CN106067359A - 一种铁硅硼复合软磁合金的制备方法 - Google Patents
一种铁硅硼复合软磁合金的制备方法 Download PDFInfo
- Publication number
- CN106067359A CN106067359A CN201610344331.6A CN201610344331A CN106067359A CN 106067359 A CN106067359 A CN 106067359A CN 201610344331 A CN201610344331 A CN 201610344331A CN 106067359 A CN106067359 A CN 106067359A
- Authority
- CN
- China
- Prior art keywords
- alloy
- scale
- amorphous
- covering
- diluent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
- H01F1/14783—Fe-Si based alloys in the form of sheets with insulating coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
本发明公开了一种铁硅硼复合软磁合金的制备方法,该铁硅硼复合软磁合金由以下原子配比的合金制成:(Fe1‑x‑yNbxAly)1‑a‑b‑c(Si1‑zBz)aCubHfc,其中x=0.05‑0.06,y=0.15‑0.20,z=0.15‑0.20,a=0.12‑0.15,b=0.05‑0.10,c=0.01‑0.02。本发明制备的铁基纳米晶软磁合金,采用Nb替代部分Fe,采用B替代部分Si提高了材料的软磁性能及磁饱和强度,采用的Hf可提高材料的非晶形成能力,材料中的Ta可增加非晶的热稳定性,保证了组织的热稳定性,Al有助于软磁性能提高;该方法借助非晶带材鳞片化破碎,以及绝缘化处理,实现了非晶鳞片的层状搭接和规则排列,从而使鳞片具有定向取向性,从而使本发明的软磁合金具有优异磁学性能。
Description
技术领域
本发明涉及磁性材料制造领域,具体涉及一种铁硅硼复合软磁合金的制备方法。
背景技术
由铁磁性金属粉末与绝缘介质混合而成的复合软磁材料,由于磁粉粒度小,且被绝缘介质均匀隔开,涡流损耗小,可适用于较高频率,该类材料由于具有较高的磁导率和较低的损耗,因此可以用来设计和生产各类高性能的电子元器件,如电感器、滤波器和互感器等,广泛应用于电子通讯、开关电源等领域。
自1988年日立金属Yoshizawa等人发现了Fe-Si-B-Nb-Cu系合金以来,对铁基纳米晶合金材料的深入探究将软磁材料的研发推向了一个新高潮。铁基纳米晶软磁合金主要包括三个合金体系,即Fe-Si-B-M-Cu(M=Nb、Mo、Ta、W)系FINEMET合金、Fe-M-B-Cu(M=Zr、Hf、Nb)系NANOPERM合金和(Fe,Co)-M-B-Cu(M=Zr、Hf、Nb)系HITPERM合金。
但是,非晶态合金还存在明显的缺点:饱和磁感应强度不高。以非晶态合金中综合软磁性能最好的Fe73.5Si13.5B9Nb3Cu1为例,其饱和磁感应强度仅为1.24T。相比于其他高饱和磁感应强度的软磁材料,在相同的工作条件下该合金材料需要更大体积,这极大地限制了它的应用范围。
现有技术中利用热处理、破碎、筛分的方法制备出不同粒度的粉体,然后将粗粉和细粉混合,再采用钝化剂、偶联剂、绝缘剂和粘结剂、润滑剂对混合粉进行钝化、偶联、绝缘包覆、润滑处理,然后压制成型,最后进行热处理,制备出磁导率达到200的磁粉芯。但都要经过钝化、绝缘、粘结、润滑等工艺过程,使得生产工艺过程十分复杂,同时在成型过程中必须经过较大的压力(大于20t/cm2)压制后产品才能成型。
发明内容
本发明提供一种铁硅硼复合软磁合金的制备方法,该方法制得的复合软磁合金,具有优异的软磁性能及高磁感应强度。
为了实现上述目的,实现上述目的,本发明提供了一种铁硅硼复合软磁合金的制备方法,该铁硅硼复合软磁合金由以下原子配比的合金制成:(Fe1-x-yNbxAly)1-a-b-c(Si1- zBz)aCubHfc,其中x=0.05-0.06,y=0.15-0.20,z=0.15-0.20,a=0.12-0.15,b=0.05-0.10,c=0.01-0.02;
该方法包括如下步骤:
(1)按照上述分子式称取各元素进行配料;
(2)将步骤(1)配制的原料装入熔炼炉中,在惰性气氛保护下进行熔炼,冷却后得到成分均匀的母合金铸锭;
(3)将母合金铸锭破碎为小块样品,重新熔融后采用铜模铸造制得非晶合金带材,将带材再次氢破为非晶鳞片;
(4)利用稀释剂按一定比例将包覆剂,再将稀释后的包覆剂与所述非晶鳞片混合制成浆料,然后并将浆料涂布,所述涂布过程中可以通过加磁场控制鳞片取向,使鳞片层状搭接排列;然后对涂布后的浆料进行烘干获得涂层状的薄片,所述烘干处理的温度优选为80-180℃,在烘干过程中所述稀释剂被完全蒸发,所述包覆剂包覆在鳞片表面,该过程实现了鳞片表面绝缘并取向排列;最后,将单层或多层薄片经过压制提高材料密度和厚度,压制处理可以在常温或高温下进行,压制处理的压力范围为0.1-5吨/cm2。
