CN106062883A - 具有铅冷快速反应堆的反应堆系统 - Google Patents

具有铅冷快速反应堆的反应堆系统 Download PDF

Info

Publication number
CN106062883A
CN106062883A CN201480074054.0A CN201480074054A CN106062883A CN 106062883 A CN106062883 A CN 106062883A CN 201480074054 A CN201480074054 A CN 201480074054A CN 106062883 A CN106062883 A CN 106062883A
Authority
CN
China
Prior art keywords
reactor
coolant
lead
circulation
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480074054.0A
Other languages
English (en)
Other versions
CN106062883B (zh
Inventor
B.B.库宾特塞夫
V.N.利奥诺夫
A.V.洛帕特金
Y.V.彻诺布罗维金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Russian Federation Promise Sutton National Atomic Energy Corp
State Atomic Energy Corp Rosatom
Original Assignee
Russian Federation Promise Sutton National Atomic Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Russian Federation Promise Sutton National Atomic Energy Corp filed Critical Russian Federation Promise Sutton National Atomic Energy Corp
Publication of CN106062883A publication Critical patent/CN106062883A/zh
Application granted granted Critical
Publication of CN106062883B publication Critical patent/CN106062883B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/03Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders cooled by a coolant not essentially pressurised, e.g. pool-type reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/243Promoting flow of the coolant for liquids
    • G21C15/247Promoting flow of the coolant for liquids for liquid metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/253Promoting flow of the coolant for gases, e.g. blowers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/26Promoting flow of the coolant by convection, e.g. using chimneys, using divergent channels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/28Selection of specific coolants ; Additions to the reactor coolants, e.g. against moderator corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/06Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium
    • F22B1/063Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium for metal cooled nuclear reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

本发明涉及核技术,并且意图用于具有利用主要采用熔化的铅或其合金的形式的液态金属冷却剂进行冷却的快速反应堆的发电系统中。本发明所解决的问题在于减少反应堆的每单位功率的铅冷却剂的体积度,以及提高反应堆的安全性。该系统包括带上盖(2)的反应堆空腔(1)、设置在空腔(1)中具有堆芯(4)的反应堆、蒸汽发生器(5)、循环泵(7)、循环导管(8)和(9)、用于起动、操作和停止反应堆系统的促动机构系统和装置,其中蒸汽发生器(5)采用管式热交换器的形式,其中铅冷却剂(10)在管道中流动,而水蒸汽在管道之间的空间中流动,蒸汽发生器(5)设置在单独的箱(6)中,并通过用于升高(8)和排放(9)铅冷却剂(10)的循环导管而与反应堆空腔(1)相通,蒸汽发生器(5)和大部分循环导管(8)和(9)设置在比反应堆空腔(1)中的铅冷却剂(10)的液位更高处,并且循环泵(7)设置在反应堆空腔(1)中,位于循环导管(8)和(9)上,用于使“热”的铅冷却剂升高,并且提供了一种用于当循环泵(7)关闭时确保铅冷却剂(10)自然循环穿过堆芯(4)的技术装置(13)。

Description

具有铅冷快速反应堆的反应堆系统
技术领域
本发明涉及核技术,并且意图用于具有快速反应堆的发电系统,快速反应堆利用液态金属冷却剂进行冷却,液态金属冷却剂主要采用熔化的铅或其合金的形式。
背景技术
核动能学的长期研究涉及快速动力反应堆的生产,其可容许解决在关闭核燃料循环时的有效且安全的核燃料使用的关键问题并提供环境安全性。正在进行的努力包括新一代铅冷快速反应堆的研究,其具有氮化物渗氮铀-钚燃料。这种反应堆显示了超越热反应堆和钠冷快速反应堆的基础优势,并可产生用于研究具有高水平可靠性、安全性和基本无限制燃料供应的发电厂的基础。(下一代快速反应堆/ E.O. Adamov, V.V. Orlov, A.I.Filin, V.N. Leonov, A.G. Sila-Novitsky, V.S. Smirnov, V.S. Tsikunov E.O.Adamov, V.V. Orlov, A.I. Filin, V.N. Leonov, A.G. Sila-Novitsky, V.S.Smirnov, V.S. Tsikunov//1997年核工程学和设计,第173卷,No1-3,第143-150页)。
在反应堆系统BREST-OD-300的实验性的测试项目中描述了池反应堆系统的工程和设计详尽说明,池反应堆系统具有基于液体铅冷快速反应堆的集成环路类型的主设备(«Конструктивные и компоновочные решения основных узлов и оборудования реактора БРЕСТ-ОД-300».В.Н. Леонов, А.А. Пикалов,А.Г. Сила-Новицкий и др. ВАНТ, серия: Обеспечение безопасности АЭС, выпуск 4, Москва, ГУП НИКИЭТ, 2004 г., стр. 65-72)。
该系统包括具有内钢包的增强的钢筋混凝土空腔、带上盖的反应堆容器单元、堆芯、控制堆芯反应度的促动机构系统、蒸汽发生器和主循环泵、用于净化冷却剂的质量传递装置和过滤器的系统、用于堆芯构件的补注燃料系统、工艺参数监视系统以及其它辅助系统。BREST-OD-300反应堆系统的容器单元包括一个中心和四个外围平底的管状空腔,其与上盖一起限定了反应堆系统的主回路边界,其中冷却剂的循环除去了来自堆芯的热量,产生了覆盖气体的体积,并设置了反应堆内装置和设备。堆芯设置在容器单元的中心空腔中,并且蒸汽发生器单元设置在四个外围空腔中,外围空腔通过上管道和下管道而连接在中心空腔上。各个蒸汽发生器具有用于加热超临界参数的水(蒸汽)的管式换热器的形式,其浸入到铅冷却剂流中,铅冷却剂在蒸汽发生器壳的管道之间的空间中以顶部至底部的方向循环。在管道泄漏和蒸汽流入到铅冷却剂循环回路中的情况下,通过切断二次回路中的供水和主蒸汽供给导管从而提供了蒸汽发生器的关闭。在反应堆BREST-OD-300中通过利用循环泵将所述冷却剂抽送出蒸汽发生器空腔至反应堆压力室的水平而提供铅冷却剂循环,从压力室,所述冷却剂下降至堆芯入口室,然后由于同燃料组件的燃料元件的接触而升高并在堆芯中进行加热,之后进入“热”冷却剂公共室中。此外,冷却剂流入到入口室和蒸汽发生器的管道之间的空间中,被冷却下来,并传递给循环泵入口中;在此之后将其再次供给到反应堆压力室中。
公开的系统结构意图用于提供试验反应堆BREST-OD-300,并检验可用于研究新一代铅冷快速动力反应堆中的技术方案。这种反应堆包括集成环路类型的主设备,其具有大的尺寸且每单位输出功率具有高的所用铅冷却剂比重。例如,对于BREST-1200反应堆,这个因数是1.4 m3/MW和更大,其依赖于主设备的单位功率和规划布局。
作为最紧密的方案,选择了一种池类型核动力系统,其具有基于铅冷快速反应堆的集成环路类型的主设备(RU2247435)。该系统包括设置在中心箱中的反应堆、设置在外围箱中的蒸汽发生器和循环泵、以及冷却剂处理系统,其利用气体混合物进行一氧化铅回收。反应堆、蒸汽发生器和循环泵设置在无液体金属冷却剂液位之下。所述系统的蒸汽发生器以管式换热器的形式制成,其具有供给水(蒸汽)的管道和在管道之间的空间,其中铅冷却剂在该空间以顶部至底部方向循环。在反应堆系统的内部,在无液体金属冷却剂液位和上盖之间存在公共气室,其与气体循环和净化系统相通。
