CN106061616B - Long term storage of waste by adsorption with high surface area materials - Google Patents
Long term storage of waste by adsorption with high surface area materials Download PDFInfo
- Publication number
- CN106061616B CN106061616B CN201580012149.4A CN201580012149A CN106061616B CN 106061616 B CN106061616 B CN 106061616B CN 201580012149 A CN201580012149 A CN 201580012149A CN 106061616 B CN106061616 B CN 106061616B
- Authority
- CN
- China
- Prior art keywords
- waste
- clay
- comminuted
- flowable
- comminuted material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 286
- 239000002699 waste material Substances 0.000 title claims abstract description 173
- 238000003860 storage Methods 0.000 title claims abstract description 20
- 230000007774 longterm Effects 0.000 title claims abstract description 12
- 238000001179 sorption measurement Methods 0.000 title description 2
- 230000004888 barrier function Effects 0.000 claims abstract description 93
- 230000009969 flowable effect Effects 0.000 claims abstract description 87
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 79
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 78
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 57
- 239000002245 particle Substances 0.000 claims abstract description 52
- 238000005538 encapsulation Methods 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 44
- 230000014759 maintenance of location Effects 0.000 claims description 41
- 239000002689 soil Substances 0.000 claims description 35
- 239000004927 clay Substances 0.000 claims description 28
- 230000008961 swelling Effects 0.000 claims description 19
- 239000004568 cement Substances 0.000 claims description 14
- 239000010426 asphalt Substances 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 238000000605 extraction Methods 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 13
- 238000009736 wetting Methods 0.000 claims description 11
- 239000003245 coal Substances 0.000 claims description 9
- 239000010808 liquid waste Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 239000010880 spent shale Substances 0.000 claims description 6
- 239000003077 lignite Substances 0.000 claims description 5
- 229910000278 bentonite Inorganic materials 0.000 claims description 4
- 239000000440 bentonite Substances 0.000 claims description 4
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 4
- 229910001919 chlorite Inorganic materials 0.000 claims description 4
- 229910052619 chlorite group Inorganic materials 0.000 claims description 4
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 claims description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical group O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 4
- 239000013056 hazardous product Substances 0.000 claims description 4
- 229910052900 illite Inorganic materials 0.000 claims description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052622 kaolinite Inorganic materials 0.000 claims description 4
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 4
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 claims description 4
- 229910052902 vermiculite Inorganic materials 0.000 claims description 4
- 239000010455 vermiculite Substances 0.000 claims description 4
- 235000019354 vermiculite Nutrition 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 3
- 239000010845 automotive waste Substances 0.000 claims description 2
- 239000010796 biological waste Substances 0.000 claims description 2
- 239000003518 caustics Substances 0.000 claims description 2
- 239000002894 chemical waste Substances 0.000 claims description 2
- -1 extraction residues Substances 0.000 claims description 2
- 229910001385 heavy metal Inorganic materials 0.000 claims description 2
- 239000000575 pesticide Substances 0.000 claims description 2
- 239000002901 radioactive waste Substances 0.000 claims description 2
- 239000003507 refrigerant Substances 0.000 claims description 2
- 239000010832 regulated medical waste Substances 0.000 claims 1
- 239000000047 product Substances 0.000 description 20
- 239000012530 fluid Substances 0.000 description 18
- 239000002920 hazardous waste Substances 0.000 description 18
- 238000005755 formation reaction Methods 0.000 description 12
- 239000012528 membrane Substances 0.000 description 12
- 239000004058 oil shale Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 10
- 230000000717 retained effect Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000011435 rock Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000006378 damage Effects 0.000 description 5
- 239000000383 hazardous chemical Substances 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000000197 pyrolysis Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000009412 basement excavation Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 231100001261 hazardous Toxicity 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 231100001010 corrosive Toxicity 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000011236 particulate material Substances 0.000 description 2
- 239000003415 peat Substances 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 239000012857 radioactive material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 238000006424 Flood reaction Methods 0.000 description 1
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 239000010852 non-hazardous waste Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000010909 process residue Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/20—Agglomeration, binding or encapsulation of solid waste
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/20—Agglomeration, binding or encapsulation of solid waste
- B09B3/25—Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Processing Of Solid Wastes (AREA)
- Mechanical Engineering (AREA)
Abstract
本发明提供了一种用于长期储存废物的系统和方法,所述系统和方法可包括具有高表面积的粉碎材料(100)。所述粉碎材料(100)可包括已从中得到了烃类产物的经处理的含烃材料颗粒。所述粉碎材料(100)可与可流动废料接触,使得所述可流动废料保留在所述粉碎材料(100)中。这种可流动废料是不同于从所述含烃材料中得到的烃类产物的一些材料。封装阻隔物(105)可以包裹所述粉碎材料(100),并提供防止所述可流动废料逸出的辅助手段。
The present invention provides a system and method for long-term storage of waste that may include a comminuted material (100) having a high surface area. The pulverized material (100) may comprise processed hydrocarbon-containing material particles from which a hydrocarbon product has been obtained. The shredded material (100) may be contacted with flowable waste such that the flowable waste remains in the shredded material (100). This flowable waste is some material other than the hydrocarbon product obtained from the hydrocarbon-containing material. An encapsulation barrier (105) may encapsulate the shredded material (100) and provide an auxiliary means of preventing escape of the flowable waste material.
Description
相关专利申请Related patent applications
本专利申请要求于2014年1月28日提交的名称为“采用高表面积材料的吸附作用长期储存废物”(Long Term Storage of Waste Using Adsorption by High SurfaceArea Materials)的美国临时专利申请No.61/932,582的优先权,该美国临时专利申请以引用方式并入本文。This patent application claims US Provisional Patent Application No. 61/932,582, filed January 28, 2014, entitled "Long Term Storage of Waste Using Adsorption by High Surface Area Materials" of priority, this US Provisional Patent Application is incorporated herein by reference.
技术领域technical field
本发明涉及用于在高表面积材料主体中长期储存可流动废物(例如有害废物)的系统和方法。因此,本发明整体涉及废物管理、地质学、材料科学和流体力学等技术领域。The present invention relates to systems and methods for long-term storage of flowable waste (eg, hazardous waste) in a body of high surface area material. Accordingly, the present invention relates generally to the technical fields of waste management, geology, materials science and fluid mechanics.
背景技术Background technique
随着世界各地产生越来越多不需要的废料,垃圾处置成为越来越具有挑战性的问题。特别是有害废物处置可能涉及复杂且昂贵的措施,以销毁有害废物或否则使有害废物被安全地管控。如果处置方法并未充分地管控有害废物,那么,有害废物可逸出到周围环境中,并对植物和动物生命造成伤害、污染地下水,并可能造成其他伤害。经常采取措施来固定化有害废物,以防止其逸出到环境中。已开发出多种方法,包括将废物封在硬化的材料(例如水泥、树脂或玻璃)中、将废物注入到地下岩层裂痕中,以及将废物储存在可配备有防漏衬里和检测系统的垃圾填埋地中。然而,就处置点的稳定性、持久性、可靠性和经济性等而言,仍然存在各种挑战。As more and more unwanted waste is generated around the world, waste disposal is an increasingly challenging problem. Hazardous waste disposal in particular can involve complex and expensive measures to destroy or otherwise safely manage hazardous waste. If disposal methods are not adequately controlled, hazardous waste can escape into the surrounding environment and cause harm to plant and animal life, contamination of groundwater, and possibly other harm. Measures are often taken to immobilize hazardous waste to prevent it from escaping into the environment. Various methods have been developed, including encapsulating waste in hardened materials such as cement, resin, or glass, injecting waste into fissures in subterranean formations, and storing waste in trash that can be equipped with leak-proof linings and detection systems in landfill. However, various challenges remain in terms of stability, durability, reliability and economics of disposal sites.
发明内容SUMMARY OF THE INVENTION
用于长期储存废物的系统可包括具有高表面积的粉碎材料。粉碎材料可包括已从中得到了烃类产物的经处理的含烃材料颗粒。可流动废料可被保留在粉碎材料中。这种可流动废料是不同于从含烃材料中得到的烃类产物的材料。封装阻隔物可包裹粉碎材料。Systems for long-term storage of waste may include comminuted materials with high surface areas. The pulverized material may include processed hydrocarbon-containing material particles from which the hydrocarbon product has been obtained. Flowable waste can be retained in the shredded material. This flowable waste material is a material other than the hydrocarbon product obtained from the hydrocarbon-containing material. The encapsulation barrier can encapsulate the comminuted material.
此外,用于储存可流动废料的方法可包括将粉碎材料的基本静止主体与可流动废料接触。粉碎材料可具有高表面积。粉碎材料还可包括已从中得到了烃类产物的经处理的含烃材料颗粒。最后,可通过封装阻隔物将粉碎材料包裹起来。Additionally, the method for storing flowable waste can include contacting a substantially stationary body of shredded material with the flowable waste. The pulverized material can have a high surface area. The pulverized material may also include processed hydrocarbon-containing material particles from which the hydrocarbon product has been obtained. Finally, the comminuted material can be encapsulated by an encapsulation barrier.
因此,已对本发明的较重要的特征进行了广义的概述,以更好地理解接下来的本发明的具体实施方式,并且更好地认识本发明对本领域的贡献。通过本发明的以下具体实施方式结合附图和权利要求,本发明的其他特征将变得更清晰,或者可通过本发明的实践了解到。Thus, a broad overview of the more important features of the invention has been presented in order to provide a better understanding of the detailed description of the invention that follows, and to better appreciate its contribution to the art. Other features of the present invention will become apparent from the following detailed description of the invention, taken in conjunction with the accompanying drawings and claims, or may be learned by practice of the invention.
附图说明Description of drawings
图1是根据本发明的一个实施例的通过封装阻隔物包裹的粉碎材料的主体的横截面。Figure 1 is a cross-section of a body of comminuted material wrapped by an encapsulation barrier in accordance with one embodiment of the present invention.
图2是根据本发明的一个实施例的其中保留有可流动废料的粉碎材料颗粒的横截面。Figure 2 is a cross-section of a shredded material particle having flowable waste retained therein, according to one embodiment of the present invention.
图3是根据本发明的一个实施例的用于储存可流动废料的方法的流程图。3 is a flow diagram of a method for storing flowable waste according to one embodiment of the present invention.
应当指出的是,附图仅仅是本发明的几个实施例的示例,并非意在由此限制本发明的范围。而且,附图通常不按比例绘制,而是出于方便、清楚地说明本发明各个方面的目的进行绘制。It should be noted that the drawings are merely illustrative of several embodiments of the invention and are not intended to limit the scope of the invention thereby. Moreover, the drawings are generally not to scale, but are drawn for the purpose of convenience and clarity of illustration of various aspects of the present invention.
具体实施方式Detailed ways
虽然这些示例性实施例足够详细地描述以使本领域的技术人员能够实践本发明,但是应当理解,其他实施例也可以实现并且在不脱离本发明的精神和范围的前提下可对本发明作出各种改变。因此,以下对本发明的实施例的更详细的描述并不旨在限制本发明的请求保护的范围,而是仅仅为了说明而非限制的目的而呈现以描述本发明的特征和特性,阐述本发明的最佳操作模式,并且充分地使本领域的技术人员能够实践本发明。因此,本发明的范围仅由所附的权利要求书来限定。While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, it should be understood that other embodiments may be practiced and various modifications may be made to the invention without departing from the spirit and scope of the invention. kind of change. Accordingly, the following more detailed description of embodiments of the present invention is not intended to limit the scope of the claimed invention, but is presented for purposes of illustration and not limitation only to describe the features and characteristics of the present invention, and to illustrate the present invention. the best mode of operation and is sufficient to enable those skilled in the art to practice the invention. Accordingly, the scope of the present invention is to be limited only by the appended claims.
定义definition
在描述和要求保护本发明时,将使用下面的术语。除非上下文另外明确规定,否则单数形式“一种”、“一个”和“该”包括复数指示物。因此,例如,提及“一个壁”包括提及一个或多个这样的结构,提及“一种废料”包括提及一种或多种这样的材料,而“一个接触步骤”是指一个或多个这样的步骤。In describing and claiming the present invention, the following terminology will be used. The singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a wall" includes reference to one or more of such structures, reference to "a waste" includes reference to one or more of such materials, and "a contacting step" refers to one or more multiple such steps.
如本文所用,“粉碎”是指将构造物或较大的团块破坏成较小的块,例如通常直径小于约2英尺的碎块。可碎石化或以其他方式使用任何数目的技术(包括压碎、爆轰等)将粉碎的团块打碎成为碎块。As used herein, "shredding" refers to breaking up a construct or larger mass into smaller pieces, such as pieces typically less than about 2 feet in diameter. The pulverized agglomerates may be petrified or otherwise broken into pieces using any number of techniques, including crushing, detonation, and the like.
如本文所用,“生土材料”是指仅用机械变形从土壤中回收的天然材料,例如但不限于,膨胀性粘土(例如膨润土、蒙脱石、高岭石、伊利石、绿泥石、蛭石等)、砾石、岩石、压实填土、泥土等。例如,砾石可与水泥结合形成混凝土。经常地,粘土改良的泥土可与水结合形成水合层,该水合层充当流体阻隔物。相比之下,废油页岩可与在封装阻隔物的壁中所使用的生土材料结合使用,但不会是如本文所用的生土材料,这是因为前处理将嵌入的油母岩转化成了烃类产物。As used herein, "earth material" refers to natural materials recovered from soil by mechanical deformation only, such as, but not limited to, swelling clays (eg, bentonite, montmorillonite, kaolinite, illite, chlorite, vermiculite, etc.), gravel, rock, compacted fill, soil, etc. For example, gravel can be combined with cement to form concrete. Often, clay-modified soils can combine with water to form a hydrated layer that acts as a fluid barrier. In contrast, spent oil shale can be used in combination with the earth material used in the walls of the encapsulating barrier, but not the earth material as used herein because the pretreatment will embed the kerogen converted into hydrocarbon products.
如本文所用,“可流动废物”是指能够在给定条件下流入高表面积材料的材料。可流动废物可包括液体、气体、细颗粒、蒸气或它们的组合。如本文所用,“有害材料”或“有害废物”包括能够对动物、人或环境造成伤害的任何材料,并且表现出以下特征的一种或多种:可燃性、反应性、腐蚀性、毒性或放射性。环境保护署在40 C.F.R.261(2012年7月1日)中定义了许多有害废物。然而,任何将这种特性表现至不适于给定应用或环境的程度的材料都可被认为是有害的。例如,有害材料还可包括放射性材料,例如核废物或相关处理材料,它们是A类、B类或C类废物。As used herein, "flowable waste" refers to a material capable of flowing into a high surface area material under given conditions. Flowable waste can include liquids, gases, fine particles, vapors, or combinations thereof. As used herein, "hazardous material" or "hazardous waste" includes any material capable of causing harm to animals, people, or the environment and that exhibits one or more of the following characteristics: flammable, reactive, corrosive, toxic, or radioactivity. The Environmental Protection Agency defines many hazardous wastes in 40 C.F.R. 261 (July 1, 2012). However, any material that exhibits such properties to the extent that it is unsuitable for a given application or environment may be considered detrimental. For example, hazardous materials may also include radioactive materials, such as nuclear waste or related processing materials, which are Class A, B or C waste.
如本文所用,“含烃材料”是指包含烃类的材料,可从该材料中提取或衍生烃类产物。例如,可从该材料中直接提取液体烃,通过溶剂提取提移出烃、直接蒸发出烃或以其他方式释放出烃。然而,许多含烃材料包含烃、油母岩和/或沥青,其通过加热和热解转变为更高质量的烃类产物,包括油和气产物。含烃材料可包括但不限于油页岩、焦油砂、煤、褐煤、沥青、泥煤、生物质和其他富含有机物的岩石。As used herein, "hydrocarbon-containing material" refers to a material comprising hydrocarbons from which hydrocarbon products can be extracted or derived. For example, liquid hydrocarbons can be extracted directly from the material, removed by solvent extraction, directly evaporated off, or otherwise liberated. However, many hydrocarbon-containing materials contain hydrocarbons, kerogen and/or bitumen, which are converted by heating and pyrolysis into higher quality hydrocarbon products, including oil and gas products. Hydrocarbon-containing materials may include, but are not limited to, oil shale, tar sands, coal, lignite, bitumen, peat, biomass, and other organic-rich rocks.
如本文所用,“经处理的含烃材料”是指已经从中提取或衍生烃类产物的含烃类的材料。例如,可从该材料直接提取液体烃,通过溶剂提取提移出烃、直接蒸发出烃或以其他方式提移出烃。然而,许多含烃材料包含油母岩或沥青,其通过加热和热解转变为烃。含烃材料可包括但不限于油页岩、焦油砂、煤、褐煤、沥青、泥煤、生物质和其他富含有机物的岩石。这种经处理的含烃材料可任选地与其他材料混合,例如岩石、水泥、树脂、其他生土材料、表面活性剂、粘合剂、酶、生物衍生填料、生物试剂、无机试剂、前体、盐和/或人造材料。As used herein, "treated hydrocarbon-containing material" refers to a hydrocarbon-containing material from which a hydrocarbon product has been extracted or derived. For example, the liquid hydrocarbons can be extracted directly from the material, removed by solvent extraction, directly evaporated off, or otherwise removed. However, many hydrocarbon-containing materials contain kerogen or bitumen, which are converted to hydrocarbons by heating and pyrolysis. Hydrocarbon-containing materials may include, but are not limited to, oil shale, tar sands, coal, lignite, bitumen, peat, biomass, and other organic-rich rocks. This treated hydrocarbonaceous material may optionally be mixed with other materials such as rock, cement, resins, other raw earth materials, surfactants, binders, enzymes, biologically derived fillers, biological agents, inorganic agents, pre- body, salt and/or man-made materials.
如本文所用,“开采”是指将材料从初始的地层或地理位置移到或扰动到不同的第二位置的条件。通常,可通过碎石化、压碎、爆炸引爆或以其他方式从原生地层移出材料来生产开采材料,用于进一步使用或处理。As used herein, "mining" refers to the conditions under which material is moved or disturbed from an initial formation or geographic location to a different, second location. Typically, mined material can be produced by crushing, crushing, detonating, or otherwise removing material from the native formation for further use or disposal.
如本文所用,“保留容量”是指粉碎材料主体内可基本上保持静止的可流动废料的量。保留容量可取决于许多因素,例如粉碎材料的表面积、粉碎材料的孔隙率、粉碎材料中的空隙空间、经处理后留在粉碎材料中残余烃或其他材料的量、可流动废料和粉碎材料表面之间的分子间力、粉碎材料相对于可流动废料的可润湿性、毛细力、可流动废料的粘度、可流动废料的表面张力、可流动废料的密度、温度及其他有助于降低表面能的因素。保留容量至少部分地由可流动废物与粉碎材料的主体接触时的表面能减少所控制。因此,保留容量可以是粉碎材料主体和可流动废料的性能及它们之间的相互作用的函数,例如对于不同的废料,粉碎材料主体的保留容量可不同。一般来讲,保留容量可以是粉碎材料内可稳定保留而无废料流出粉碎材料或在重力作用下在粉碎材料底部汇集的可流动废料的最大量。As used herein, "retention capacity" refers to the amount of flowable waste material within a body of comminuted material that can remain substantially stationary. Retention capacity can depend on many factors such as the surface area of the shredded material, the porosity of the shredded material, the void space in the shredded material, the amount of residual hydrocarbons or other materials left in the shredded material after processing, the flowable waste and the shredded material surface Intermolecular forces between, wettability of crushed material relative to flowable waste, capillary forces, viscosity of flowable waste, surface tension of flowable waste, density of flowable waste, temperature, and others that help reduce surface energy factor. The retention capacity is controlled, at least in part, by the reduction in surface energy of the flowable waste in contact with the body of comminuted material. Thus, the retention capacity can be a function of the properties of the body of shredded material and the flowable waste and the interaction between them, eg, the retention capacity of the body of shredded material can be different for different wastes. In general, retention capacity can be the maximum amount of flowable waste material that can be stably retained within the shredded material without waste flowing out of the shredded material or collecting at the bottom of the shredded material under the force of gravity.
如本文所用,“基本上静止”是指粉碎材料内的可流动废料几乎静止布置。这是指可流动废料基本上不具有本体流动、允许小规模流动(例如气孔内流动、围绕粉碎材料的润湿膜层内流动、无规对流或粉碎材料的相邻颗粒之间的流动)。如果粉碎材料在封装阻隔物中沉淀或沉降,那么,基本上静止的可流动废料还可发生移动。然而,基本上静止的可流动废料不会发生本体流动、流出粉碎材料主体或在重力作用下在粉碎材料的底部汇集。As used herein, "substantially stationary" refers to a nearly stationary arrangement of the flowable waste within the comminuted material. This means that the flowable waste material has substantially no bulk flow, allowing small-scale flow (eg, flow within pores, flow within a wetting film layer surrounding the comminuted material, random convection, or flow between adjacent particles of the comminuted material). The substantially stationary flowable waste can also move if the comminuted material settles or settles in the encapsulation barrier. However, substantially stationary flowable waste does not undergo bulk flow, flow out of the bulk of the comminuted material, or collect at the bottom of the comminuted material under the force of gravity.
如本文所用,“约”是指基于对所标识的特定性能常见的实验误差的偏差度。由术语“约”所提供的范围将取决于具体语境和特定性能并且可易于被本领域的技术人员辨别。术语“约”并非旨在详述或限制等效度,等效度可以被赋予特定值。另外,除非另外指明,否则术语“约”应明确地包括与下文有关范围和数值数据的论述“精确地”一致。As used herein, "about" refers to the degree of deviation based on experimental error common to the particular property identified. The range provided by the term "about" will depend on the particular context and particular property and can be readily discerned by one of ordinary skill in the art. The term "about" is not intended to specify or limit equivalence, which may be assigned a particular value. Additionally, unless otherwise specified, the term "about" shall expressly include "exactly" consistent with the following discussion of ranges and numerical data.
如本文所用,“邻近”是指两个结构或元件接近。具体地讲,被标识为“邻近”的元件可邻接或连接。此类元件还可以彼此靠近或接近,而不一定彼此接触。在一些情况下,精确的接近度可以取决于具体情况。As used herein, "adjacent" means that two structures or elements are in proximity. In particular, elements identified as "adjacent" may be contiguous or connected. Such elements may also be close or proximate to each other without necessarily touching each other. In some cases, the exact proximity may depend on the situation.
本文可能以范围格式表示浓度、维度、含量和其他数值数据。应当理解,此类范围格式的使用仅仅出于方便和简洁目的,并且应灵活解读为不仅包括作为范围端值明确记载的数值,还包括涵盖在该范围内的所有单个数值或子范围,如同明确记载每个数值和子范围。例如,约1至约200的范围应解读为不仅包括明确记载的端值1和约200,还包括诸如2、3、4的单个尺寸,以及诸如10至50、20至100的子范围等。Concentrations, dimensions, amounts, and other numerical data may be presented herein in range format. It should be understood that such range formats are used only for convenience and brevity, and are to be flexibly read to include not only the values explicitly recited as range endpoints, but also all individual values or subranges subsumed within the range, as if expressly Record each value and subrange. For example, a range of about 1 to about 200 should be read to include not only the explicitly recited endpoints of 1 and about 200, but also individual dimensions such as 2, 3, 4, and subranges such as 10 to 50, 20 to 100, and the like.
如本文所用,为方便起见,多个项目、结构元件、组成元件和/或材料可以在相同列表中表示。然而,这些列表应理解为列表的每个成员独立地标识为单独且唯一的成员。因此,在没有相反指示的情况下,不应仅仅基于它们在相同组中出现,就将此类列表的任何单个成员理解为相同列表的任何其他成员的实际等同物。As used herein, for convenience, multiple items, structural elements, constituent elements and/or materials may be represented in the same list. However, these lists should be understood to mean that each member of the list is independently identified as a separate and unique member. Accordingly, no single member of such a list should be construed as the actual equivalent of any other member of the same list solely based on their occurrence in the same group, without an indication to the contrary.
任何方法或工艺权利要求中所记载的任何步骤可以按任何顺序执行并且不限于权利要求中提供的顺序。装置加功能或步骤加功能限制仅仅将用在以下地方,即对于特定的权利要求限制,在该限制中满足所有的下列条件:a)明确记载了“用于...的装置”或“用于...的步骤”;以及b)紧接着明确记载对应功能。在本文的说明中明确记载了支持装置加功能的结构、材料或行为。因此,本发明的范围应仅由所附权利要求及其合法等同条件确定,而非由本文给定的描述和例子确定。Any steps recited in any method or process claims may be performed in any order and are not limited to the order presented in the claims. A means-plus-function or step-plus-function limitation will only be used where, for a particular claim limitation, all of the following conditions are met in that limitation: a) it expressly recites "means for" or "with and b) the corresponding function is then explicitly described. The structures, materials, or behaviors that support means-plus-function are expressly recited in the descriptions herein. Accordingly, the scope of the invention should be determined only by the appended claims and their legal equivalents, rather than by the description and examples given herein.
废物的长期储存long-term storage of waste
用于长期储存废物的系统通常可通过将可流动废料保留在粉碎材料的静止主体内来工作。粉碎材料可具有高表面积,并且可包含已从中得到了烃类产物的经处理的含烃材料颗粒。废料可以是期望通过长期储存来处置的任何可流动有害或无害材料。粉碎材料可具有保留容量,这是指可在粉碎材料内基本上保持静止的可流动废料的量。保留容量可取决于多种因素,例如粉碎材料的表面积、粉碎材料的孔隙率、可流动废料和粉碎材料的表面之间的分子间力、可流动废料的粘度、可流动废料的表面张力等。一般地,保留容量可以是粉碎材料内可稳定保留而无废料流出粉碎材料或在重力作用下在粉碎材料底部汇集的可流动废料的最大量。此外,封装阻隔物可包裹粉碎材料。封装阻隔物可作为防止废料逸出的辅助措施。在一些实施例中,封装阻隔物可以是废料完全不可透过的。在其他情况下,封装阻隔物可以是废料部分不可透过的。一般来讲,部分不可透过的阻隔物可将废料扩散降低至低于无阻隔物的扩散的10%,在一些情况下低于5%,并且在其他情况下低于1%。Systems for long-term storage of waste generally work by retaining flowable waste within a stationary body of shredded material. The pulverized material can have a high surface area and can comprise processed hydrocarbon-containing material particles from which the hydrocarbon product has been obtained. Waste can be any flowable hazardous or non-hazardous material that is desired to be disposed of by long-term storage. The shredded material can have a retention capacity, which is the amount of flowable waste material that can remain substantially stationary within the shredded material. The retention capacity may depend on a variety of factors, such as the surface area of the comminuted material, the porosity of the comminuted material, the intermolecular forces between the surface of the flowable waste and the comminuted material, the viscosity of the flowable waste, the surface tension of the flowable waste, and the like. In general, the retention capacity may be the maximum amount of flowable waste material that can be stably retained within the shredded material without waste flowing out of the shredded material or collecting at the bottom of the shredded material under the force of gravity. Additionally, the encapsulation barrier can encapsulate the comminuted material. Encapsulation barriers can be used as an auxiliary measure to prevent waste from escaping. In some embodiments, the encapsulation barrier may be completely impermeable to waste. In other cases, the encapsulation barrier may be partially impermeable to the waste material. In general, a partially impermeable barrier can reduce waste diffusion to less than 10%, in some cases less than 5%, and in other cases less than 1% of the diffusion without the barrier.
考虑到上述情况,用于长期储存废物的系统可包括由封装阻隔物包裹的粉碎材料主体。参见图1,该系统包括由封装阻隔物105包裹的粉碎材料100。粉碎材料可以是被碎石化或以其他方式打碎的较大团块的碎块,例如被碎石化的岩层。粉碎材料的颗粒可具有多种尺寸和形状。如图2所示,粉碎材料的颗粒200可不规则地成形。每个颗粒都具有最长尺寸205。颗粒的尺寸可变化,但在一些实施例中,以体积计的大部分颗粒的最长尺寸可介于约一毫米(1mm)和约三十厘米(30cm)之间。颗粒的尺寸和形状可取决于系统的设计以及用于压碎粉碎材料的方法。在一些实施例中,颗粒可具有宽分布的最长尺寸,例如最长尺寸随机分布在约一毫米和约三十厘米之间。在其他实施例中,最长尺寸可更均匀。粉碎材料的表面积可受颗粒的大小和形状影响。例如,相较于等体积的较大颗粒,较小的颗粒可具有更大的表面积。作为一般性指导原则,90%以上的颗粒可具有小于5∶1的低纵横比,在大多数情况下小于2∶1。此外,尽管不是必需的,但颗粒可具有不均匀的形状,在颗粒间也有所不同。In view of the above, a system for long-term storage of waste may include a body of comminuted material surrounded by an encapsulating barrier. Referring to FIG. 1 , the system includes a
粉碎材料100可具有高的表面积,并且体积通常可非常大,使得系统可保留相当体积的废物。例如,典型储存系统可被形成为具有超过约1000m3至160万m3的体积。系统的尺寸范围可以是:深度为约10m至200m,平面表面积为0.5英亩至5英亩。The
粉碎材料可具有高表面积。粉碎材料的表面积可有利于粉碎材料的保留容量。例如,高表面积可得到粉碎材料和废料之间更大量级的表面张力和毛细力。废料可附着到粉碎材料颗粒的表面,从而被保留在粉碎材料主体中。如图2所示,可流动废料210可附着到粉碎物料的颗粒200。可流动废料可在颗粒的表面220上形成膜215并还集中于颗粒之间的空隙内。该膜的厚度及由此可保留的废料的量取决于多种因素,例如废料的表面张力、粘度和密度,以及粉碎材料的形状、表面积及相对于废料的可润湿性。在一些情况下,该膜可以是湿润膜,或换句话讲,由废料润湿粉碎材料的表面得到的稳定的膜。废料也可被保留在颗粒之间的间隙空间225中。The pulverized material can have a high surface area. The surface area of the comminuted material may contribute to the retention capacity of the comminuted material. For example, high surface area can result in greater magnitudes of surface tension and capillary forces between the comminuted material and the waste. The waste material may adhere to the surface of the shredded material particles, thereby being retained in the bulk of the shredded material. As shown in FIG. 2, the
粉碎材料也可通常为多孔材料。孔可增大粉碎材料的表面积,还可通过将废料吸收进入孔隙来增大保留容量。如图2所示,粉碎材料的颗粒200可具有孔230,该孔在颗粒表面220处具有露出的开口。在一些情况下,孔可具有完全充满废料210的内部容积。因此,废料可被吸收到粉碎材料的颗粒之中。在其他情况下,孔的内表面235可由废料的膜215润湿,而没有废料填充孔的内部容积。The pulverized material may also typically be a porous material. Pores increase the surface area of the comminuted material and also increase retention capacity by absorbing waste material into the pores. As shown in FIG. 2 ,
高表面积和高孔隙率都可有利于粉碎材料的保留容量。保留容量可受多种因素影响,包括粉碎材料中的空隙空间、毛细力、分子间力、粉碎材料相对于废料的可润湿性、粉碎材料的表面积、粉碎材料的孔隙率、温度、废料的粘度、废料的密度等。保留容量越大,可储存在粉碎材料中的废料越多。在一些实施例中,粉碎材料可保留等于保留容量的量的废料。在其他实施例中,粉碎材料可含有低于保留容量的量的废料,例如保留容量的20%以内,在一些情况下,保留容量的10%以内,在其他情况下,保留容量的5%以内。储存小于保留容量的量的废料可提供安全余量,以确保废料不会从粉碎材料逸出。由于用于长期储存废物的系统可被设计为将废料保留很长一段时间,所以使用安全余量可帮助防止由于异常状况或事件而损失废料的可能性。虽然储存时间可由具体应用来确定,但设计的储存时间可以是至少5年,在一些情况下,至少20年,并且在其他情况下至少100年。Both high surface area and high porosity can be beneficial for the retention capacity of the pulverized material. Retention capacity can be affected by a number of factors, including void space in the shredded material, capillary forces, intermolecular forces, wettability of the shredded material relative to the scrap, surface area of the shredded material, porosity of the shredded material, temperature, Viscosity, density of waste, etc. The greater the retention capacity, the more waste can be stored in the shredded material. In some embodiments, the shredded material may retain an amount of waste material equal to the retention capacity. In other embodiments, the shredded material may contain scrap in an amount below the retention capacity, such as within 20% of the retention capacity, in some cases within 10% of the retention capacity, and in other cases within 5% of the retention capacity . Storing an amount of scrap less than the retention capacity provides a safety margin to ensure that scrap does not escape from the shredded material. Because systems for long-term storage of waste can be designed to retain waste for a long period of time, using a safety margin can help prevent the possibility of waste being lost due to abnormal conditions or events. Although the storage time may be determined by the specific application, the designed storage time may be at least 5 years, in some cases at least 20 years, and in other cases at least 100 years.
尽管粉碎材料通常可保留高达保留容量的量的废料,但可以想见,如果条件充分变化,则废料可逸出,所述条件充分变化例如是大的温度变化、天气变化(例如洪水或大雨)或粉碎材料以下或周围的土壤移位或者废料的性质变化。在这些情况下,储存量少于保留容量的量可减少废料的逸出的风险。在一些实施例中,废料以低于粉碎材料保留容量的约90%的量存在。在其他实施例中,废料以低于粉碎材料保留容量的约70%的量存在,提供更宽的安全余量。然而,当使用膨胀性粘土作为阻隔材料时,地下水或水合水平的变化一般不损害系统的阻隔性能。While shredded material can typically retain amounts of waste material up to the retention capacity, it is conceivable that waste material can escape if conditions change sufficiently, such as large temperature changes, weather changes (such as floods or heavy rain) or Displacement of soil under or around the shredded material or changes in the properties of the waste. In these cases, storing an amount less than the retention capacity can reduce the risk of escape of waste material. In some embodiments, the waste material is present in an amount less than about 90% of the retention capacity of the shredded material. In other embodiments, the waste material is present in an amount less than about 70% of the retention capacity of the shredded material, providing a wider safety margin. However, when swelling clays are used as the barrier material, changes in groundwater or hydration levels generally do not compromise the barrier properties of the system.
粉碎材料可包括已从中得到了烃类产物的经处理的含烃材料颗粒。废含烃材料通常可具有非常高的表面积。例如,油页岩是富烃岩石,去除烃之后,它可变得高度多孔。未处理过的油页岩含有油母岩、有机材料,结合至富含矿物质材料的无机基质。油母岩可见于遍及油页岩的薄层和小凹处中。通过热解去除油母岩后,具有此前至少部分地由油母岩占据的孔的网络的无机基质被留下。此外,热解过程中在油页岩中形成的机械弱点可形成裂缝和空隙的网络,这些进一步增加了废油页岩的孔隙率。在一些实施例中,在粉碎材料中经处理的含烃材料可以是废油页岩、废焦油砂、煤残渣、褐煤残渣、沥青残渣或它们的混合物。经处理的含烃材料可以是烃提取操作的不期望残余产物。因此,在用于长期储存废物的系统中使用经处理的含烃材料可提供方便的方式来同时处置可流动废物和不期望的经处理的含烃材料。The pulverized material may include processed hydrocarbon-containing material particles from which the hydrocarbon product has been obtained. Spent hydrocarbon-containing materials can often have very high surface areas. For example, oil shale is a hydrocarbon-rich rock that can become highly porous after the hydrocarbons are removed. Untreated oil shale contains kerogen, organic material bound to an inorganic matrix rich in mineral material. Kerogen can be found in thin layers and pockets throughout the oil shale. After removal of the kerogen by pyrolysis, an inorganic matrix with a network of pores previously at least partially occupied by the kerogen is left behind. In addition, mechanical weak points formed in oil shale during pyrolysis can form a network of fractures and voids, which further increase the porosity of spent oil shale. In some embodiments, the hydrocarbonaceous material treated in the pulverized material may be spent oil shale, spent tar sands, coal residues, lignite residues, bitumen residues, or mixtures thereof. The treated hydrocarbonaceous material may be an undesired residual product of a hydrocarbon extraction operation. Thus, the use of treated hydrocarbonaceous material in a system for long-term storage of waste may provide a convenient way to dispose of flowable waste and undesired treated hydrocarbonaceous material simultaneously.
在一些实施例中,粉碎材料可基本上仅含有已从中得到了烃类产物的经处理的含烃材料。然而,在其他实施例中,粉碎材料可包含其他任选的材料。低质油页岩可包含在粉碎材料中,例如,如果油页岩不包含足够量的油母岩使提取有利润。在一些实施例中,粉碎材料可包含其他生土材料,例如粘土、压实填土、耐火水泥、水泥、膨胀性粘土改良的土壤、压实土、低质页岩以及它们的组合。然而,未经处理的含烃材料的材料最经常可包含以体积计少于储存主体的50%,在某些情况下,以体积计少于储存主体的10%,所述储存主体包括经处理的含烃材料。In some embodiments, the pulverized material may contain substantially only the processed hydrocarbon-containing material from which the hydrocarbon product has been obtained. However, in other embodiments, the comminuted material may comprise other optional materials. Low quality oil shale may be included in the crushed material, for example, if the oil shale does not contain a sufficient amount of kerogen to make extraction profitable. In some embodiments, the comminuted material may comprise other raw earth materials, such as clay, compacted fill, refractory cement, cement, expansive clay-modified soil, compacted soil, low-quality shale, and combinations thereof. However, the untreated hydrocarbon-containing material may most often comprise less than 50% by volume, and in some cases less than 10% by volume, of the storage body comprising the treated of hydrocarbon-containing materials.
如前面所讨论,可流动废料可被保留在粉碎材料中。作为可流动材料,废料可被泵送或倾注到粉碎材料主体。在一些实施例中,废料可以是液体。液体废料可基本上仅为液体,或者可含有固体颗粒以形成浆料或悬浮液。此外,液体废料可包含任何类型的液体材料。例如,液体废料可以包含基本上纯的液体化学品、多种化学品的混合物及溶解的固体和气体。在另一个可选的方面中,可流动废料可以是气体或可流动颗粒。可流动废物颗粒的一个例子可以是煅烧的废料,或者作为初级废物处理过程的副产物而产生的颗粒状细粒。As previously discussed, the flowable waste can be retained in the shredded material. As a flowable material, the waste can be pumped or poured into the body of shredded material. In some embodiments, the waste material may be a liquid. Liquid waste may be substantially only liquid, or may contain solid particles to form a slurry or suspension. Furthermore, the liquid waste can contain any type of liquid material. For example, liquid waste may contain substantially pure liquid chemicals, mixtures of chemicals, and dissolved solids and gases. In another optional aspect, the flowable waste material may be gas or flowable particles. An example of flowable waste particles may be calcined waste, or particulate fines produced as a by-product of a primary waste treatment process.
可流动废料能够流入粉碎材料中,从而允许可流动废料形成湿润膜、填充间隙空间、以及被吸收到粉碎材料中的孔中或以其他形式被吸附在粉碎材料的表面上。在一些实施例中,废料可围绕粉碎材料形成润湿膜。润湿膜是由废料润湿粉碎材料的表面得到的稳定的膜,并且根据废料和粉碎材料之间的粘附力和其他因素(例如废料的表面张力)可具有不同的厚度。如图2所示,废料210的膜215可基本上适合粉碎材料的颗粒200的表面220。不同位置的膜厚度可不同,取决于颗粒的几何形状和其他颗粒的接近度。另外,围绕着两个相邻颗粒的膜可合并在一起,并形成保留在颗粒之间废料的连续区域。在一些实施例中,废料可围绕以体积计至少大部分的粉碎材料形成润湿膜。如果在大部分高表面积粉碎材料周围形成润湿膜,那么,即使薄润湿膜也可容纳大体积的废料。在一些情况下,废料可填充颗粒之间的间隙空间225,而在其他情况下,间隙空间可含有废料的膜和空的空隙空间。此外,废料可流入孔230并填充孔,从而被吸收到粉碎材料的颗粒之中。The flowable waste can flow into the shredded material, allowing the flowable scrap to form a wet film, fill interstitial spaces, and be absorbed into pores in the shredded material or otherwise adsorbed on the surface of the shredded material. In some embodiments, the waste material may form a wetting film around the shredded material. The wetting film is a stable film obtained by wetting the surface of the shredded material by the scrap and can have different thicknesses depending on the adhesion between the scrap and the shredded material and other factors such as the surface tension of the scrap. As shown in FIG. 2, the
废料可保留在粉碎材料之中,使得废料是基本上静止的。如果废料以等于或小于粉碎材料的保留容量的量存在,则废料可以是基本上静止的,因为它将是润湿膜的形式,困在间隙空间中,或者被吸附在粉碎材料的孔隙中。因此,废料可以一定的量存在,使得废料在重力作用下不会从粉碎材料的主体流出或在粉碎材料主体的底部汇集。当粉碎材料和阻隔材料是生土材料或其他天然材料时,被保留废料的稳定性和保留性可无限期地延长。因此,只要避免灾难性地破坏阻隔物,本文所述的保留系统可有效地保留可流动废物。The waste material may remain within the shredded material such that the waste material is substantially stationary. If the waste is present in an amount equal to or less than the retention capacity of the comminuted material, the waste can be substantially stationary since it will be in the form of a wetting film, trapped in interstitial spaces, or adsorbed in the pores of the comminuted material. Thus, the waste material may be present in an amount such that the waste material does not flow out of the body of shredded material or collect at the bottom of the body of shredded material under the force of gravity. When the comminuted and barrier materials are raw earth materials or other natural materials, the stability and retention of the retained waste can be extended indefinitely. Thus, the retention systems described herein can effectively retain flowable waste as long as catastrophic failure of the barrier is avoided.
通过储存在根据本发明的系统中,可有效地处置有害废物。由于有害废物可能对人员和环境造成伤害,所以有害废物的处置可以是具有挑战性的。本发明的系统可将有害废物保留很长一段时间,并且在大多数情况下,无限期地确保有害废物不会逸出到环境中。有害废物通常可包括具有一种或多种以下超过适量幅度的特性的危险材料:高可燃性、高反应性、腐蚀性、毒性和放射性。系统的温度也可影响一些有害废物的稳定性或危险程度。这些特性的详细定义和特定有害废物的名录已由环境保护署公布。适于使用本发明储存的有害废物可包括在40 C.F.R.261(2012年7月1日)中确定的可流动有害废料,但也可存储其他有害材料。其他材料(诸如放射性材料)也可以是有害废物。在本发明的一些实施例中,可流动废料可以是选自以下项的有害材料:放射性废物、化学废物、农药、汽车废物、溶剂、腐蚀剂、含重金属的废物、制冷剂、生物废物、生物危害性材料、固定化生物材料以及它们的混合物。有害材料的具体非限制性例子可包括汞、砷、镉等。Hazardous waste can be efficiently disposed of by being stored in the system according to the invention. Disposal of hazardous waste can be challenging due to its potential harm to people and the environment. The system of the present invention can retain hazardous waste for an extended period of time and, in most cases, indefinitely ensure that the hazardous waste does not escape into the environment. Hazardous waste may generally include hazardous materials having one or more of the following properties in excess of moderate ranges: high flammability, high reactivity, corrosiveness, toxicity, and radioactivity. The temperature of the system can also affect the stability or hazard level of some hazardous wastes. Detailed definitions of these properties and a list of specific hazardous wastes have been published by the Environmental Protection Agency. Hazardous waste suitable for storage using the present invention may include flowable hazardous waste identified in 40 C.F.R. 261 (July 1, 2012), although other hazardous materials may also be stored. Other materials, such as radioactive materials, can also be hazardous waste. In some embodiments of the invention, the flowable waste may be a hazardous material selected from the group consisting of radioactive waste, chemical waste, pesticides, automotive waste, solvents, corrosives, heavy metal-containing waste, refrigerants, biological waste, biohazards Sexual materials, immobilized biological materials, and mixtures thereof. Specific non-limiting examples of hazardous materials may include mercury, arsenic, cadmium, and the like.
可流动废料通常可以是除从含烃材料衍生出烃之后留下的残余烃类产物或其他过程残渣等之外的物质。虽然烃生产过程的目标是要从含烃材料中尽可能多地除去烃,但是在处理后的废含烃材料中可残留有一定量的残余烃。残余烃的残留量可以根据各种因素而不同。例如,在烃生产阶段中温度控制不良可以导致烃生产效率变低,因而留下更多的残余烃。即使这些残余烃在某些情况下是可流动的,并且由于它们并未作为有用产物而回收,因此可以被视为废物,但在本发明中它们是指残余的回收过程材料和非可流动废料。本文中,无论在引入可流动废料之前存在于粉碎材料中的残余的回收过程材料的性质如何,术语可流动废料都是指加入到粉碎材料中的废料。The flowable waste can generally be anything other than residual hydrocarbon products or other process residues or the like that remain after the hydrocarbons have been derived from the hydrocarbonaceous material. While the goal of the hydrocarbon production process is to remove as much hydrocarbons as possible from the hydrocarbonaceous material, a certain amount of residual hydrocarbons may remain in the treated spent hydrocarbonaceous material. The residual amount of residual hydrocarbons can vary depending on various factors. For example, poor temperature control in the hydrocarbon production stage can result in less efficient hydrocarbon production, thereby leaving more residual hydrocarbons. Even though these residual hydrocarbons are flowable in some cases and can be considered waste since they are not recovered as useful products, in the present invention they refer to residual recovery process materials and non-flowable wastes . Herein, the term flowable waste refers to waste added to the comminuted material regardless of the nature of the residual recycling process material present in the comminuted material prior to the introduction of the flowable waste.
油页岩中的金属和其他化学物质可以是烃回收期间经处理的含烃材料中留下的残余回收过程材料的示例。这些残余回收过程材料中的一些可以被认为是有害的。本发明的可流动废物可以是除了这些留下的金属和化学物质之外的一些其他材料。通常,存储在粉碎材料中的可流动废料可以是最初不存在于含烃材料中的外来物质(即,不是生产出的组分)。例如,可流动废料可以从较远位置被运送而来,以被储存在粉碎材料中。可流动废料也可由粉碎材料主体之外的现场加工过程生成,例如在烃精炼厂现场生成。因此,不将以下材料视为可流动废料:回收过程的诸如所产生的烃类产物、所产生的二氧化碳或其他产物(包括副产物)这样的材料。在一种替代方案中,粉碎材料可用于捕获或储存来自提取过程的残余。提取过程的非限制性实例可包括金或铜提取操作中的氰化浸出、从废页岩中提取铀等。在这些过程中,粉碎材料可以充当进行提取处理的提取空间。作为另外一种选择,粉碎材料可仅仅充当储存空间,用以在提取之后放置来自在空间上分开的提取过程的残余。Metals and other chemicals in oil shale can be examples of residual recovery process materials left in processed hydrocarbon-containing materials during hydrocarbon recovery. Some of these residual recycling process materials can be considered hazardous. The flowable waste of the present invention may be some other material than these leftover metals and chemicals. Typically, the flowable waste material stored in the comminuted material may be a foreign material (ie, not a produced component) that was not originally present in the hydrocarbon-containing material. For example, flowable waste can be transported from a remote location for storage in shredded material. Flowable waste can also be generated from on-site processing outside the bulk of the shredded material, such as on-site at a hydrocarbon refinery. Accordingly, materials such as hydrocarbon products produced, carbon dioxide produced, or other products (including by-products) of the recycling process are not considered flowable waste. In an alternative, pulverized material can be used to capture or store residues from the extraction process. Non-limiting examples of extraction processes may include cyanide leaching in gold or copper extraction operations, extraction of uranium from spent shale, and the like. During these processes, the pulverized material can act as an extraction space for the extraction process. Alternatively, the comminuted material may simply serve as a storage space to place residues from the spatially separated extraction process after extraction.
残余回收过程材料(诸如留在经处理的含烃材料中的烃、金属和其他化学物质)可能影响粉碎材料的保留容量。因为例如存在吸附的残余烃,所以粉碎材料可能具有较小的暴露表面积。在一些情况下,残余烃会堵塞孔并进一步降低保留容量。相反地,此类残余烃、碳和其他物质可以提高用于捕获可流动废物的有利表面能,因此,可以降低足以改善粉碎材料内粘附性和保留容量的组合表面能。在确定粉碎材料的保留容量时,可以考虑上述因素,以避免用可流动废物将粉碎材料填充得太满。Residual recovery process materials, such as hydrocarbons, metals and other chemicals left in the treated hydrocarbonaceous material, can affect the retention capacity of the comminuted material. The pulverized material may have less exposed surface area due to, for example, the presence of adsorbed residual hydrocarbons. In some cases, residual hydrocarbons can plug pores and further reduce retention capacity. Conversely, such residual hydrocarbons, carbon, and other species can increase the favorable surface energy for capturing flowable waste and, therefore, can reduce the combined surface energy sufficient to improve adhesion and retention capacity within the comminuted material. The above factors can be considered when determining the retention capacity of the shredded material to avoid overfilling the shredded material with flowable waste.
粉碎材料可以由可选的封装阻隔物包裹,从而给废料从系统脱出的过程提供辅助阻隔作用。封装阻隔物可包括底部部分、顶部部分和侧壁部分,侧壁部分连接底部和顶部形成封闭体积,该封闭体积容纳粉碎材料并且限制流体流到封装阻隔物之外。在一些实施例中,封装阻隔物可以具有一个或多个流体入口和出口。这些流体入口和出口可以在从封装阻隔物内的含烃材料产生烃类产物的过程中使用,并且还可以用于将可流动废料引入到封装阻隔物内部的粉碎材料之中。顶部部分限定封闭体积的上部并与侧壁邻接。底部也与侧壁邻接,并且可以是基本上水平的或根据需要朝排出管道倾斜的,用于收集在含烃材料的处理过程中所提取的烃流体。在引入可流动废料之前,可以封闭或堵塞收集排出管道,以防止废料逸出。The shredded material can be wrapped by an optional encapsulation barrier to provide a secondary barrier to the waste material exiting the system. The encapsulation barrier may include a bottom portion, a top portion, and a sidewall portion connecting the bottom and the top to form an enclosed volume that contains the comminuted material and restricts fluid flow out of the encapsulation barrier. In some embodiments, the encapsulation barrier may have one or more fluid inlets and outlets. These fluid inlets and outlets can be used in the production of hydrocarbon products from hydrocarbonaceous material within the encapsulation barrier, and can also be used to introduce flowable waste into the comminuted material inside the encapsulation barrier. The top portion defines an upper portion of the enclosed volume and abuts the side walls. The bottom also adjoins the side walls and can be substantially horizontal or sloped toward the discharge conduit as desired for collecting hydrocarbon fluids extracted during processing of the hydrocarbon-containing material. Before the flowable waste is introduced, the collection discharge line can be blocked or plugged to prevent waste from escaping.
在一些实施例中,可沿着挖掘出的含烃材料矿床的壁形成封装阻隔物。例如,可以从矿床开采油页岩、焦油砂或煤,形成大致对应于封装阻隔物所需封装体积的空腔。挖掘出的空腔随后可以用作封装阻隔物的支承物。在一个可供选择的实施例中,如果封装阻隔物部分地或基本上位于地面以上,则可以围绕封装阻隔物的外壁表面形成护台。封装阻隔物可以是地上的自立式结构的一部分,其中护台支撑着侧壁,并且该阻隔物的底部由其下方的地面支撑。In some embodiments, encapsulating barriers may be formed along the walls of the excavated hydrocarbonaceous material deposit. For example, oil shale, tar sands, or coal can be mined from a deposit to form a cavity roughly corresponding to the encapsulation volume required to encapsulate the barrier. The excavated cavity can then be used as a support for the encapsulation barrier. In an alternative embodiment, if the encapsulation barrier is located partially or substantially above the ground, a guard may be formed around the outer wall surface of the encapsulation barrier. The encapsulation barrier may be part of a free-standing structure on the ground, wherein the platform supports the side walls and the bottom of the barrier is supported by the ground below it.
封装阻隔物可以基本上不含原状地层。具体地讲,可以将封装阻隔物完全构造并人造为用于防止废料不受控制迁移出粉碎材料的单独隔离机构。原状地层可具有裂缝和孔隙,这些裂缝和孔隙可使可流动废料能渗透过地层。以完全人造结构形式形成封装阻隔物,而不使用原状地层作为底部或壁,可以降低废料通过地层渗出的风险。然而,在一些实施例中,封装阻隔物可以采用所挖掘地层表面的一些构成部分。例如,在一些地层中,所挖掘坑道的底部和壁可能具有足够低的自然渗透性,使得明显的阻隔层(例如经粘土改良的土层)对于阻隔物部分而言可能并非是必需的。The encapsulation barrier may be substantially free of undisturbed formations. Specifically, the encapsulation barrier can be fully constructed and artificially created as a separate isolation mechanism for preventing uncontrolled migration of waste material out of the shredded material. An undisturbed formation may have fractures and pores that allow flowable waste to permeate through the formation. Forming the encapsulation barrier as a fully man-made structure, without using the undisturbed formation as a bottom or wall, reduces the risk of waste seepage through the formation. However, in some embodiments, the encapsulation barrier may employ some component of the surface of the excavated formation. For example, in some formations, the bottoms and walls of excavated tunnels may have sufficiently low natural permeability that a significant barrier (eg, clay-amended soil) may not be necessary for the barrier portion.
封装阻隔物通常可包括底部、侧壁和顶部以限定封闭体积,其中侧壁从底部向上延伸,顶部在侧壁上方延伸。底部、侧壁和顶部中的每一者都可以由多个层构成,所述多个层包括细粒或其他阻隔材料内层、以及膨胀性粘土改良的土壤或类似流体阻隔材料外层。任选地,除了膨胀性粘土改良的土壤之外,还可采用进一步防止流体流到封装阻隔物外的外膜作为流体阻隔物。外膜可用作在主密封层因任何原因而失效的情况下的辅助后备密封层。也可以任选地将高温沥青内层或其他流体阻隔材料内层施加到细粒层的内表面,并限定封装阻隔物的内表面。The encapsulation barrier may generally include a bottom, sidewalls and a top to define an enclosed volume, with the sidewalls extending upwardly from the bottom and the top extending over the sidewalls. Each of the bottom, side walls, and top may be composed of multiple layers including an inner layer of fines or other barrier material, and an outer layer of swelling clay modified soil or similar fluid barrier material. Optionally, in addition to expanding clay-modified soil, an outer membrane that further prevents fluid flow beyond the encapsulated barrier may be employed as a fluid barrier. The outer membrane can be used as a secondary backup seal in the event that the primary seal fails for any reason. An inner layer of high temperature bitumen or other fluid barrier material may also optionally be applied to the inner surface of the fines layer and define the inner surface of the encapsulating barrier.
膨胀性粘土是可水合的无机材料,其导致粘土膨胀,或换句话讲形成对流体流动的阻隔物。封装阻隔物可以由干粘土颗粒和其他生土材料来形成,然后所述粘土可被水合以使粘土颗粒膨胀并形成阻隔物。典型地,这种阻隔层可以由固相颗粒和液相水形成,它们共同形成基本上连续的流体阻隔物。例如,可以使用膨胀性粘土改性的土壤形成封装阻隔物的底部、壁和顶部。当膨胀性粘土被水合时,它会膨胀并填充土壤中其他材料颗粒之间的空隙空间。通过这种方式,膨胀性粘土改性的土壤对于封装阻隔物内部的可流动废料而言变得不那么可渗透。通过将膨胀性粘土与其他生土材料充分混合,封装阻隔物对于流体流来说可以是基本上不可渗透的。合适的膨胀性粘土的一些示例包括膨润土、蒙脱石、高岭石、伊利石、绿泥石、蛭石、泥板岩、绿土等。Swelling clays are hydratable inorganic materials that cause the clay to swell, or otherwise form a barrier to fluid flow. The encapsulated barrier can be formed from dry clay particles and other raw earth materials, which can then be hydrated to swell the clay particles and form the barrier. Typically, such a barrier layer may be formed from solid phase particles and liquid phase water, which together form a substantially continuous fluid barrier. For example, swelling clay-modified soils can be used to form the bottom, walls, and top of the encapsulating barrier. When swelling clay is hydrated, it expands and fills the void spaces between particles of other materials in the soil. In this way, the swelling clay-modified soil becomes less permeable to flowable waste inside the encapsulation barrier. The encapsulating barrier can be substantially impermeable to fluid flow by intimately mixing the swelling clay with other raw earth materials. Some examples of suitable swelling clays include bentonite, montmorillonite, kaolinite, illite, chlorite, vermiculite, slate, smectite, and the like.
合并的多层会形成封装阻隔物,起到阻隔粉碎材料的作用,从而保持封闭体积内的热量,以便于从油页岩、焦油砂或其他含烃材料中提移出烃。膨胀性粘土改良的土层的塑性将阻隔物密封,从而防止废料泄漏到阻隔物外。细粒层的隔绝特性使得横跨该层的温度梯度允许膨胀性粘土改良的土层足够地凉,以保持水分。在从含烃材料生成烃的过程中,该性能防止了烃类迁移到阻隔物外(除了经由指定管道以外)。在将可流动废料储存于粉碎材料中之后,该性能也可防止废料逸出到阻隔物外。但是,与本文中的描述一致的是,用可流动废料以低于保留容量的体积来填充粉碎材料可能是可取的。这样一来,在每个区域内,超过材料的保留容量的废料的汇集或局部集中现象能够得到避免,从而限制或完全消除对此类外部辅助阻隔物的依赖。The combined multiple layers form an encapsulating barrier that acts as a barrier to the crushed material, thereby maintaining heat within the enclosed volume to facilitate the extraction of hydrocarbons from oil shale, tar sands, or other hydrocarbon-bearing materials. The plasticity of the expansive clay-modified soil layer seals the barrier, preventing waste from leaking out of the barrier. The insulating properties of the fine-grained layer allow a temperature gradient across the layer to allow the expansive clay-modified soil layer to cool enough to retain moisture. This property prevents migration of hydrocarbons out of the barrier (other than via designated conduits) during the generation of hydrocarbons from hydrocarbon-containing materials. This property also prevents the waste from escaping out of the barrier after the flowable waste is stored in the shredded material. However, consistent with the description herein, it may be desirable to fill the comminuted material with flowable waste at volumes below the retention capacity. In this way, within each zone, the pooling or local concentration of waste beyond the retention capacity of the material can be avoided, thereby limiting or completely eliminating the reliance on such external auxiliary barriers.
在某些情况下,可以从封装阻隔物中省去隔绝性细粒层。例如,如果为了从中移除物质,而使粉碎材料经受不需要施加热或产生热的替代过程(例如溶剂提取或浸出),则隔绝层是可选的。在这种实施例中,采用水合的膨胀性粘土改良的土层将容纳有粉碎材料的封闭体积相对于外部环境密封。适当的不可渗透膜可任选地内衬于水合的膨胀性粘土改良的土层的内表面。虽然并不总是合乎需要的,但这种内衬可以防止水合的膨胀性粘土改良的土层与溶剂和/或沥滤的流体之间发生相互作用,否则溶剂和/或沥滤的流体可能与水合的膨胀性粘土改良的土层反应,或损坏水合的膨胀性粘土改良的土层。In some cases, the insulating fine particle layer can be omitted from the encapsulation barrier. For example, an insulating layer is optional if the comminuted material is subjected to an alternative process (eg, solvent extraction or leaching) that does not require the application or generation of heat in order to remove substances therefrom. In such an embodiment, the soil layer modified with the hydrated swelling clay seals the enclosed volume containing the comminuted material from the external environment. A suitable impermeable membrane may optionally be lined with the inner surface of the hydrated swelling clay modified soil layer. Although not always desirable, this lining prevents interaction between the hydrated swelling clay-modified soil layer and the solvent and/or leached fluid that might otherwise Reacts with or damages hydrated swelling clay-modified soils.
在使用时,隔绝层很多时候可由细粒层形成。典型地,该细粒层可以是直径小于3cm的颗粒材料。尽管其他材料可以是合适的,但该细粒层典型地可由下列物质制成:砾石、砂、压碎的贫油页岩或其他不会捕获或以其他方式抑制流体流动的颗粒细粉。通过选择合适的颗粒材料和层厚度,细粒层可以充当隔绝作用的主要来源,并且可以维持从内表面到外表面的相当大的热梯度。气体虽然可以渗入该可渗透细粒层,但基本上不能渗透封装的膨胀性粘土层。正如烃提取过程的情况那样,当粉碎材料的温度高于封装的膨胀性粘土层内表面的温度时,气体可在细粒层中得到充分冷却(低于相应气体的冷凝点),液体可从气体中冷凝而出。这些液体随后穿过细粒滴落至封装阻隔物的底部,它们在那里汇集并被移除。In use, the insulating layer can often be formed from a fine particle layer. Typically, the fine-grained layer may be particulate material less than 3 cm in diameter. Although other materials may be suitable, the fine-grained layer is typically made of gravel, sand, crushed oil-lean shale, or other particulate fines that do not trap or otherwise inhibit fluid flow. By choosing the right particulate material and layer thickness, the fine-grained layer can act as the main source of insulation and can maintain a considerable thermal gradient from the inner surface to the outer surface. Gases can penetrate the permeable fine-grained layer, but are substantially impermeable to the encapsulated swelling clay layer. As in the case of the hydrocarbon extraction process, when the temperature of the pulverized material is higher than the temperature of the inner surface of the encapsulated expanding clay layer, the gas can be sufficiently cooled in the fine-grained layer (below the condensation point of the corresponding gas), and the liquid can be removed from the Condensed out of the gas. These liquids then drip through the granules to the bottom of the encapsulation barrier, where they pool and are removed.
可以使用任何合适的方法来形成封装阻隔物。然而,在一个方面,从底部由下至上形成阻隔物。在以预定的图案沉积材料的垂直沉积工艺中,可以同时完成所述一个或多个壁的形成过程,以及用粉碎材料填充封装件的过程。例如,可以沿着沉积材料上方的相应位置来定向多个斜槽或其他颗粒递送机构。通过选择性地控制输送的颗粒体积,以及沿系统鸟瞰图的每个单独粒状材料被输送的位置,可以自底部到顶部同时形成层和结构。可以将阻隔物的侧壁部分形成为底部的外周边处的连续向上伸出部,并将所存在的每一层,包括膨胀性粘土改良的土层、细粒层以及膜和/或沥青衬层(如果存在)构造成底部对应物的连续伸出部。在建造侧壁的过程中,可将粉碎材料同时置于底部上及侧壁周界之内,使得对将成为封闭空间的体积的填充过程与侧壁不断构建升高的过程同时进行。通过这种方式,能够避免形成内部挡土墙或其他横向制约因素。为了验证各层的界面处所发生的混和是在可接受的预定公差内(例如,以便保持各层的功能),在垂直堆积时也可对这种方法进行监测。例如,膨胀性粘土改良的土层与细粒过度掺混可能会损害膨胀性粘土改良的土层的密封功能。这种过度掺混现象可以通过在建造时小心地沉积每个相邻层,并且/或者通过增加沉积层的厚度来避免。The encapsulation barrier may be formed using any suitable method. However, in one aspect, the barrier is formed from bottom to top. In a vertical deposition process in which material is deposited in a predetermined pattern, the process of forming the one or more walls and the process of filling the package with pulverized material may be performed simultaneously. For example, multiple chutes or other particle delivery mechanisms may be oriented along respective locations above the deposition material. By selectively controlling the volume of particles delivered, and where along the bird's eye view of the system each individual granular material is delivered, layers and structures can be formed simultaneously from bottom to top. The sidewall portion of the barrier can be formed as a continuous upward projection at the outer perimeter of the bottom, and each layer present, including the expansive clay modified soil layer, the fine-grained layer, and the membrane and/or bituminous lining Layers, if present, are constructed as continuous extensions of the bottom counterparts. During the construction of the side wall, the comminuted material can be placed both on the bottom and within the perimeter of the side wall, so that the filling of the volume that will become the enclosed space occurs concurrently with the continuous building up of the side wall. In this way, the formation of internal retaining walls or other lateral constraints can be avoided. This method can also be monitored during vertical stacking in order to verify that the mixing that occurs at the interfaces of the layers is within acceptable predetermined tolerances (eg, to maintain the functionality of the layers). For example, excessive blending of an expansive clay-modified soil layer with fines may impair the sealing function of the expansive clay-modified soil layer. This over-mixing phenomenon can be avoided by carefully depositing each adjacent layer during construction, and/or by increasing the thickness of the deposited layers.
随着建造过程接近上部,顶部可以使用和上述相同的输送机构来形成,并且仅需调整形成顶层的适当材料的沉积位置和速度。例如,当达到侧壁的所需高度时,可以加入足够量的封装阻隔物材料以形成顶部。As the build process approaches the upper portion, the top can be formed using the same conveyor mechanism as described above, and only the location and speed of deposition of the appropriate material to form the top layer need to be adjusted. For example, when the desired height of the sidewalls is reached, a sufficient amount of encapsulation barrier material can be added to form the top.
无论采用何种具体方法来形成封装阻隔物,一般都首先形成底部,并且该方法可包括放置任选的外膜、膨胀性粘土改良的土层和细粒层。任选地,可邻近细粒层的内表面布置沥青层。根据具体安装方式,可以任选地将加热管、收集管、流体输送管、收集托盘和/或其他结构嵌入到沉积的粉碎材料中。所形成的阻隔物还可以具有设置在顶部上的覆盖层。如果要在既有坡面下方形成阻隔物,则可以通过挖掘步骤或其他合适步骤来制备洞穴状凹坑。如果阻隔物不位于地下位置,则土壤或其他支撑护台可随着层材料的沉积而环绕侧壁并支撑层材料。Regardless of the specific method employed to form the encapsulating barrier, the bottom is generally formed first, and the method may include placing an optional outer membrane, expansive clay modified soil layer, and fines layer. Optionally, a bitumen layer may be disposed adjacent to the inner surface of the fines layer. Depending on the specific installation, heating tubes, collection tubes, fluid delivery tubes, collection trays, and/or other structures can optionally be embedded into the deposited comminuted material. The formed barrier may also have a cover layer disposed on top. If a barrier is to be formed below an existing slope, the cavernous pit can be prepared by an excavation step or other suitable steps. If the barrier is not located in a subterranean location, soil or other support pads may surround the sidewalls and support the layer material as the layer material is deposited.
考虑到上文的描述,图1示出了包裹着粉碎材料100的封装阻隔物105的一个实施例的侧视图。现有表面或挖掘坡面110被主要用作对于阻隔物的底部部分115的支撑。该底部部分包括可选的外膜118、膨胀性粘土改良的土层120、隔绝的细粒层122,并且任选地包括内部沥青层124。连续侧壁部分130是从底部部分向上建造的,其包括外膜132、膨胀性粘土改良的土层134、细粒层136并且任选地包括内部沥青层138。如前文所提到的,随着阻隔物的建造,可以同时从底部到顶部形成各层。另外,随着壁的建造,可将粉碎物质(例如油页岩、焦油砂、煤等)放置在底部上,并填充将形成的封闭体积。根据系统的放置情况,侧壁部分和底部部分的外表面可以由护台支撑,或者(如果挖掘)由挖掘坑道的底部和壁支撑。阻隔物的底部部分、壁和顶部部分140中每一者共同形成隔绝容纳层。一般来讲,这些层的这些部分是围绕粉碎材料的连续层。In view of the above description, FIG. 1 shows a side view of one embodiment of an
侧壁部分130建造完成后,不管是在同时填充或是在单独填充的情况下,粉碎材料100都会被置于将形成的封闭体积之内。顶部140可以在粉碎材料上方形成,并且与侧壁部分邻接。与底部和侧壁一样,顶部可以具有多个层,包括可选的外膜142、膨胀性粘土改良的土层144、细粒层146并且任选地包括内部沥青层148。如果需要,覆盖层150也可以覆盖顶部。另外,用作覆盖层的材料可被用作侧壁或底部来包住或环绕阻隔物。Once the
底部、侧壁和顶部的各层是连续的,并且与类似材料直接接触或连通,使得例如细粒层122、136和146是环绕封闭体积的一个连续层。这同样适用于外膜层118、132和142、膨胀性粘土改良的土层120、134和144,也同样适用于内沥青层124、138和148(如果使用)。值得注意的是,每层的厚度在整个阻隔物中可以不是均匀的。只要层的厚度对于其预期目的(例如隔绝、流体阻隔等)起作用,每层的厚度就不是关键,层的存在才是重点。虽然封装阻隔物的厚度可以是变化的,但是合适的厚度范围通常可为从约4cm至约2m。The bottom, sidewall and top layers are continuous and are in direct contact or communication with similar materials such that, for example, the fine particle layers 122, 136 and 146 are one continuous layer surrounding the enclosed volume. The same applies to outer membrane layers 118, 132, and 142, expanding clay modified soil layers 120, 134, and 144, as well as inner asphalt layers 124, 138, and 148 (if used). Notably, the thickness of each layer may not be uniform throughout the barrier. The thickness of each layer is not critical, as long as the thickness of the layer is functional for its intended purpose (eg, insulation, fluid barrier, etc.), the presence of the layer is what matters. Although the thickness of the encapsulation barrier can vary, a suitable thickness can generally range from about 4 cm to about 2 m.
储存可流动废料的方法可包括将粉碎材料的基本静止主体与可流动废物接触。粉碎材料可以具有高表面积,以允许粉碎材料具有高保留容量。粉碎材料可包括已从中得到了烃类产物的经处理的含烃材料颗粒。封装阻隔物可包裹粉碎材料。A method of storing flowable waste may include contacting a substantially stationary body of comminuted material with the flowable waste. The comminuted material can have a high surface area to allow the comminuted material to have a high retention capacity. The pulverized material may include processed hydrocarbon-containing material particles from which the hydrocarbon product has been obtained. The encapsulation barrier can encapsulate the comminuted material.
该方法中使用的材料类型和它们的特性及特征可以与上文针对用于储存可流动废物的系统所述的相同。该粉碎材料可以与上文所述是相同的颗粒大小、表面积和材料。类似地,在该方法中使用的可流动废料可包括上文所述的所有可流动废料,包括有害和无害的废物。封装阻隔物也可以具有与上文所述相同的材料、构造和建造方法。The types of materials used in the method and their properties and characteristics may be the same as described above for the system for storing flowable waste. The pulverized material may be of the same particle size, surface area and material as described above. Similarly, the flowable waste used in the method can include all flowable wastes described above, including hazardous and non-hazardous wastes. The encapsulation barrier can also have the same materials, construction, and construction methods described above.
在一些实施例中,将粉碎材料的基本上静止主体与可流动废料接触的步骤可包括将可流动废料注入到粉碎材料中。注入操作可以通过将废料从封装阻隔物的外部通过管道泵送到封装阻隔物的内部来进行。在一些情况下,管道可以与在烃生产阶段中所使用的用于注入加热流体或者移除烃类产物的管道相同。在其他实施例中,可以采用其他方式来执行将粉碎材料与废料接触的步骤。在将粉碎材料引入到封装阻隔物中之前,可以将废料与粉碎材料混合。无论如何,都可进行引入可流动废料的操作,从而尽量减少超过体积空隙的废料在局部发生汇集或残留的情况。因此,可将可流动废料分配到整个粉碎材料中,以增加均匀性并利用整个粉碎材料主体的储存容量。这可以使用多个分配入口、现有的嵌入式管道,并且/或者在各个位置监测可流动废料来完成。通常,将废料引入到粉碎材料中的操作可以在局部提供超过保留容量的大量废料。因此,一旦达到局部保留容量,多余的可流动废料将流入附近较低区域的粉碎材料中。监控废物液面和/或对总体积容量建模可以用来确定能被引入给定体积的粉碎材料、同时不超过总体积的保留容量的可流动废料的体积。In some embodiments, the step of contacting the substantially stationary body of shredded material with the flowable waste material may include injecting the flowable waste material into the shredded material. The injection operation can be carried out by pumping waste material from the outside of the encapsulation barrier to the inside of the encapsulation barrier through tubing. In some cases, the piping may be the same piping used in the hydrocarbon production stage for injecting heating fluids or removing hydrocarbon products. In other embodiments, the step of contacting the shredded material with the waste material may be performed in other ways. The waste material can be mixed with the shredded material prior to its introduction into the encapsulation barrier. In any event, the introduction of flowable waste can be performed to minimize local pooling or retention of waste that exceeds the volume void. Thus, the flowable waste can be distributed throughout the shredded material to increase uniformity and utilize the storage capacity of the entire body of shredded material. This can be accomplished using multiple distribution inlets, existing embedded piping, and/or monitoring flowable waste at various locations. Often, the introduction of waste material into the shredded material can locally provide a large amount of waste material that exceeds the retention capacity. Therefore, once the local retention capacity is reached, excess flowable waste will flow into the shredded material in the nearby lower region. Monitoring the waste level and/or modeling the total volume capacity can be used to determine the volume of flowable waste that can be introduced into a given volume of comminuted material while not exceeding the retention capacity of the total volume.
该方法还可包括在将粉碎材料与可流动废料接触的步骤之前,执行烃生产阶段来将烃从粉碎材料中提移出。图3示出了示例性方法300,其包括将烃从封装阻隔物内的含烃材料提取出来310,并将粉碎物料的基本上静止主体与可流动废料接触。如上所述,粉碎材料具有高表面积,并且包含已从中得到了烃类产物的经处理的含烃材料颗粒。还通过封装阻隔物将粉碎材料包裹起来320。The method may also include performing a hydrocarbon production stage to remove hydrocarbons from the comminuted material prior to the step of contacting the comminuted material with the flowable waste material. FIG. 3 illustrates an
上述具体实施方式参照具体示例性实施例描述了本发明。然而,应当理解,在不脱离如所附权利要求中所述的本发明的范围的情况下,可进行各种修改和变化。具体实施方式和附图应视为仅仅是示例性的,而非限制性的,并且所有此类修改或更改(如果有的话)旨在落入如本文所述和示出的本发明的范围内。The foregoing detailed description describes the invention with reference to specific exemplary embodiments. However, it should be understood that various modifications and changes may be made without departing from the scope of the present invention as set forth in the appended claims. The detailed description and drawings are to be regarded as illustrative only and not restrictive, and all such modifications or alterations, if any, are intended to fall within the scope of the invention as described and illustrated herein Inside.
Claims (34)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461932582P | 2014-01-28 | 2014-01-28 | |
US61/932,582 | 2014-01-28 | ||
PCT/US2015/012502 WO2015116471A1 (en) | 2014-01-28 | 2015-01-22 | Long term storage of waste using adsorption by high surface area materials |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106061616A CN106061616A (en) | 2016-10-26 |
CN106061616B true CN106061616B (en) | 2020-09-25 |
Family
ID=53678168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580012149.4A Expired - Fee Related CN106061616B (en) | 2014-01-28 | 2015-01-22 | Long term storage of waste by adsorption with high surface area materials |
Country Status (4)
Country | Link |
---|---|
US (1) | US9630225B2 (en) |
CN (1) | CN106061616B (en) |
AU (1) | AU2015211293B2 (en) |
WO (1) | WO2015116471A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110216125B (en) * | 2019-04-29 | 2020-09-29 | 上海力脉环保设备有限公司 | Method for treating industrial waste salt |
CN113335763B (en) * | 2021-07-01 | 2023-10-13 | 裴贵芝 | Polymer film and method for producing polymer film |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3724542A (en) * | 1971-03-01 | 1973-04-03 | Dow Chemical Co | Method of disposal of waste activated sludge |
US4464081A (en) * | 1983-06-29 | 1984-08-07 | Rollins Environmental Services, Inc. | Process and structure for storing and isolating hazardous waste |
US4468154A (en) * | 1979-09-27 | 1984-08-28 | Preussag Aktiengesellschaft Metall | Method of disposal or temporary storage of waste material |
US4532044A (en) * | 1982-08-16 | 1985-07-30 | Union Oil Company Of California | Arsenic removal method |
US5325816A (en) * | 1993-08-18 | 1994-07-05 | Western Aggregates, Inc. | Porous animal litter |
CN2558653Y (en) * | 2002-07-10 | 2003-07-02 | 张世严 | Methane producing storage device |
WO2008028255A1 (en) * | 2006-09-08 | 2008-03-13 | Technological Resources Pty. Limited | Recovery of hydrocarbon products from oil shale |
CN102076736A (en) * | 2008-06-30 | 2011-05-25 | 克雷谷有限公司 | Coating composition for the storage of waste that is toxic to health and/or the environment, which is free from an aromatic amine curing agent |
US20110286796A1 (en) * | 2009-11-20 | 2011-11-24 | Patten James W | Subsidence Control System |
JP5187603B1 (en) * | 2012-04-25 | 2013-04-24 | 豊 土屋 | Plastic compound and waste treatment, storage container and storage method using the same |
DE102011085480A1 (en) * | 2011-10-28 | 2013-05-02 | Volkmar Gräf | CONTAINER SYSTEM FOR THE END STORAGE OF RADIOACTIVE WASTE AND / OR POISONOIL |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL271326A (en) | 1958-12-31 | |||
GB1054740A (en) | 1964-12-29 | |||
US3638590A (en) | 1970-09-18 | 1972-02-01 | William F Roberts | Wastewater treatment system |
US4116705A (en) | 1973-06-01 | 1978-09-26 | Stablex Ag | Detoxification |
US3959172A (en) | 1973-09-26 | 1976-05-25 | The United States Of America As Represented By The United States Energy Research And Development Administration | Process for encapsulating radionuclides |
US3980558A (en) | 1975-07-07 | 1976-09-14 | Browning-Ferris Industries, Inc. | Method of disposing sludges containing soluble toxic materials |
US4129094A (en) * | 1977-03-09 | 1978-12-12 | American Chemical Consulting Corp. | Animal litter composition |
DE3141884C2 (en) | 1981-10-22 | 1986-06-19 | Wintershall Ag, 3100 Celle | Process for the final disposal of pumpable waste materials |
US4608126A (en) * | 1984-03-26 | 1986-08-26 | Amoco Corporation | Retorting system and disposal site |
CA1249714A (en) * | 1984-06-20 | 1989-02-07 | Donald B. Martin | Absorbent material |
US4908129A (en) | 1987-05-27 | 1990-03-13 | Dyckerhoff & Widmann Aktiengesellschaft | Impervious layer formation process and landfill adsorption system |
US5678234A (en) | 1991-05-13 | 1997-10-14 | Associated Universities, Inc. | Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes |
US5366520A (en) * | 1992-07-28 | 1994-11-22 | Eric Tiemeyer | Filtration fuel apparatus and method |
US5302565A (en) | 1992-09-18 | 1994-04-12 | Crowe General D | Ceramic container |
US5645518A (en) | 1995-01-31 | 1997-07-08 | The University Of Chicago | Method for stabilizing low-level mixed wastes at room temperature |
US6004070A (en) | 1996-07-08 | 1999-12-21 | Van Camp; John W. | Waste storage containment cell, method of operating, and apparatus therefore |
US5840638A (en) | 1996-12-23 | 1998-11-24 | Brookhaven Science Associates | Phosphate glasses for radioactive, hazardous and mixed waste immobilization |
US6554888B1 (en) * | 2000-01-12 | 2003-04-29 | The Board Of Trustees Of Southern Illinois University | Stabilization of coal wastes and coal combustion byproducts |
US7402132B2 (en) | 2005-04-29 | 2008-07-22 | Matthews Jack W | Treating hazardous materials |
FR2908675B3 (en) | 2006-11-16 | 2009-01-23 | Stephan Bellanger | PROCESS FOR INDUSTRIAL CONTAINMENT OF SPECIAL WASTE |
JO2601B1 (en) | 2007-02-09 | 2011-11-01 | ريد لييف ريسورسيز ، انك. | Methods Of Recovering Hydrocarbons From Hydrocarbonaceous Material Using A Constructed Infrastructure And Associated Systems |
AP3601A (en) * | 2009-12-03 | 2016-02-24 | Red Leaf Resources Inc | Methods and systems for removing fines from hydrocarbon-containing fluids |
BR112012014889A2 (en) * | 2009-12-16 | 2016-03-22 | Red Leaf Resources Inc | method for vapor removal and condensation |
RU108034U1 (en) | 2011-03-23 | 2011-09-10 | Государственное научное учреждение Всероссийский научно-исследовательский институт пивоваренной, безалкогольной и винодельческой промышленности Российской академии сельскохозяйственных наук | SYSTEM FOR PRODUCING ORGANOMINERAL FERTILIZER |
-
2015
- 2015-01-22 AU AU2015211293A patent/AU2015211293B2/en active Active
- 2015-01-22 US US14/602,998 patent/US9630225B2/en active Active
- 2015-01-22 WO PCT/US2015/012502 patent/WO2015116471A1/en active Application Filing
- 2015-01-22 CN CN201580012149.4A patent/CN106061616B/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3724542A (en) * | 1971-03-01 | 1973-04-03 | Dow Chemical Co | Method of disposal of waste activated sludge |
US4468154A (en) * | 1979-09-27 | 1984-08-28 | Preussag Aktiengesellschaft Metall | Method of disposal or temporary storage of waste material |
US4532044A (en) * | 1982-08-16 | 1985-07-30 | Union Oil Company Of California | Arsenic removal method |
US4464081A (en) * | 1983-06-29 | 1984-08-07 | Rollins Environmental Services, Inc. | Process and structure for storing and isolating hazardous waste |
US5325816A (en) * | 1993-08-18 | 1994-07-05 | Western Aggregates, Inc. | Porous animal litter |
CN2558653Y (en) * | 2002-07-10 | 2003-07-02 | 张世严 | Methane producing storage device |
WO2008028255A1 (en) * | 2006-09-08 | 2008-03-13 | Technological Resources Pty. Limited | Recovery of hydrocarbon products from oil shale |
CN102076736A (en) * | 2008-06-30 | 2011-05-25 | 克雷谷有限公司 | Coating composition for the storage of waste that is toxic to health and/or the environment, which is free from an aromatic amine curing agent |
US20110286796A1 (en) * | 2009-11-20 | 2011-11-24 | Patten James W | Subsidence Control System |
CN102947200A (en) * | 2009-11-20 | 2013-02-27 | 红叶资源公司 | Subsidence control system |
DE102011085480A1 (en) * | 2011-10-28 | 2013-05-02 | Volkmar Gräf | CONTAINER SYSTEM FOR THE END STORAGE OF RADIOACTIVE WASTE AND / OR POISONOIL |
JP5187603B1 (en) * | 2012-04-25 | 2013-04-24 | 豊 土屋 | Plastic compound and waste treatment, storage container and storage method using the same |
Also Published As
Publication number | Publication date |
---|---|
US20150209847A1 (en) | 2015-07-30 |
US9630225B2 (en) | 2017-04-25 |
AU2015211293B2 (en) | 2017-12-21 |
WO2015116471A1 (en) | 2015-08-06 |
CN106061616A (en) | 2016-10-26 |
AU2015211293A1 (en) | 2016-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2911411T3 (en) | Hydrocarbon recovery procedures from hydrocarbon material using built infrastructure and associated systems | |
US8323481B2 (en) | Carbon management and sequestration from encapsulated control infrastructures | |
US8349171B2 (en) | Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure and associated systems maintained under positive pressure | |
CA2784194C (en) | Subsidence control system | |
US8366918B2 (en) | Vapor collection and barrier systems for encapsulated control infrastructures | |
CN106061616B (en) | Long term storage of waste by adsorption with high surface area materials | |
US8366917B2 (en) | Methods of recovering minerals from hydrocarbonaceous material using a constructed infrastructure and associated systems | |
AU2014311324B2 (en) | Gas transport composite barrier | |
CN101646749B (en) | Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure and associated systems | |
OA19819A (en) | Subsidence Control System. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200925 |