优选的,所述的步骤(1)中,元素Fe、Nb、B和Cu的纯度均不低于99wt.%,所述的步骤(2)中,熔炼温度为1500-1800℃,熔炼时间为20-40分钟。
优选的,所述的步骤(3)中,非晶合金带材宽度优选为1-2mm,厚度优选为20-25μm,氢破过程中,利用破碎机进行破碎,并通过调节设备参数,选用不同的筛网控制鳞片的粒度范围为1-3mm、厚度范围为15-20μm。
优选的,所述的步骤(4)中,包覆剂可以是有机或无机的各类粘结剂,包括聚氨酯类、环氧类和聚酰亚胺类胶中的一种或几种,稀释剂可以是酒精、丙酮、丁酮、乙酸乙酯和N-甲基吡咯烷酮中的一种或多种,包覆剂与所述稀释剂的重量比为1:10-50。
本发明制备的铁基纳米晶软磁合金,采用Nb替代部分Fe,采用B替代部分Si提高了材料的软磁性能及磁饱和强度,采用的Hf可提高材料的非晶形成能力,材料中的Ta可增加非晶的热稳定性,保证了组织的热稳定性,Al有助于软磁性能提高;该方法借助非晶带材鳞片化破碎,以及绝缘化处理,实现了非晶鳞片的层状搭接和规则排列,从而使鳞片具有定向取向性,从而使本发明的软磁合金具有优异磁学性能。
具体实施方式
实施例一
本实施例的铁硅硼复合软磁合金由以下原子配比的合金制成:(Fe0.80Nb0.05Al0.15)0.82(Si0.85B0.15)0.12Cu0.05Hf0.01。
按照上述分子式称取各元素进行配料;元素Fe、Nb、B和Cu的纯度均不低于99wt.%。
将配制的原料装入熔炼炉中,在惰性气氛保护下进行熔炼,冷却后得到成分均匀的母合金铸锭;熔炼温度为1500℃,熔炼时间为20分钟。
将母合金铸锭破碎为小块样品,重新熔融后采用铜模铸造制得非晶合金带材,将带材再次氢破为非晶鳞片;非晶合金带材宽度优选为1-2mm,厚度优选为20-25μm,氢破过程中,利用破碎机进行破碎,并通过调节设备参数,选用不同的筛网控制鳞片的粒度范围为1-3mm、厚度范围为15-20μm。
利用稀释剂按一定比例将包覆剂,再将稀释后的包覆剂与所述非晶鳞片混合制成浆料,然后并将浆料涂布,所述涂布过程中可以通过加磁场控制鳞片取向,使鳞片层状搭接排列;然后对涂布后的浆料进行烘干获得涂层状的薄片,所述烘干处理的温度优选为80℃,在烘干过程中所述稀释剂被完全蒸发,所述包覆剂包覆在鳞片表面,该过程实现了鳞片表面绝缘并取向排列;最后,将单层或多层薄片经过压制提高材料密度和厚度,压制处理可以在常温或高温下进行,压制处理的压力范围为0.1吨/cm2。包覆剂可以是有机或无机的各类粘结剂,包括聚氨酯类、环氧类和聚酰亚胺类胶中的一种或几种,稀释剂可以是酒精、丙酮、丁酮、乙酸乙酯和N-甲基吡咯烷酮中的一种或多种,包覆剂与所述稀释剂的重量比为1:50。
实施例二
本实施例的铁硅硼复合软磁合金由以下原子配比的合金制成:(Fe0.74Nb0.06Al0.20)0.73(Si0.80B0.20)0.15Cu0.10Hf0.02,其中x=0.05-0.06,y=0.15-0.20,z=0.15-0.20,a=0.12-0.15,b=0.05-0.10,c=0.01-0.02。
按照上述分子式称取各元素进行配料;元素Fe、Nb、B和Cu的纯度均不低于99wt.%。
将配制的原料装入熔炼炉中,在惰性气氛保护下进行熔炼,冷却后得到成分均匀的母合金铸锭;熔炼温度为1800℃,熔炼时间为40分钟。
将母合金铸锭破碎为小块样品,重新熔融后采用铜模铸造制得非晶合金带材,将带材再次氢破为非晶鳞片;非晶合金带材宽度优选为1-2mm,厚度优选为20-25μm,氢破过程中,利用破碎机进行破碎,并通过调节设备参数,选用不同的筛网控制鳞片的粒度范围为1-3mm、厚度范围为15-20μm。
利用稀释剂按一定比例将包覆剂,再将稀释后的包覆剂与所述非晶鳞片混合制成浆料,然后并将浆料涂布,所述涂布过程中可以通过加磁场控制鳞片取向,使鳞片层状搭接排列;然后对涂布后的浆料进行烘干获得涂层状的薄片,所述烘干处理的温度优选为180℃,在烘干过程中所述稀释剂被完全蒸发,所述包覆剂包覆在鳞片表面,该过程实现了鳞片表面绝缘并取向排列;最后,将单层或多层薄片经过压制提高材料密度和厚度,压制处理可以在常温或高温下进行,压制处理的压力范围为5吨/cm2。包覆剂可以是有机或无机的各类粘结剂,包括聚氨酯类、环氧类和聚酰亚胺类胶中的一种或几种,稀释剂可以是酒精、丙酮、丁酮、乙酸乙酯和N-甲基吡咯烷酮中的一种或多种,包覆剂与所述稀释剂的重量比为1:50。
比较例
市售硅铁硼软磁合金材料。
对相同形状和尺寸的实施例1-2及比较例的软磁合金进行磁性能测试,在25℃进行测试,(1)合金的矫顽力采用KM-Ot ype List-Koerzimeter矫顽力仪测量;(2)合金的饱和磁感应强度Bs采用静态磁性能测量仪,以磁场为800A/m下的磁感应强度作为合金的饱和磁感应强度Bs。测试结果显示:实施例1-2的矫顽力相对比较例降低52%以上,饱和磁感应强度相对比较例提高28%以上。
Claims (4)
1.一种铁硅硼复合软磁合金的制备方法,该铁硅硼复合软磁合金由以下原子配比的合金制成:(Fe1-x-yNbxAly)1-a-b-c(Si1-zBz)aCubHfc,其中x=0.05-0.06,y=0.15-0.20,z=0.15-0.20,a=0.12-0.15,b=0.05-0.10,c=0.01-0.02;
该方法包括如下步骤:
(1)按照上述分子式称取各元素进行配料;
(2)将步骤(1)配制的原料装入熔炼炉中,在惰性气氛保护下进行熔炼,冷却后得到成分均匀的母合金铸锭;
(3)将母合金铸锭破碎为小块样品,重新熔融后采用铜模铸造制得非晶合金带材,将带材再次氢破为非晶鳞片;
(4)利用稀释剂按一定比例将包覆剂,再将稀释后的包覆剂与所述非晶鳞片混合制成浆料,然后并将浆料涂布,所述涂布过程中可以通过加磁场控制鳞片取向,使鳞片层状搭接排列;然后对涂布后的浆料进行烘干获得涂层状的薄片,所述烘干处理的温度优选为80-180℃,在烘干过程中所述稀释剂被完全蒸发,所述包覆剂包覆在鳞片表面,该过程实现了鳞片表面绝缘并取向排列;最后,将单层或多层薄片经过压制提高材料密度和厚度,压制处理可以在常温或高温下进行,压制处理的压力范围为0.1-5吨/cm2。
2.如权利要求1所述的方法,其特征在于,所述的步骤(1)中,元素Fe、Nb、B和Cu的纯度均不低于99wt.%,所述的步骤(2)中,熔炼温度为1500-1800℃,熔炼时间为20-40分钟。
3.如权利要求1所述的方法,其特征在于,所述的步骤(3)中,非晶合金带材宽度为1-2mm,厚度为20-25μm,氢破过程中,利用破碎机进行破碎,并通过调节设备参数,选用不同的筛网控制鳞片的粒度范围为1-3mm、厚度范围为15-20μm。
4.如权利要求1所述的方法,其特征在于,所述的步骤(4)中,包覆剂可以是有机或无机的各类粘结剂,包括聚氨酯类、环氧类和聚酰亚胺类胶中的一种或几种,稀释剂可以是酒精、丙酮、丁酮、乙酸乙酯和N-甲基吡咯烷酮中的一种或多种,包覆剂与所述稀释剂的重量比为1:10-50。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610344331.6A CN106067359A (zh) | 2016-05-23 | 2016-05-23 | 一种铁硅硼复合软磁合金的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610344331.6A CN106067359A (zh) | 2016-05-23 | 2016-05-23 | 一种铁硅硼复合软磁合金的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106067359A true CN106067359A (zh) | 2016-11-02 |
Family
ID=57420847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610344331.6A Pending CN106067359A (zh) | 2016-05-23 | 2016-05-23 | 一种铁硅硼复合软磁合金的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106067359A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003229694A (ja) * | 2002-02-05 | 2003-08-15 | Sony Corp | 電磁波吸収体およびその製造方法 |
CN1474418A (zh) * | 2002-08-08 | 2004-02-11 | ס�����������ʽ���� | 磁体用急冷合金的制造方法 |
JP2009059753A (ja) * | 2007-08-30 | 2009-03-19 | Hitachi Chem Co Ltd | 難燃化ノイズ抑制シート |
CN101650999A (zh) * | 2009-08-13 | 2010-02-17 | 太原科技大学 | 一种铁基非晶或纳米晶软磁合金及其制备方法 |
-
2016
- 2016-05-23 CN CN201610344331.6A patent/CN106067359A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003229694A (ja) * | 2002-02-05 | 2003-08-15 | Sony Corp | 電磁波吸収体およびその製造方法 |
CN1474418A (zh) * | 2002-08-08 | 2004-02-11 | ס�����������ʽ���� | 磁体用急冷合金的制造方法 |
JP2009059753A (ja) * | 2007-08-30 | 2009-03-19 | Hitachi Chem Co Ltd | 難燃化ノイズ抑制シート |
CN101650999A (zh) * | 2009-08-13 | 2010-02-17 | 太原科技大学 | 一种铁基非晶或纳米晶软磁合金及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fiorillo et al. | Soft magnetic materials | |
CN101226803B (zh) | 铁基非晶软磁合金粉末及包含该粉末的磁粉芯和该磁粉芯的制备方法 | |
Xia et al. | Improved magnetic properties of FeSiCr amorphous soft magnetic composites by adding carbonyl iron powder | |
Chang et al. | Low core loss combined with high permeability for Fe-based amorphous powder cores produced by gas atomization powders | |
CN100486738C (zh) | Fe-6.5Si合金粉末的制造方法及磁粉芯的制造方法 | |
Luo et al. | Preparation and magnetic properties of FeSiAl-based soft magnetic composites with MnO/Al2O3 insulation layer | |
Alvarez et al. | Novel Fe-based amorphous and nanocrystalline powder cores for high-frequency power conversion | |
CN107170575B (zh) | 一种软磁复合粉芯的制备方法 | |
CN102142309B (zh) | 一种块体非晶/铁氧体软磁复合材料及其制备方法 | |
Li et al. | Structure and magnetic properties of iron-based soft magnetic composite with Ni-Cu-Zn ferrite–silicone insulation coating | |
Wang et al. | Preparation of pure iron/Ni–Zn ferrite high strength soft magnetic composite by spark plasma sintering | |
Wang et al. | Magnetic properties regulation and loss contribution analysis for Fe-based amorphous powder cores doped with micron-sized FeSi powders | |
Liu et al. | Fabrication and magnetic properties of novel Fe-based amorphous powder and corresponding powder cores | |
Zhang et al. | Novel Fe-based amorphous compound powder cores with enhanced DC bias performance by adding FeCo alloy powder | |
CN102136331A (zh) | 一种高效软磁复合材料及其制备方法 | |
CN106158340A (zh) | 一种Fe‑Si‑Al粉芯环形磁体及其制备方法 | |
US10758982B2 (en) | Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor | |
CN108010654A (zh) | 一种新型球形铁基非晶合金粉末及非晶磁粉芯的制备方法 | |
Luo et al. | Properties of Fe2SiO4/SiO2 coated Fe-Si soft magnetic composites prepared by sintering Fe-6.5 wt% Si/Fe3O4 composite particles | |
CN103602931A (zh) | 一种铁基非晶纳米晶软磁合金及其制备方法 | |
JPWO2016121950A1 (ja) | 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ | |
CN105903951A (zh) | 一种软磁合金粉末的制备方法 | |
Huang et al. | High density Fe-based soft magnetic composites with nice magnetic properties prepared by warm compaction | |
Larimian et al. | Bulk-nano spark plasma sintered Fe-Si-B-Cu-Nb based magnetic alloys | |
Zhao et al. | The influence of FeNi nanoparticles on the microstructures and soft magnetic properties of FeSi soft magnetic composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned | ||
AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20181214 |