CN106058045B - 一种可拉伸有机无机杂化钙钛矿太阳电池结构及制备方法 - Google Patents

一种可拉伸有机无机杂化钙钛矿太阳电池结构及制备方法 Download PDF

Info

Publication number
CN106058045B
CN106058045B CN201610201640.8A CN201610201640A CN106058045B CN 106058045 B CN106058045 B CN 106058045B CN 201610201640 A CN201610201640 A CN 201610201640A CN 106058045 B CN106058045 B CN 106058045B
Authority
CN
China
Prior art keywords
layer
solar cell
preparation
pbi
hybrid inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610201640.8A
Other languages
English (en)
Other versions
CN106058045A (zh
Inventor
丁建宁
袁宁
袁宁一
程广贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Changzhou University
Original Assignee
Jiangsu University
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University, Changzhou University filed Critical Jiangsu University
Priority to CN201610201640.8A priority Critical patent/CN106058045B/zh
Publication of CN106058045A publication Critical patent/CN106058045A/zh
Application granted granted Critical
Publication of CN106058045B publication Critical patent/CN106058045B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/152Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明涉及太阳能电池,特指一种可拉伸有机‑无机杂化钙钛矿太阳电池及制备方法。首先是在拉伸的橡胶衬底上铺有序碳纳米管,然后在其上沉积氧化钛或氧化锌层,随之沉积一层钙钛矿结构CH3NH3PbI3,最后沉积透明导电膜;其中,氧化锌或氧化钛层利用原子层沉积方法制备,该方法可以制备出非常致密的氧化物,并且膜厚可以准确控制;钙钛矿结构的CH3NH3PbI3通过溶液法或共蒸发方法制备;透明导电膜利用旋涂法旋涂银纳米线。利用褶皱结构,实现可拉伸功能,利用原子层沉积方法沉积的氧化钛或氧化锌薄膜完整包覆碳纳米管,降低电子界面复合,提高电子效率,利用银纳米线而非导电氧化物作为透明导电层,可以提高电池的拉伸寿命。