这种技术方案的缺点是内部高压力设备(蒸汽发生器)设置在填充了熔化铅的外围箱中。这增加了蒸汽发生器管道完整性损失和水(蒸汽)进浸到冷却剂中的风险。此外,集成环路类型主设备的每单位反应堆功率具有高的所用铅冷却剂比重,其导致反应堆尺寸和这种反应堆生产成本的增加。
发明内容
本发明的目的是改善现有铅冷快速反应堆系统,以减少生产和操作成本,同时提供这种系统在其操作和紧急条件下的高安全水平。这个问题可通过在铅冷却剂外部设置高内部压力蒸汽发生器并减少每单位反应堆功率的铅冷却剂体积度从而产生一种新的装置来解决。
本发明反应堆系统(包括带上盖的反应堆空腔、设置在空腔中并具有堆芯的反应堆、蒸汽发生器、循环泵、循环导管、用于起动、操作和关闭反应堆系统的促动机构系统和装置)包括管式热交换器形式的蒸汽发生器,其中冷却剂在管道中流动,并且水蒸汽在管道之间的空间中循环,其中所述蒸汽发生器设置在单独的箱中,并通过循环导管与反应堆空腔相通,用于升高和排出铅冷却剂,并且所述蒸汽发生器和大部分循环导管设置在比反应堆空腔中的铅冷却剂液位更高处,循环泵安装在反应堆空腔中,位于循环导管上,用于使“热”的铅冷却剂升高,并且本发明反应堆系统包括技术装置,其在循环泵关闭时使铅冷却剂自然循环穿过反应堆堆芯。
根据一个特定的实施例,当循环泵关闭时使铅冷却剂自然循环穿过反应堆堆芯的技术装置采用制作于壳-环中的孔的形式,壳-环分隔了反应堆空腔中的冷却剂循环回路的下降管部分和上升管部分。
根据另一特定的实施例,使铅冷却剂自然循环的装置设有当反应堆在正常操作条件下操作时最大限度地减小通过壳-环中制成的通孔的冷却剂流量的装置。该装置具有位于循环导管的上升管部分上的旁路形式,其与壳-环中制成的通孔相通,并与反应堆空腔中的冷却剂循环回路的下降管部分相通。
根据另一特定的实施例,最大限度地减少冷却剂流量的装置具有辅助泵的形式,用于在反应堆空腔中将冷却剂从冷却剂循环回路的上升管部分抽送到下降管部分中。
根据本发明另一特定的实施例,各个蒸汽发生器设有当冷却剂温度升高至比可容许水平更高时进行操作的蒸汽排放装置。
根据反应堆系统的另一特定的实施例,各个蒸汽发生器箱具有气室,其设有紧急蒸汽排放装置。
本发明所解决的问题是提供一种半集成的利用重冷却剂的反应堆系统,其中:主设备与循环泵一起设置在反应堆空腔中,蒸汽发生器具有反向类型,并比反应堆空腔中的无铅水平更高的水平分布在单独的箱中。这种布置将容许增加反应堆系统在正常操作条件下以及在紧急情况下的可靠性和安全性,以及减少铅冷却剂体积并因而减少在发电单元构造期间的成本。
附图说明
图1是根据本发明的反应堆系统的示意图。
图2是在正常操作条件下最大限度地减小系统中的通过孔的冷却剂流量的装置的第一实施例的示意图,提供的孔用于当循环泵关闭时自然的冷却剂循环。
图3是在正常操作条件下最大限度地减小系统中的通过孔的冷却剂流量的装置的第二实施例的示意图,提供的孔用于当循环泵关闭时自然的冷却剂循环。
具体实施方式
反应堆系统包括带上盖(2)的反应堆空腔(1)、设置在空腔(1)中具有堆芯(4)的反应堆(3)、设置在单独的箱(6)中的蒸汽发生器(5)、循环泵(7)、循环导管(8)和(9)、以及用于起动、操作和紧急停止反应堆的促动机构系统和装置(示意图中未显示)。采用管式换热器形式制成的蒸汽发生器(5)通过用于升高(8)和排放(9)铅冷却剂(10)的循环导管而与反应堆空腔(1)相通,并且设置成高于冷却剂的“冷”液位(11)。循环泵(7)的叶轮安装在反应堆空腔(1)中,低于铅冷却剂(10)的“热”液位(12)。
制成的蒸汽发生器(5)使得铅冷却剂在蒸汽发生器管道中从顶部流向底部。二次回路水通过下管道(27)流入到蒸汽发生器中,并且蒸汽通过上管道(28)排出。
根据特定的实施例,本系统包括一种用于当循环泵(7)关闭时使铅冷却剂自然循环穿过反应堆堆芯(4)的技术装置。这种装置可采用例如通孔(13)的形式来完成,通孔(13)制作于壳-环(14)中,壳-环(14)分隔了反应堆空腔(1)中的铅冷却剂循环回路的上升管部分(15)和下降管部分(16)。
根据另一特定的实施例,当反应堆在正常操作条件下操作时,这种技术装置采用最大限度地减小通过制作于壳-环(14)中的通孔(13)的冷却剂流量的装置形式。该装置可以旁路(17)的形式制成(图2),其通过孔(24)将循环导管(8)的上升管部分与循环回路的上升管部分(15)连接起来,并通过孔(13)与循环回路的下降管部分(16)连接起来。
最大限度地减小铅冷却剂流量的装置还可制作成辅助泵(18)(图3),其在反应堆空腔(1)中将冷却剂从冷却剂循环回路的上升管部分(15)抽送到下降管部分(16)中。
各个蒸汽发生器(5)具有用于当冷却剂温度升高至比可容许的水平更高时排放蒸汽的蒸汽排放装置(19),以及用于将蒸汽从箱(6)排放到大气中的蒸汽排放装置(20)。反应堆空腔(1)的气室(21)和蒸汽发生器(5)箱(6)的气室(22)通过密封装置(23)而彼此分隔开。
在反应堆系统的主回路中的铅冷却剂循环执行如下。冷却剂通过循环泵(7)从反应堆上升管部分(15)经由升高循环导管(8)而抽送到蒸汽发生器(5)的顶部部分中,然后在反应堆空腔(1)中通过排放循环导管(9)而流入到铅冷却剂循环回路的下降管部分(16)中。这种冷却剂从下降管循环部分(16)流入到堆芯(4)中,在此处其由于与燃料元件表面的接触而被加热。在此之后,冷却剂被传递给循环泵(7),因而在正常系统操作条件下关闭了循环回路。
在反应堆空腔(1)和蒸汽发生器(5)中的铅冷却剂的数量经过计算,使得在循环导管(8)和(9)降压或蒸汽发生器紧密性故障的情况下,反应堆空腔(1)内部的铅冷却剂液位将仍然足以通过自然循环而冷却堆芯(4)。
一旦循环泵(7)被关闭,冷却剂从蒸汽发生器(5)完全排放到反应堆空腔(1)中的冷却剂循环回路的下降管部分(16)中,流入到堆芯(4),并接着流入到循环回路的上升管部分(15)中。另外,在“冷”冷却剂液位(11)和“热”冷却剂液位(12)之间的差异被减少了,并且冷却剂从循环回路的上升管部分(15)通过制作于壳-环(14)中的通孔(13)而流入到下降管部分(16)中,因而在紧急条件下关闭了铅冷却剂(10)自然循环回路。
为了在正常操作条件下补偿冷却剂通过孔(13)的流动,使用了采用旁路(17)形式的装置(图2),其通过孔(24)将循环导管(8)的上升管部分与循环回路的上升管部分(15)连接起来,并通过孔(13)与循环回路的下降管部分(16)连接起来。当循环泵(7)处于操作时,冷却剂流速的主要部分通过制作于旁路(17)导管中的孔(24)进入部分(15)中,并且这个流速的一小部分通过孔(13)而被分布到循环回路的下降管部分(16)中。当循环泵(7)被关闭并且“冷”液位(11)和“热”液位(12)被平衡时,建立起了冷却剂自然循环。
图3中所示用于冷却剂流量补偿的装置还可制作成辅助泵(18)和导管(25),其通过孔(13)而将冷却剂循环回路的上升管(15)和下降管(16)部分连接起来。当泵(18)处于操作时,导管(25)的内部压力增加,因而防止冷却剂从下降管部分(16)流入到循环回路的上升管部分(15)中。泵(18)可包括飞重,其在循环泵(7)关闭时有助于冷却剂自然循环。
该系统的半集成结构和将反向蒸汽发生器(5)设置成高于空腔(1)中所存在的铅冷却剂液位容许铅冷却剂完全排出到反应堆中,因而在伴随二次回路蒸汽导管破坏的事故情况下保护系统免于冷却剂凝固,并且极大地有利于蒸汽发生器管道中的沉淀物冲洗。
反向蒸汽发生器(5)在反应堆系统中的使用可极大地提高其可靠性,因为在这种情况下,蒸汽发生器管道(26)会遇到二次回路冷却剂(水-蒸汽)的外部压力。同样,在蒸汽发生器(5)上游的紧急铅冷却剂温度升高的情况下,管道丢失其稳定性而非受损(这是针对直接换热器的情况,它们塌缩),因而仅仅完全防止活动的冷却剂(10)流出回路边界并使水蒸汽进入到铅冷却剂循环回路中。蒸汽发生器(5)设有主动和被动蒸汽排放装置,其限制了事故影响,并消除了核物质的环境释放的风险。
工业应用
这样,反应堆系统的新颖设计的实际使用将显著地减少铅冷却剂的数量,并提高了反应堆系统在正常操作条件下和紧急情况下的可靠性和安全性。

Claims (6)

1.一种反应堆系统,包括带上盖(2)的空腔(1)、设置在所述空腔(1)中的具有堆芯(4)的反应堆(3)、蒸汽发生器(5)、主循环泵(7)、主循环导管(8)和(9)、用于起动、操作和紧急停止反应堆的促动机构系统和装置,其特征在于,所选择的蒸汽发生器(5)是反向类型,并且分布在单独的箱(6)中,高于所述反应堆空腔(1)中所存在的铅冷却剂液位,所述蒸汽发生器(5)通过用于升高和排放铅冷却剂(10)的循环导管(8)和(9)而与所述反应堆空腔(1)相通,所述主循环泵(7)安装在所述反应堆空腔(1)中,位于所述主循环导管(8)和(9)上,以用于升高热的铅冷却剂(10),并且提供了设置在所述反应堆空腔(1)中的用于当所述循环泵(7)关闭时使铅冷却剂(10)自然循环穿过所述堆芯(4)的装置。
2.根据权利要求1所述的反应堆系统,其特征在于,用于使铅冷却剂(10)自然循环的装置具有制作于壳-环(14)中的孔(13)以及当所述系统在正常操作条件下操作时最大限度地减小通过所述孔(13)的冷却剂流量(10)的装置的形式,所述壳-环(14)分隔所述反应堆空腔(1)中的冷却剂(10)循环回路的下降管部分(16)和上升管部分(15)。
3.根据权利要求2所述的反应堆系统,其特征在于,最大限度地减小冷却剂流量的装置具有旁路(17)的形式,其位于所述循环导管(8)的上升管部分上,并且通过孔(24)与所述循环回路的上升管部分(15)连接起来,并通过所述孔(13)与所述冷却剂循环回路的下降管部分(16)连接起来。
4.根据权利要求2所述的反应堆系统,其特征在于,最大限度地减小冷却剂流量的装置具有带导管(27)和(28)的辅助泵(18)的形式,所述导管通过制作于所述壳-环(14)中的孔(13)而将所述冷却剂(10)循环回路的上升管部分(15)和下降管部分(16)连接起来。
5.根据权利要求1所述的反应堆系统,其特征在于,各个蒸汽发生器(5)具有当所述冷却剂(10)温度上升至高于可容许的水平时用于排放蒸汽的蒸汽排放装置(19)。
6.根据权利要求1或5所述的反应堆系统,其特征在于,各个蒸汽发生器(5)箱(6)设有紧急蒸汽排放装置(20)。
CN201480074054.0A 2014-01-31 2014-11-27 具有铅冷快速反应堆的反应堆系统 Active CN106062883B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2014103269/07A RU2545098C1 (ru) 2014-01-31 2014-01-31 Реакторная установка с реактором на быстрых нейтронах и свинцовым теплоносителем
RU2014103269 2014-01-31
PCT/RU2014/000896 WO2015115930A1 (ru) 2014-01-31 2014-11-27 Реакторная установка с реактором на быстрых нейтронах и свинцовым теплоносителем

Publications (2)

Publication Number Publication Date
CN106062883A true CN106062883A (zh) 2016-10-26
CN106062883B CN106062883B (zh) 2018-05-08

Family

ID=53383168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480074054.0A Active CN106062883B (zh) 2014-01-31 2014-11-27 具有铅冷快速反应堆的反应堆系统

Country Status (8)

Country Link
US (1) US9715948B2 (zh)
EP (1) EP3101658B1 (zh)
JP (1) JP6195996B2 (zh)
KR (1) KR101752717B1 (zh)
CN (1) CN106062883B (zh)
CA (1) CA2937668C (zh)
RU (1) RU2545098C1 (zh)
WO (1) WO2015115930A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981320A (zh) * 2017-04-21 2017-07-25 中广核研究院有限公司 一种自然循环冷却液态重金属反应堆
CN107622803A (zh) * 2017-10-12 2018-01-23 中国科学技术大学 一种可有效提升池式铅冷快堆安全性的冷池流道
CN110447077A (zh) * 2017-01-16 2019-11-12 俄罗斯联邦诺萨顿国家原子能公司 处理放射性溶液的方法
CN111933316A (zh) * 2020-08-12 2020-11-13 三门核电有限公司 一种压水堆反应堆堆腔区域高效冷却的方法
CN113539529A (zh) * 2021-06-17 2021-10-22 中国核电工程有限公司 一种池式反应堆余热排出系统及方法
CN117083682A (zh) * 2021-03-15 2023-11-17 阿科姆工程合资(控股)公司 具有液态金属冷却剂的核反应堆

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20163713A1 (it) * 2016-05-04 2017-11-04 Luciano Cinotti Reattore nucleare con nocciolo autoportante
RU2634426C1 (ru) * 2016-08-09 2017-10-30 Акционерное общество "Конструкторское бюро специального машиностроения" Металлобетонный корпус ядерного реактора с жидкометаллическим теплоносителем
RU2691755C2 (ru) * 2017-07-24 2019-06-18 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ организации естественной циркуляции жидкометаллического теплоносителя ядерного реактора на быстрых нейтронах
RU2706801C1 (ru) * 2018-12-14 2019-11-21 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Госкорпорация "Росатом" Парогенератор обратного типа для реактора на быстрых нейтронах со свинцовым теплоносителем
US11798697B2 (en) * 2020-08-17 2023-10-24 Terrapower, Llc Passive heat removal system for nuclear reactors
RU2756230C1 (ru) * 2021-03-15 2021-09-28 Акционерное общество «АКМЭ-инжиниринг» Ядерный реактор с тяжелым жидкометаллическим теплоносителем
KR20230071687A (ko) 2021-11-16 2023-05-23 울산과학기술원 이중벽단일통과-증기발생기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262856A (en) * 1965-01-14 1966-07-26 Edward S Bettis Fused-salt-fueled, molten-metal-cooled power breeder reactor system
US3865688A (en) * 1970-08-05 1975-02-11 Frank W Kleimola Passive containment system
US4608224A (en) * 1980-07-04 1986-08-26 Service National Electricite De France Nuclear reactor cooled by a liquid metal
CN102282625A (zh) * 2008-11-19 2011-12-14 原子能与替代能源署 具有增强的对流运行的一体化sfr核反应堆
CN102696074A (zh) * 2009-11-02 2012-09-26 希尔莱特有限责任公司 驻波核裂变反应堆及方法
CN102782768A (zh) * 2010-04-21 2012-11-14 株式会社东芝 液态金属冷却反应堆及其除热方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367194A (en) * 1980-09-22 1983-01-04 The United States Of America As Represented By The United States Department Of Energy Emergency core cooling system
JPS60140189A (ja) * 1983-12-27 1985-07-25 三菱原子力工業株式会社 液体金属冷却高速増殖炉の冷却系
JPS6435398A (en) * 1987-07-31 1989-02-06 Mitsubishi Atomic Power Ind Reactor cooling structure for liquid-metal cooled reactor
JPS6488291A (en) * 1987-09-30 1989-04-03 Toshiba Corp Fast breeder reactor
JPH07209470A (ja) * 1994-01-20 1995-08-11 Toshiba Corp 高速炉の崩壊熱除去装置
JPH09243778A (ja) * 1996-03-08 1997-09-19 Mitsubishi Heavy Ind Ltd 蒸気発生器二次側による減圧システム
JP3524884B2 (ja) * 2001-03-02 2004-05-10 三菱重工業株式会社 高速増殖炉
RU2247435C1 (ru) * 2003-07-14 2005-02-27 Государственное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет (НГТУ) Ядерная энергетическая установка
JP4746911B2 (ja) * 2005-04-27 2011-08-10 財団法人電力中央研究所 高速炉および高速炉施設の建設方法
US20120307956A1 (en) 2010-02-05 2012-12-06 Singh Krishna P Nuclear reactor system having natural circulation of primary coolant
US8638901B2 (en) * 2010-12-29 2014-01-28 Westinghouse Electric Company Llc Optimum configuration for fast reactors
RU2473984C1 (ru) * 2011-05-12 2013-01-27 Открытое акционерное общество "Центральное конструкторское бюро машиностроения" Реакторная установка
US9593684B2 (en) 2011-07-28 2017-03-14 Bwxt Nuclear Energy, Inc. Pressurized water reactor with reactor coolant pumps operating in the downcomer annulus
US9336908B2 (en) 2011-10-26 2016-05-10 Bwxt Nuclear Energy, Inc. Pressurized water reactor with upper vessel section providing both pressure and flow control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262856A (en) * 1965-01-14 1966-07-26 Edward S Bettis Fused-salt-fueled, molten-metal-cooled power breeder reactor system
US3865688A (en) * 1970-08-05 1975-02-11 Frank W Kleimola Passive containment system
US4608224A (en) * 1980-07-04 1986-08-26 Service National Electricite De France Nuclear reactor cooled by a liquid metal
CN102282625A (zh) * 2008-11-19 2011-12-14 原子能与替代能源署 具有增强的对流运行的一体化sfr核反应堆
CN102696074A (zh) * 2009-11-02 2012-09-26 希尔莱特有限责任公司 驻波核裂变反应堆及方法
CN102782768A (zh) * 2010-04-21 2012-11-14 株式会社东芝 液态金属冷却反应堆及其除热方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110447077A (zh) * 2017-01-16 2019-11-12 俄罗斯联邦诺萨顿国家原子能公司 处理放射性溶液的方法
CN110447077B (zh) * 2017-01-16 2023-05-05 俄罗斯联邦诺萨顿国家原子能公司 处理放射性溶液的方法
CN106981320A (zh) * 2017-04-21 2017-07-25 中广核研究院有限公司 一种自然循环冷却液态重金属反应堆
CN107622803A (zh) * 2017-10-12 2018-01-23 中国科学技术大学 一种可有效提升池式铅冷快堆安全性的冷池流道
CN111933316A (zh) * 2020-08-12 2020-11-13 三门核电有限公司 一种压水堆反应堆堆腔区域高效冷却的方法
CN111933316B (zh) * 2020-08-12 2023-06-02 三门核电有限公司 一种压水堆反应堆堆腔区域高效冷却的方法
CN117083682A (zh) * 2021-03-15 2023-11-17 阿科姆工程合资(控股)公司 具有液态金属冷却剂的核反应堆
CN113539529A (zh) * 2021-06-17 2021-10-22 中国核电工程有限公司 一种池式反应堆余热排出系统及方法
CN113539529B (zh) * 2021-06-17 2023-11-14 中国核电工程有限公司 一种池式反应堆余热排出系统及方法

Also Published As

Publication number Publication date
CN106062883B (zh) 2018-05-08
RU2545098C1 (ru) 2015-03-27
CA2937668A1 (en) 2015-08-06
JP2017504035A (ja) 2017-02-02
US20160336082A1 (en) 2016-11-17
JP6195996B2 (ja) 2017-09-13
US9715948B2 (en) 2017-07-25
EP3101658A1 (en) 2016-12-07
EP3101658A4 (en) 2017-09-20
EP3101658B1 (en) 2019-08-21
KR101752717B1 (ko) 2017-06-30
CA2937668C (en) 2017-01-24
KR20160096718A (ko) 2016-08-16
WO2015115930A1 (ru) 2015-08-06

Similar Documents

Publication Publication Date Title
CN106062883A (zh) 具有铅冷快速反应堆的反应堆系统
CN102272856B (zh) 蒸汽发生器流动旁通系统
KR101242746B1 (ko) 원자력 발전소의 격납건물 외부 통합피동안전계통 시스템
WO2016078421A1 (zh) 非能动安全冷却系统
CN103021483B (zh) 一种用于液态金属冷却自然循环反应堆的辅助加热系统
CN107293341A (zh) 池式反应堆
CN104361913A (zh) 二次侧非能动余热导出系统
CN102623072A (zh) 一种复合型的加速器驱动次临界堆事故余热排出系统
US20170098483A1 (en) Heat exchange system and nuclear reactor system
CN103337264A (zh) 一种熔盐堆缓冲盐事故余热排出系统
JP2015535605A (ja) 液体金属の冷却材を用いる原子炉
WO2022194247A1 (zh) 一体化非能动反应堆
CN102903402A (zh) 一种先进的二次侧堆芯热量导出装置
CN106328223A (zh) 一种新型非能动安全壳能量控制系统
KR101250479B1 (ko) 안전보호용기를 구비한 피동형 비상노심냉각설비 및 이를 이용한 열 전달량 증가 방법
CN102820067B (zh) 一种用于超临界水堆余热排出的自然循环换热器
CN101221823A (zh) 池式钠冷快堆事故余热排放系统
CN104916335A (zh) 一种液态金属冷却池式反应堆多功能堆内热分隔系统
JP2013057559A (ja) 水冷式原子力発電設備及びその非常時停止方法
CN203338775U (zh) 核电站蒸汽发生器防满溢结构
US4299660A (en) Heat-extraction system for gas-cooled nuclear reactor
JP7439263B2 (ja) 一体型原子炉
CN204242602U (zh) 二次侧非能动余热导出系统
CN103730171A (zh) 一种液态重金属冷却自然循环池式反应堆辅助加热系统
CN220895201U (zh) 小型铅冷海洋池式自然循环反应堆非能动余热排出系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant