) 30nm ~lOOnm.
5. 如权利要求4所述的一种金属一有源层一抗反射层纳米线太阳能电池,其特征在于: 所述抗反射层⑶内径与所述有源层⑵外径相同,所述抗反射层(3)外径比所述有源层(2) 外径大30nm〜lOOnm。 As claimed in claim 4 of a metal layer of an active anti-reflective layer nanowire solar cell, characterized in that: said anti-reflection layer and an inner diameter ⑶ ⑵ an outer diameter the same as the active layer, the anti- a reflective layer (3) than the outer diameter of said active layer (2) outer diameter 30nm~lOOnm.
6. 如权利要求1〜3任一项所述的一种金属一有源层一抗反射层纳米线太阳能电池,其特征在于:所述金属⑴由电极银、金或铝制成。 1~3 metal as claimed in any one of the anti-reflective layer an active layer of a nanowire solar cell as claimed in claim, wherein: the metal electrode ⑴ a silver, gold or aluminum. a 、 a,
7. 如权利要求1〜4任一项所述的一种金属一有源层一抗反射层纳米线太阳能电池,其特征在于:所述有源层(2)由半导体材料硅基、锗或砷化镓制成。 ~ 4 metal as claimed in any one of the anti-reflective layer an active layer of a nanowire solar cell as claimed in claim, wherein: said active layer (2) made of a semiconductor material, silicon, germanium, or made of gallium arsenide. & 、 & Amp;,
8. 如权利要求1〜5任一项所述的一种金属一有源层一抗反射层纳米线太阳能电池,其特征在于:所述抗反射层(3)由抗反射透明导电材料IT0或ZnO: A1制成。 IT0 antireflective a transparent conductive material or the anti-reflection layer (3): 1 ~ 5 as claimed in any one of a metal layer of an active anti-reflective layer nanowire solar cell, characterized in that ZnO: made of A1.
CN201610559814.8A 2016-07-15 2016-07-15 Metal - active layer - antireflection layer nanowire solar cell CN106067485B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610559814.8A CN106067485B (en) 2016-07-15 2016-07-15 Metal - active layer - antireflection layer nanowire solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610559814.8A CN106067485B (en) 2016-07-15 2016-07-15 Metal - active layer - antireflection layer nanowire solar cell

Publications (2)

Publication Number Publication Date
CN106067485A CN106067485A (en) 2016-11-02
CN106067485B true CN106067485B (en) 2017-11-03

Family

ID=57207023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610559814.8A CN106067485B (en) 2016-07-15 2016-07-15 Metal - active layer - antireflection layer nanowire solar cell

Country Status (1)

Country Link
CN (1) CN106067485B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292365A (en) * 2005-06-17 2008-10-22 依路米尼克斯公司 Photovoltaic wire
CN101627479A (en) * 2007-01-30 2010-01-13 索拉斯特公司 Photovoltaic cell and method of making thereof
CN102983215A (en) * 2012-11-19 2013-03-20 中国科学院半导体研究所 Method for preparing silicon thin-film solar cells with silicon nano-wire structures
CN103296123A (en) * 2013-05-15 2013-09-11 合肥工业大学 P-type carbon quantum dot/N-type silicon nano-wire array hetero-junction solar cell and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292365A (en) * 2005-06-17 2008-10-22 依路米尼克斯公司 Photovoltaic wire
CN101627479A (en) * 2007-01-30 2010-01-13 索拉斯特公司 Photovoltaic cell and method of making thereof
CN102983215A (en) * 2012-11-19 2013-03-20 中国科学院半导体研究所 Method for preparing silicon thin-film solar cells with silicon nano-wire structures
CN103296123A (en) * 2013-05-15 2013-09-11 合肥工业大学 P-type carbon quantum dot/N-type silicon nano-wire array hetero-junction solar cell and method for manufacturing same

Also Published As

Publication number Publication date
CN106067485A (en) 2016-11-02

Similar Documents

Publication Publication Date Title
Yao et al. Broadband light management using low-Q whispering gallery modes in spherical nanoshells
Sai et al. Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties
Pillai et al. Plasmonics for photovoltaic applications
Hu et al. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications
Callahan et al. Solar cell light trapping beyond the ray optic limit
Zhu et al. Nanostructured photon management for high performance solar cells
Yu et al. Dielectric core–shell optical antennas for strong solar absorption enhancement
Ferry et al. Modeling light trapping in nanostructured solar cells
US20130081693A1 (en) Surface plasmon energy conversion device
Beck et al. Plasmonic light‐trapping for Si solar cells using self‐assembled, Ag nanoparticles
Spinelli et al. Optical impedance matching using coupled plasmonic nanoparticle arrays
Mallick et al. Coherent light trapping in thin-film photovoltaics
EP2149915A2 (en) Method of manufacturing photovoltaic device
US20090253227A1 (en) Engineered or structured coatings for light manipulation in solar cells and other materials
Yan et al. Enhanced omnidirectional photovoltaic performance of solar cells using multiple‐discrete‐layer tailored‐and low‐refractive index anti‐reflection coatings
CN103259097B (en) Terahertz metamaterial unit and control structure and method of preparation
Beck et al. Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells
US20100288352A1 (en) Integrated solar cell nanoarray layers and light concentrating device
Wang et al. Periodic Si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection
EP2018668A2 (en) Solar cell efficiencies through periodicity
Lin et al. Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics
JP2002076410A (en) Surface plasmon reinforced photovoltaic device
Lin et al. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications
Akimov et al. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes
US20140069496A1 (en) Planar Plasmonic Device for Light Reflection, Diffusion and Guiding

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01