Description

一种可拉伸有机无机杂化钙钛矿太阳电池结构及制备方法
技术领域
本发明涉及太阳能电池,特指一种可拉伸有机-无机杂化钙钛矿太阳电池及制备方法。
背景技术
近年来,作为可再生清洁能源,太阳能发展迅速,而太阳电池是利用太阳能的一种有效方式。由于优异的光吸收特性和载流子传输能力,以及相对简单的制备方法,具有立体三维结构的有机-无机杂化钙钛矿晶体材料在太阳电池中的应用受到越来越多的关注。在这种钙钛矿结构(ABX3)中A一般为甲胺基CH3NH3,CH3NH2NH3+和NH2CH-NH2 +也有报道;B多为金属Pb原子,金属Sn也有少量报道;X为Cl、Br、I等卤素单原子或混合原子。钙钛矿型太阳能电池(perovskite solar cells),是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池。目前在高效钙钛矿型太阳能电池中,最常见的钙钛矿材料是碘化铅甲胺(CH3NH3PbI3),它的带隙约为1.5eV。基于CH3NH3PbI3的太阳电池的最高光电转化效率已超20%。钙钛矿太阳能电池由上到下分别为玻璃、FTO、电子传输层(ETM)、钙钛矿光敏层、空穴传输层(HTM)和金属电极。其中,电子传输层一般为致密的TiO2纳米颗粒,以阻止钙钛矿层的载流子与FTO中的载流子复合。通过调控TiO2的形貌、元素掺杂或使用其它的n型半导体材料如ZnO等手段来改善该层的导电能力,以提高电池的性能。特别地,钙钛矿还可以同时作为吸光和电子传输材料或者同时作为吸光和空穴传输材料。这样,就可以制造不含HTM或ETM的钙钛矿太阳能电池。
另一方面,世界各地越来越多的科学家正在开发可穿戴设备,要让可穿戴设备变得像智能手机、平板一样流行,电池必须更小,续航时间必须更长,而且它还必须更轻薄更有弹性。虽然以前的研究已经创造了可弯曲的电池,但是事实证明人们又发现了更具挑战性的新任务,制造可拉伸太阳电池。有报道在橡胶上利用碳管和高分子材料制备可拉伸太阳电池,但其拉伸范围非常有限。本发明是利用褶皱结构实现大拉伸。利用银纳米线改善碳管的导电性,利用低温原子层沉积技术在碳电极上制备致密氧化钛纳米薄膜。利用溶液法制备有机-无机杂化钙钛矿薄膜,最后利用蒸发方法制备金电极。实现大范围可拉伸有机-无机杂化钙钛矿电池的制备。
发明内容
本发明提出一种新的可拉伸电池结构和制备方法,首先是在拉伸的橡胶衬底上铺有序碳纳米管,然后在其上沉积氧化钛或氧化锌层,随之沉积一层有机-无机杂化钙钛矿结构CH3NH3PbI3,最后沉积透明导电膜;其中,氧化锌(ZnO)或氧化钛(TiO2)层利用原子层沉积(ALD)方法制备,该方法可以制备出非常致密的氧化物,并且膜厚可以准确控制;钙钛矿结构的CH3NH3PbI3可以通过溶液法或共蒸发方法制备;透明导电膜利用旋涂法旋涂银纳米线。
电池的特点在于利用褶皱结构,实现可拉伸功能。利用原子层沉积方法沉积的氧化钛或氧化锌薄膜完整包覆碳纳米管,降低电子界面复合,提高电子效率。利用银纳米线而非导电氧化物作为透明导电层,可以提高电池的拉伸寿命。
一种可拉伸有机-无机杂化钙钛矿太阳电池,所述太阳能电池从下至上依次为橡胶衬底,碳纳米管,n型层、有机-无机杂化钙钛矿结构的CH3NH3PbI3层、透明电极,其特征在于;在橡胶衬底上形成褶皱结构。
碳纳米管沿橡胶衬底的拉伸方向位于橡胶衬底上的褶皱结构中。
所述橡胶衬底包括氢化苯乙烯-丁二烯嵌段共聚物SEBS膜和聚二氧基硅氧烷PDMS膜。
所述的碳纳米管为有序结构碳纳米管,碳管所铺层数50-200层。
所述的n型层为氧化钛或氧化锌层,层厚为5-15nm。
所述的钙钛矿结构的CH3NH3PbI3层的层厚为300-500nm。
所述透明电极为银纳米线,方块电阻是10-20Ω,透过率为80-90%。
一种可拉伸钙钛矿结构太阳能电池的制备方法,包括在预拉伸橡胶衬底上沿拉伸方向铺50-200层有序排列的碳纳米管的步骤,再在碳纳米管上沉积n型层的步骤,然后再在n型层上沉积一层杂化钙钛矿结构CH3NH3PbI3的步骤,最后在杂化钙钛矿结构CH3NH3PbI3层上沉积透明导电层的步骤。
所述橡胶衬底拉伸后的长度为未拉伸橡胶衬底的150-400%。
所述的氧化锌或氧化钛层利用原子层沉积方法制备,该方法可以制备出非常致密的氧化物,并且膜厚可以准确控制。
所述的钙钛矿结构的CH3NH3PbI3层通过溶液法或共蒸发方法制备。
所述的透明导电膜银纳米线通过溶液旋涂方法制备。
实现本发明的技术方案为:
选择可拉伸的橡胶作为衬底材料。
1、将有序碳纳米管铺在预拉伸的橡胶上,所铺碳管方向和橡胶拉伸方向一致。碳管所铺层数50-200层。
2、利用ALD方法在碳纳米管上沉积5-15nm厚的ZnO或TiO2层。
3、利用溶液方法沉积300-500nm厚的CH3NH3PbI3层。
4、利用溶液方法旋涂银纳米线,方块电阻是10-20Ω,透过率为80-90%。
具体实施方式
实施例1
1、选择苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)橡胶膜为衬底材料。
2、在拉伸200%的橡胶衬底上铺60层碳纳米管,碳管的有序方向和拉伸方向保持一致。
3、利用ALD技术生长10nm厚的ZnO层
沉积条件:反应温度200℃,在反应腔室通入Zn(CH2CH3)2(DEZ)1s,氮气清洗1.5s,通水500ms,氮气清洗1s,重复上述过程100次。
4、CH3NH3PbI3钙钛矿层的制备
(1)CH3NH3I异丙醇溶液配制
将盛有20ml甲胺的圆底烧瓶放置在0℃的冰水中,将22ml氢碘酸边滴加边搅拌进烧瓶中,滴加完成后继续冰水浴中搅拌2h,形成无色透明的CH3NH3I溶液;溶液用旋转蒸发器烘干,然后用乙醚洗涤干净,得到白色的CH3NH3I晶体,将定量的CH3NH3I晶体溶在异丙醇中,溶液浓度为10mg/ml。
(2)PbI2溶液的配备
将适量的淡黄色PbI2粉末在冰水浴中加到DMF(N.N-二甲基甲酰胺)中,然后加热到70℃将PbI2粉末溶解,得到淡黄色PbI2溶液,溶液浓度为1mol/L.
(3)PbI2膜的制备
在手套箱中,将淡黄色PbI2溶液旋涂到ZnO致密层上,70℃下烘10min,得到亮黄色的PbI2层。
(4)完成CH3NH3PbI3钙钛矿层的制备
然后将已经旋涂好的基底浸入到CH3NH3I溶液中20s,基底颜色迅速的从亮黄色变为棕黑色,取出后放到干净的异丙醇中,洗去多余的CH3NH3I,最后放置在70℃中烘10min,得到厚度为400nm的CH3NH3PbI3钙钛矿层。
5、利用旋涂方法在CH3NH3PbI3钙钛矿层上旋涂一层10nm厚的银纳米线层。实施效果:最后进行电池的性能测试,在AM1.5,100mW/cm2标准光强的照射下,橡胶衬底松弛情况下,太阳电池样品的开路电压0.98V,短路电流9.7mA,填充因子0.55,效率为5.23%;当橡胶拉伸到原长的200%时,电池效率为5.02%。
实施例2
1、选择苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)橡胶膜为衬底材料。
2、在拉伸300%的橡胶衬底上铺60层碳纳米管,碳管的有序方向和拉伸方向保持一致。
3、利用ALD技术生长10nm厚的TiO2
水和四异丙醇钛作为源,在基底上生长10nm厚的致密的TiO2层;生长工艺为:钛源加热温度70℃,腔室反应温度270℃。通钛源1s,氮气吹扫5s,通水汽200ms,氮气吹扫2s,完成一个循环,共需160循环。
4、共蒸发制备CH3NH3PbI3钙钛矿层
将10mg CH3NH3I晶体和10mgPbI粉末分别放入两个钨舟中,给两个钨舟同时加热,本底真空1×10-4Pa,加热电极电流是25A,在TiO2层上沉积500nm厚的CH3NH3PbI3钙钛矿层;衬底加热温度80℃,沉积时间10min。
5、与实施例1中步骤4相同。
实施效果:最后进行电池的性能测试,在AM1.5,100mW/cm2标准光强的照射下,橡胶衬底松弛情况下,太阳电池样品的开路电压0.95V,短路电流11.5mA,填充因子0.68,效率为7.53%,当橡胶拉伸到原长的200%时,电池效率为7.12%。

Claims (9)

1.一种可拉伸有机-无机杂化钙钛矿太阳电池,所述太阳能电池从下至上依次为可拉伸的橡胶衬底,碳纳米管,n型层、有机-无机杂化钙钛矿结构的CH3NH3PbI3层、透明电极,其特征在于:在橡胶衬底上形成褶皱结构;碳纳米管沿橡胶衬底的拉伸方向位于橡胶衬底上的褶皱结构中;利用原子层沉积方法沉积的n型层氧化钛或氧化锌薄膜完整包覆碳纳米管,利用银纳米线作为透明导电层。
2.如权利要求1所述的一种可拉伸有机-无机杂化钙钛矿太阳电池,其特征在于:所述橡胶衬底包括氢化苯乙烯-丁二烯嵌段共聚物SEBS膜和聚二氧基硅氧烷PDMS膜。
3.如权利要求1所述的一种可拉伸有机-无机杂化钙钛矿太阳电池,其特征在于:所述的碳纳米管为有序结构碳纳米管,碳管所铺层数50-200层。
4.如权利要求1所述的一种可拉伸有机-无机杂化钙钛矿太阳电池,其特征在于:所述的n型层层厚为5-15nm;所述的钙钛矿结构的CH3NH3PbI3层的层厚为300-500nm;所述银纳米线,方块电阻是10-20Ω,透过率为80-90%。
5.如权利要求1所述的一种可拉伸有机-无机杂化钙钛矿太阳电池的制备方法,其特征在于具体步骤如下:在预拉伸橡胶衬底上沿拉伸方向铺50-200层有序排列的碳纳米管,再在碳纳米管上沉积n型层,然后再在n型层上沉积一层杂化钙钛矿结构CH3NH3PbI3,最后在杂化钙钛矿结构CH3NH3PbI3层上沉积透明电极。
6.如权利要求5所述的一种可拉伸有机-无机杂化钙钛矿太阳电池的制备方法,其特征在于:所述橡胶衬底拉伸后的长度为未拉伸橡胶衬底的150-400%。
7.如权利要求5所述的一种可拉伸有机-无机杂化钙钛矿太阳电池的制备方法,其特征在于:所述的n型层利用原子层沉积方法制备,该方法可以制备出非常致密的氧化物,并且膜厚可以准确控制。
8.如权利要求5所述的一种可拉伸有机-无机杂化钙钛矿太阳电池的制备方法,其特征在于:所述的钙钛矿结构的CH3NH3PbI3层通过溶液法或共蒸发方法制备。
9.如权利要求5所述的一种可拉伸有机-无机杂化钙钛矿太阳电池的制备方法,其特征在于:所述的透明电极通过溶液旋涂方法制备。
CN201610201640.8A 2016-04-01 2016-04-01 一种可拉伸有机无机杂化钙钛矿太阳电池结构及制备方法 Active CN106058045B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610201640.8A CN106058045B (zh) 2016-04-01 2016-04-01 一种可拉伸有机无机杂化钙钛矿太阳电池结构及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610201640.8A CN106058045B (zh) 2016-04-01 2016-04-01 一种可拉伸有机无机杂化钙钛矿太阳电池结构及制备方法

Publications (2)

Publication Number Publication Date
CN106058045A CN106058045A (zh) 2016-10-26
CN106058045B true CN106058045B (zh) 2018-12-04

Family

ID=57484275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610201640.8A Active CN106058045B (zh) 2016-04-01 2016-04-01 一种可拉伸有机无机杂化钙钛矿太阳电池结构及制备方法

Country Status (1)

Country Link
CN (1) CN106058045B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950400A (zh) * 2019-03-14 2019-06-28 武汉华星光电技术有限公司 柔性光电探测器和柔性光电探测器制备方法
CN110943168A (zh) * 2019-12-13 2020-03-31 福州大学 一种基于有机薄膜晶体管的可拉伸突触及其制备方法
CN115881841B (zh) * 2022-11-29 2024-05-07 中国科学院宁波材料技术与工程研究所 硫化铅量子点太阳能电池结构及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219467A (zh) * 2013-03-27 2013-07-24 北京大学 起皱结构的柔性聚合物太阳能电池及其制备方法
CN103700768A (zh) * 2013-12-03 2014-04-02 常州大学 一种钙钛矿结构太阳能电池及其制备方法
CN103871548A (zh) * 2014-02-28 2014-06-18 南京邮电大学 一种柔性透明薄膜电极及其制作方法
CN104700945A (zh) * 2015-02-10 2015-06-10 江南石墨烯研究院 一种柔性、可拉伸扭曲的起搏器电极线
CN105047822A (zh) * 2015-06-12 2015-11-11 苏州捷迪纳米科技有限公司 一种柔性纤维状钙钛矿太阳能电池及其制备方法
CN105226192A (zh) * 2015-10-11 2016-01-06 复旦大学 一种可拉伸的线状钙钛矿太阳能电池及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027764A (ja) * 2008-07-17 2010-02-04 Asahi Kasei Chemicals Corp 有機薄膜太陽電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219467A (zh) * 2013-03-27 2013-07-24 北京大学 起皱结构的柔性聚合物太阳能电池及其制备方法
CN103700768A (zh) * 2013-12-03 2014-04-02 常州大学 一种钙钛矿结构太阳能电池及其制备方法
CN103871548A (zh) * 2014-02-28 2014-06-18 南京邮电大学 一种柔性透明薄膜电极及其制作方法
CN104700945A (zh) * 2015-02-10 2015-06-10 江南石墨烯研究院 一种柔性、可拉伸扭曲的起搏器电极线
CN105047822A (zh) * 2015-06-12 2015-11-11 苏州捷迪纳米科技有限公司 一种柔性纤维状钙钛矿太阳能电池及其制备方法
CN105226192A (zh) * 2015-10-11 2016-01-06 复旦大学 一种可拉伸的线状钙钛矿太阳能电池及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Elastic perovskite solar cells;Jue Deng等;《Journal of Materials Chemistry A》;20150910;第3卷(第42期);全文 *
Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles;Z. F. Liu等;《Science》;20150724;第349卷(第6246期);第400页第3栏第3段至第404页第2栏第2段,图1-3 *
Stretchable, Curvilinear Electronics Based on Inorganic Materials;Dae-Hyeong Kim等;《Advanced Materials》;20100125;第22卷(第19期);全文 *

Also Published As

Publication number Publication date
CN106058045A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
Zhong et al. Improving the performance of CdS/P3HT hybrid inverted solar cells by interfacial modification
Kaur et al. Recent advances in the photovoltaic applications of coordination polymers and metal organic frameworks
CN103700768B (zh) 一种钙钛矿结构太阳能电池及其制备方法
Mahalingam et al. Electron transport study of indium oxide as photoanode in DSSCs: A review
JP6262739B2 (ja) 光吸収構造体が備えられた太陽電池
Babu et al. Effective nanostructred morphologies for efficient hybrid solar cells
Chava et al. Ag2S quantum dot sensitized zinc oxide photoanodes for environment friendly photovoltaic devices
Kang et al. Transfer of ultrathin molybdenum disulfide and transparent nanomesh electrode onto silicon for efficient heterojunction solar cells
CN106058045B (zh) 一种可拉伸有机无机杂化钙钛矿太阳电池结构及制备方法
CN107369766A (zh) 一种高质量金属氧化物电子传输层的钙钛矿太阳电池及其制备方法
Makhlouf et al. Study of Cu2O\ZnO nanowires heterojunction designed by combining electrodeposition and atomic layer deposition
CN102544378A (zh) 一种基于ZnO同质核壳结构纳米棒阵列的有机/无机杂化太阳电池及其制备方法
Peng et al. Efficiency enhancement of TiO2 nanodendrite array electrodes in CuInS2 quantum dot sensitized solar cells
Ramachandran et al. Electrodeposition of nanostructured bilayer CuI@ CuSCN as hole transport material for highly efficient inverted perovskite solar cells
Zhang et al. TiO2 nanorod arrays/ZnO nanosheets heterostructured photoanode for quantum-dot-sensitized solar cells
Li et al. Flexible quantum dot-sensitized solar cells with improved efficiencies based on woven titanium wires
Shen et al. Interfacial Engineering for Quantum‐Dot‐Sensitized Solar Cells
Kasaudhan et al. Incorporation of ${\rm TiO} _ {2} $ Nanoparticles Into ${\rm SnO} _ {2} $ Nanofibers for Higher Efficiency Dye-Sensitized Solar Cells
CN104821374B (zh) 基于共轭聚电解质的有机光电器件阴极界面层的制备方法及应用
Biçer et al. Fabrication and photoanode performance of ZnO nanoflowers in ZnO-based dye-sensitized solar cells
KR101694803B1 (ko) 금속 나노선을 광전극으로 포함하는 페로브스카이트 태양전지 및 이의 제조방법
Monika et al. TiO2/CdS/CdSe quantum dots co-sensitized solar cell with the staggered-gap (type-II) heterojunctions for the enhanced photovoltaic performance
Li et al. Balancing surface area with electron recombination in nanowire-based dye-sensitized solar cells
Lv et al. Two-step liquid phase synthesis of ZnO@ CuO core–shell heterojunction nanorods arrays composites photodetectors with the enhanced UV photoelectric performances
Luo et al. Epitaxial Electrodeposition of Hole Transport CuSCN Nanorods on Au (111) at the Wafer Scale and Lift-off to Produce Flexible and Transparent Foils

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant