CN106055425A - Method for cloud disaster recovery data backup based on game theory - Google Patents

Method for cloud disaster recovery data backup based on game theory Download PDF

Info

Publication number
CN106055425A
CN106055425A CN201610340271.0A CN201610340271A CN106055425A CN 106055425 A CN106055425 A CN 106055425A CN 201610340271 A CN201610340271 A CN 201610340271A CN 106055425 A CN106055425 A CN 106055425A
Authority
CN
China
Prior art keywords
formula
cloud provider
dcp
destination
provider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610340271.0A
Other languages
Chinese (zh)
Other versions
CN106055425B (en
Inventor
李锦青
底晓强
祁晖
任维武
刘旭
赵建平
宋小龙
管红梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN201610340271.0A priority Critical patent/CN106055425B/en
Publication of CN106055425A publication Critical patent/CN106055425A/en
Application granted granted Critical
Publication of CN106055425B publication Critical patent/CN106055425B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1446Point-in-time backing up or restoration of persistent data
    • G06F11/1448Management of the data involved in backup or backup restore
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1446Point-in-time backing up or restoration of persistent data
    • G06F11/1458Management of the backup or restore process
    • G06F11/1464Management of the backup or restore process for networked environments

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

基于博弈论的云容灾数据备份方法,涉及数据备份容灾技术领域,解决现有数据备份方法存在资源花费较大且存储成本高,同时忽略了源端云提供商的行为对目的端云提供商的影响的问题,本发明所述的基于博弈论的云容灾环境下最优数据备份方法,将源端云提供商和目的端云提供商之间的交互过程模拟为一个存储资源定价模型,并将目的端云提供商备份节点之间的存储资源租赁过程建模成一个寻求最大收益的博弈过程。本发明同时给出了存储资源数量及存储资源价格最优解定量计算的方法,使得博弈双方,即源端云提供商与目的端云提供商利益同时达到最大化。

The cloud disaster recovery data backup method based on game theory involves the field of data backup and disaster recovery technology, and solves the problems of large resource consumption and high storage cost in existing data backup methods, while ignoring the impact of the source cloud provider's behavior on the destination cloud provider. The problem of the influence of suppliers, the optimal data backup method in the cloud disaster recovery environment based on game theory described in the present invention simulates the interaction process between the source cloud provider and the destination cloud provider as a storage resource pricing model , and model the storage resource leasing process among the backup nodes of the destination cloud provider as a game process seeking the maximum benefit. The present invention also provides a quantitative calculation method for the quantity of storage resources and the optimal solution of storage resource prices, so that the interests of both sides of the game, that is, the source-end cloud provider and the destination-end cloud provider, can be maximized at the same time.

Description

基于博弈论的云容灾数据备份方法Cloud disaster recovery data backup method based on game theory

技术领域technical field

本发明涉及数据备份容灾技术领域,具体涉及一种基于博弈论的云环境下的最优数据备份方法。The invention relates to the technical field of data backup and disaster recovery, in particular to an optimal data backup method in a cloud environment based on game theory.

背景技术Background technique

随着信息技术的发展,数据的价值不断增加,人们对于网络数据的依赖逐渐增强,尤其是金融或官方数据,即使是小部分的数据损失或者短时间的宕机都可能会对人民群众生命财产造成极大的危害。因此,数据容灾技术受到了广泛的研究和关注。人们通常会在不同的地理位置备份数据副本以达到数据可靠性要求。但是,传统的数据存储部署方法资源花费巨大。而云存储的低成本、按需购买和动态性使其逐步成为数据备份的最佳选择。With the development of information technology, the value of data continues to increase, and people's dependence on network data is gradually increasing, especially financial or official data. Even a small part of data loss or short-term downtime may affect the lives and property of the people. cause great harm. Therefore, data disaster recovery technology has received extensive research and attention. People usually back up data copies in different geographical locations to meet data reliability requirements. However, traditional data storage deployment methods are resource-intensive. The low cost, on-demand purchase and dynamic nature of cloud storage make it gradually become the best choice for data backup.

近年来,云存储已经以一种按需购买的定价模型被广泛应用在数据容灾中。在当前的数据备份方法中,多侧重于关注目的节点的参数,如存储花销和数据恢复时间等,并对存储容量,最小带宽和副本数量进行了严格的限制,而忽略了源端云提供商的行为对目的端云提供商的影响。In recent years, cloud storage has been widely used in data disaster recovery with a pay-as-you-go pricing model. In the current data backup method, most of them focus on the parameters of the destination node, such as storage cost and data recovery time, etc., and impose strict restrictions on storage capacity, minimum bandwidth and number of copies, while ignoring the data provided by the source cloud. The impact of the provider's behavior on the destination cloud provider.

博弈论是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题,具有斗争或竞争性质现象的数学理论和方法。博弈论考虑博弈中个体的预测行为和实际行为,并研究它们的优化策略。在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。Game theory is a mathematical theory and method that studies the decision-making when the behavior of the decision-making subject interacts directly and the equilibrium problem of this decision-making, which has the nature of struggle or competition. Game theory considers the predicted and actual behavior of individuals in games and studies their optimization strategies. It has broad applications in biology, economics, international relations, computer science, political science, military strategy, and many other disciplines.

发明内容Contents of the invention

本发明为解决现有数据备份方法存在资源花费较大且存储成本高,同时忽略了源端云提供商的行为对目的端云提供商的影响的问题,提供一种基于博弈论的云容灾数据备份方法。The present invention provides a cloud disaster recovery based on game theory to solve the problem that the existing data backup method has relatively large resource consumption and high storage cost, and at the same time ignores the influence of the behavior of the source-end cloud provider on the target-end cloud provider. Data backup method.

基于博弈论的云容灾数据备份方法,该方法由以下步骤实现:A cloud disaster recovery data backup method based on game theory, which is implemented by the following steps:

步骤一、用户将数据分别备份至i个源端云提供商SCPi上,所述源端云提供商SCP将自身存储的用户数据备份至目的端云服务提供商DCP上,所述目的端云服务提供商DCP包含j个存储价格变化的目的存储节点D_nodej;i为源端云提供商的数目,j为目的端云提供商的存储节点的数目;Step 1. The user backs up the data respectively to i source cloud provider SCPi, and the source cloud provider SCPi backs up the user data stored by itself to the destination cloud service provider DCP, and the destination cloud service Provider DCP includes j destination storage nodes D_nodej that store price changes; i is the number of source cloud providers, and j is the number of storage nodes of destination cloud providers;

步骤二、计算源端云提供商SCP的效用函数Uscpi和目的端云提供商DCP的效用函数Udcp;具体用下述公式表示为:Step 2, calculating the utility function U scpi of the source cloud provider SCP and the utility function U dcp of the destination cloud provider DCP; specifically expressed as:

公式一、 formula one,

式中,Uscpi表示第i个源端云提供商SCPi的效用函数,Bij为SCPi在目的端云提供商DCP的第j个目的存储节点D_nodej上存储资源后所获取的利益,所述Bij用公式二表示为:In the formula, U scpi represents the utility function of the i-th source cloud provider SCPi, B ij is the benefit obtained by SCPi after storing resources on the j-th destination storage node D_nodej of the destination cloud provider DCP, and the B ij is expressed by formula 2 as:

公式二、 Formula two,

式中,bi为正参数,用于区分每个源端云提供商,tj为大于1的正参数,用于区分目的端云提供商的不同目的存储节点;xij为源端云提供商的策略;Cij为第i个源端云提供商SCPi从目的端云提供商DCP的第j个目的存储节点D_nodej上租用存储资源所花费的成本,用公式三表示为:In the formula, b i is a positive parameter used to distinguish each source cloud provider, t j is a positive parameter greater than 1, used to distinguish different destination storage nodes of the destination cloud provider; x ij is the source cloud provider C ij is the cost spent by the i-th source cloud provider SCPi for renting storage resources from the j-th destination storage node D_nodej of the destination cloud provider DCP, expressed as:

公式三、Cij=pj·xij Formula 3, C ij = p j · x ij

式中,pj为目的端云提供商存储节点的策略,即:目的端云提供商DCP的j个目的存储节点D_nodej上的存储资源的单位价格;In the formula, p j is the strategy of the storage node of the destination cloud provider, namely: the unit price of storage resources on j destination storage nodes D_nodej of the destination cloud provider DCP;

所述Nij为网络负载均衡,用公式四表示为:Said N ij is network load balancing, expressed as:

公式四、 Formula four,

式中,Lj表示目的端云提供商DCP的第j个目的存储节点D_nodej上的最大负载均衡;In the formula, L j represents the maximum load balance on the jth destination storage node D_nodej of the destination cloud provider DCP;

将公式二、公式三、公式四代入公式一,获得公式五:Substitute Formula 2, Formula 3, and Formula 4 into Formula 1 to obtain Formula 5:

公式五、 Formula five,

式中,m为大于j的正整数,n为大于i的正整数;In the formula, m is a positive integer greater than j, and n is a positive integer greater than i;

所述目的端云提供商DCP的效用函数用公式六表示为:The utility function of the destination cloud provider DCP is expressed as:

公式六、 Formula six,

式中,Udcp为所选中的目的端云提供商DCP的效用函数,Bj'为目的端云提供商DCP的第j个目的存储节点D_nodej将存储资源出租给源端云提供商所获取的收益,用公式七表示:In the formula, U dcp is the utility function of the selected destination cloud provider DCP, B j ' is the storage resource obtained by the jth destination storage node D_nodej of the destination cloud provider DCP leasing the storage resource to the source cloud provider Income, expressed by Formula 7:

公式七、 Formula seven,

所述Cj'为目的端云提供商DCP的第j个目的存储节点D_nodej的消耗成本,用公式八表示为:The C j ' is the consumption cost of the jth destination storage node D_nodej of the destination cloud provider DCP, expressed as:

公式八、 Formula eight,

式中,pj'表示目的端云提供商DCP的第j个目的存储节点D_nodej上的存储资源单位消耗成本,所述pj'<pjIn the formula, p j ' represents the unit consumption cost of storage resources on the jth destination storage node D_nodej of the destination cloud provider DCP, where p j '<p j ;

将公式七,公式八代入公式六,获得公式九:Substitute Formula 7 and Formula 8 into Formula 6 to obtain Formula 9:

公式九、 formula nine,

采用公式五与公式九计算获得所述源端云提供商SCP的效用函数Uscpi初始值及所述目的端云提供商DCP的效用函数Udcp初始值;Using formula 5 and formula 9 to calculate the initial value of the utility function U scpi of the SCP of the source cloud provider and the initial value of the utility function U dcp of the destination cloud provider DCP;

步骤三、采用迭代算法实现纳什均衡;Step 3, using an iterative algorithm to achieve Nash equilibrium;

具体为:采用迭代算法计算源端云提供商的策略xij;用公式十表示为:Specifically: use iterative algorithm to calculate the policy x ij of the source-end cloud provider; use formula ten to express as:

公式十、 formula ten,

式中,xij1)为第τ1次迭代后第i个源端云提供商SCPi计划存储于目的端云提供商DCP的第j个目的存储节点D_nodej的资源数量,τ1表示源端云提供商的迭代次数,xij1+1)表示xij1)的下一次迭代结果;δ为第i个源端云提供商SCPi进行资源数量迭代时的步长因子;In the formula, x ij1 ) is the number of resources that the i-th source cloud provider SCPi plans to store in the j-th destination storage node D_nodej of the destination cloud provider DCP after the τ 1 iteration, and τ 1 represents the resources provided by the source cloud The number of iterations of the quotient, x ij1 +1) represents the next iteration result of x ij1 ); δ is the step factor when the i-th source cloud provider SCPi performs resource quantity iteration;

步骤四、源端云提供商SCP修正自身存储资源数量,目的端云提供商DCP的j个存储节点D_nodej则根据i个源端云提供商SCPi存储资源数量的变化不断地调整存储资源的单位价格pj,调整方法用公式十一表示为:Step 4: The source cloud provider SCPi corrects the quantity of its own storage resources, and the j storage nodes D_nodej of the destination cloud provider DCP continuously adjust the unit price of storage resources according to the changes in the quantity of i source cloud provider SCPi storage resources p j , the adjustment method is expressed by Formula 11 as:

公式十一、 formula eleven,

式中,τ2为源端云提供商的迭代次数,pj2)为第τ2次迭代后目的端云提供商DCP的第j个存储节点D_nodej的存储资源单位价格,pj2+1)表示pj2)的下一次迭代结果;θ为目的端云提供商DSP的第j个存储节点D_nodej进行资源存储单位价格迭代时的步长因子;In the formula, τ 2 is the number of iterations of the source cloud provider, p j2 ) is the storage resource unit price of the jth storage node D_nodej of the destination cloud provider DCP after the τ 2 iteration, p j2 + 1) Indicates the next iteration result of p j2 ); θ is the step size factor when the jth storage node D_nodej of the destination cloud provider DSP performs resource storage unit price iteration;

步骤五、根据步骤三获得的源端云提供商的策略xij和步骤四获得的目的端云提供商存储节点的策略pj,采用公式九计算目的端云提供商DCP的效用函数Udcp的新的迭代结果,并判断Udcp是否为最大值,如果否,则返回步骤四;如果是,执行步骤六;Step 5. According to the policy x ij of the source cloud provider obtained in step 3 and the policy p j of the storage node of the destination cloud provider obtained in step 4, use formula 9 to calculate the utility function U dcp of the destination cloud provider DCP New iterative result, and judge whether U dcp is the maximum value, if not, then return to step four; if yes, perform step six;

步骤六、根据公式五计算第i个源端云提供商SCPi的效用函数Uscpi,并判断Uscpi是否为最大值,如果否,则返回执行步骤三,如果是,源端云提供商SCP与目的端云提供商DCP达到纳什均衡,获得最优xij和pj值,实现最终的纳什均衡。Step 6. Calculate the utility function U scpi of the i-th source cloud provider SCPi according to formula 5, and judge whether U scpi is the maximum value. If not, return to step 3. If yes, the source cloud provider SCPi and The destination cloud provider DCP reaches the Nash equilibrium, obtains the optimal xij and pj values, and realizes the final Nash equilibrium.

本发明的有益效果:本发明所述的基于博弈论的云容灾环境下最优数据备份方法,将源端云提供商和目的端云提供商之间的交互过程模拟为一个存储资源定价模型,并将目的端云提供商备份节点之间的存储资源租赁过程建模成一个寻求最大收益的博弈过程。本发明同时给出了存储资源数量及存储资源价格最优解定量计算的方法,使得博弈双方,即源端云提供商与目的端云提供商利益同时达到最大。Beneficial effects of the present invention: the optimal data backup method in the cloud disaster recovery environment based on game theory in the present invention simulates the interaction process between the source cloud provider and the destination cloud provider as a storage resource pricing model , and model the storage resource leasing process among the backup nodes of the destination cloud provider as a game process seeking the maximum benefit. The present invention also provides a quantitative calculation method for the quantity of storage resources and the optimal solution of storage resource prices, so that the interests of both sides of the game, that is, the source-end cloud provider and the destination-end cloud provider, can be maximized at the same time.

附图说明Description of drawings

图1为本发明所述的基于博弈论的云容灾数据备份方法的原理框图;Fig. 1 is the functional block diagram of the cloud disaster recovery data backup method based on game theory of the present invention;

图2为本发明所述的基于博弈论的云容灾数据备份方法的流程图;Fig. 2 is the flow chart of the cloud disaster recovery data backup method based on game theory of the present invention;

图3为本发明所述的基于博弈论的云容灾数据备份方法中目的端云提供商的三个存储节点存储资源数量变化示意图;Fig. 3 is a schematic diagram of changes in the quantity of storage resources of three storage nodes of the destination cloud provider in the game theory-based cloud disaster recovery data backup method of the present invention;

图4为本发明所述的基于博弈论的云容灾数据备份方法中目的端云提供商的三个存储节点存储资源价格变化示意图;Fig. 4 is a schematic diagram of changes in storage resource prices of three storage nodes of the destination cloud provider in the game theory-based cloud disaster recovery data backup method of the present invention;

图5为本发明所述的基于博弈论的云容灾数据备份方法中五个源端云提供商分别存储于目的端云提供商的三个存储节点的资源数量分布示意图;Fig. 5 is a schematic diagram of the resource quantity distribution of five source-end cloud providers respectively stored in three storage nodes of the destination-end cloud provider in the game theory-based cloud disaster recovery data backup method of the present invention;

图6为本发明所述的基于博弈论的云容灾数据备份方法中五个源端云提供商效用函数变化趋势示意图;Fig. 6 is a schematic diagram of the change trend of utility functions of five source cloud providers in the game theory-based cloud disaster recovery data backup method of the present invention;

图7为本发明所述的基于博弈论的云容灾数据备份方法中源端云提供商SCP1的效用函数变化趋势示意图;Fig. 7 is a schematic diagram of the change trend of the utility function of the source cloud provider SCP1 in the game theory-based cloud disaster recovery data backup method of the present invention;

图8为本发明所述的基于博弈论的云容灾数据备份方法中目的端云提供商三个存储节点效用函数变化趋势示意图;Fig. 8 is a schematic diagram of the change trend of the utility functions of the three storage nodes of the destination cloud provider in the game theory-based cloud disaster recovery data backup method of the present invention;

图9为本发明所述的基于博弈论的云容灾数据备份方法中目的端云提供商三个存储节点总效用函数变化趋势示意图。FIG. 9 is a schematic diagram of the change trend of the total utility function of the three storage nodes of the destination cloud provider in the game theory-based cloud disaster recovery data backup method of the present invention.

具体实施方式detailed description

具体实施方式一、结合图1和图2说明本实施方式,基于博弈论的云容灾数据备份方法,该方法由以下步骤实现:Specific embodiments one, illustrate this embodiment in conjunction with Fig. 1 and Fig. 2, the cloud disaster recovery data backup method based on game theory, this method is realized by the following steps:

A、用户将数据分别备份至不同的源端云提供商SCPi上,i=1,2,...n,n表示可用的源端云提供商数量;出于数据的安全性与完整性需求以及对经济因素的考虑,源端云提供商SCP需将自身存有的用户数据备份至另一个云服务提供商,即目的端云提供商DCP。目的端云提供商DCP包含多个存储价格可变的目的存储节点D_nodej(j=1,2,...,m,m表示目的端云提供商DCP所包含的可用存储节点数量)。目的存储节点D_nodej根据源端云提供商SCP所需备份的数据量的大小动态调整存储价格,不断调整备份数据的资源价格和资源数量使双方利益最大化。A. The user backs up the data to different source cloud providers SCPi, i=1,2,...n, n represents the number of available source cloud providers; for data security and integrity requirements And considering economic factors, the source-end cloud provider SCP needs to back up its own user data to another cloud service provider, that is, the destination-end cloud provider DCP. The destination cloud provider DCP includes multiple destination storage nodes D_nodej with variable storage prices (j=1, 2, . . . , m, where m represents the number of available storage nodes included in the destination cloud provider DCP). The destination storage node D_nodej dynamically adjusts the storage price according to the amount of data backed up by the source cloud provider SCP, and continuously adjusts the resource price and resource quantity of the backup data to maximize the benefits of both parties.

B、将源端云提供商SCP与目的端云提供商DCP的目的存储节点D_nodej之间的动态交互过程建模为存储资源定价模型,具体过程如下:B. Model the dynamic interaction process between the source cloud provider SCP and the destination storage node D_nodej of the destination cloud provider DCP as a storage resource pricing model. The specific process is as follows:

源端云提供商SCP在目的端云提供商DCP的目的存储节点D_nodej上租用存储资源时,希望获取一个最大的利益:包括比D_nodej当前出价低的单位存储价格,和更高的网络负载均衡。When the source cloud provider SCP rents storage resources on the destination storage node D_nodej of the destination cloud provider DCP, it hopes to obtain a maximum benefit: including a lower unit storage price than D_nodej's current bid, and higher network load balancing.

计算所述源端云提供商SCP的效用函数用公式一表示为:The utility function for calculating the SCP of the source cloud provider is expressed as:

公式一、 formula one,

式中Uscpi表示第i个源端云提供商SCPi的效用函数。Bij表示SCPi希望在目的端云提供商DCP的第j个目的存储节点D_nodej上存储资源后所获取的利益,即SCPi完成数据备份后用户所付的费用,用公式二表示为:where U scpi represents the utility function of the i-th source cloud provider SCPi. B ij represents the benefit that SCPi hopes to obtain after storing resources on the jth destination storage node D_nodej of the destination cloud provider DCP, that is, the fee paid by the user after SCPi completes the data backup, expressed in Formula 2 as:

公式二、 Formula two,

式中bi为一个正参数,用以区分每一个源端云提供商。tj为一个大于1的正参数,用以区分目的端云提供商的不同目的存储节点。xij表示源端云提供商的策略,即第i个源端云提供商SCPi想要在目的端云提供商DCP的第j个目的存储节点D_nodej上租用的存储资源的数量。In the formula, bi is a positive parameter to distinguish each source cloud provider. t j is a positive parameter greater than 1, which is used to distinguish different destination storage nodes of the destination cloud provider. x ij represents the policy of the source cloud provider, that is, the amount of storage resources that the i-th source cloud provider SCPi wants to rent on the j-th destination storage node D_nodej of the destination cloud provider DCP.

Cij表示第i个源端云提供商SCPi从目的端云提供商DCP的第j个目的存储节点D_nodej上租用存储资源所花费的成本,用公式三表示为:C ij represents the cost of renting storage resources by the i-th source cloud provider SCPi from the j-th destination storage node D_nodej of the destination cloud provider DCP, expressed as:

公式三、Cij=pj·xij(i=1,2,3,4,5 j=1,2,3)Formula 3, C ij =p j x ij (i=1,2,3,4,5 j=1,2,3)

式中pj表示目的存储节点的策略,即目的端云提供商DCP的第j个目的存储节点D_nodej上的存储资源单位价格。In the formula, p j represents the policy of the destination storage node, that is, the storage resource unit price on the jth destination storage node D_nodej of the destination cloud provider DCP.

公式一中的Nij表示网络负载均衡,由公式四表示:N ij in Formula 1 represents network load balancing, expressed by Formula 4:

公式四、 Formula four,

式中Lj表示目的端云提供商DCP的第j个目的存储节点D_nodej上的最大负载均衡,即最大存储容量。In the formula, L j represents the maximum load balance on the jth destination storage node D_nodej of the destination cloud provider DCP, that is, the maximum storage capacity.

将公式二、公式三、公式四代入公式一可得到公式五如下表示:Substituting Formula 2, Formula 3, and Formula 4 into Formula 1, Formula 5 can be expressed as follows:

公式五、 Formula five,

本实施方式中,计算所述目的端云提供商DCP的效用函数用公式六表示为:In this embodiment, the utility function for calculating the destination cloud provider DCP is expressed as:

公式六、 Formula six,

式中Udcp表示所选中的目的端云提供商DCP的效用函数,即DCP所获得的最大收益,包括出租存储资源给源端云提供商SCP所获取的利益和所花费的成本。Bj'表示目的端云提供商DCP的第j个目的存储节点D_nodej将存储资源出租给源端云提供商所获取的收益,用公式七表示:In the formula, U dcp represents the utility function of the selected destination cloud provider DCP, that is, the maximum benefit obtained by the DCP, including the benefits and costs of leasing storage resources to the source cloud provider SCP. B j 'represents the income obtained by the jth destination storage node D_nodej of the destination cloud provider DCP from leasing storage resources to the source cloud provider, expressed by formula 7:

公式七、 Formula seven,

公式六中的Cj'表示目的端云提供商DCP的第j个目的存储节点D_nodej的消耗成本,包括维护成本、电力损耗。用公式八表示:C j ' in Formula 6 represents the consumption cost of the jth destination storage node D_nodej of the destination cloud provider DCP, including maintenance cost and power loss. Expressed in formula eight:

公式八、 Formula eight,

式中pj'表示目的端云提供商DCP的第j个目的存储节点D_nodej上的存储资源单位消耗成本,pj'<pjIn the formula, p j ' represents the unit consumption cost of storage resources on the jth destination storage node D_nodej of the destination cloud provider DCP, p j '<p j .

将公式七,公式八代入公式六可得公式九,如下所示:Substitute Formula 7 and Formula 8 into Formula 6 to get Formula 9, as follows:

公式九 formula nine

分别用公式五与公式九计算所述源端云提供商SCP的效用函数Uscpi初始值及所述目的端云提供商DCP的效用函数Udcp初始值。Calculate the initial value of the utility function U scpi of the SCP of the source cloud provider and the initial value of the utility function U dcp of the DCP of the destination cloud provider by using Formula 5 and Formula 9 respectively.

C、使用迭代算法实现纳什均衡。C. Use an iterative algorithm to achieve Nash equilibrium.

τ1表示源端云提供商的迭代次数,第i个源端云提供商SCPi采用公式十的方法迭代计算想要存储于目的端云提供商DCP的第j个目的存储节点D_nodej的资源数量。τ 1 represents the number of iterations of the source cloud provider. The i-th source cloud provider SCPi uses the method of formula 10 to iteratively calculate the number of resources to be stored in the j-th destination storage node D_nodej of the destination cloud provider DCP.

公式十、 formula ten,

式中的xij1)表示第τ1次迭代后第i个源端云提供商SCPi计划存储于目的端云提供商DCP的第j个目的存储节点D_nodej的资源数量,xij1+1)表示xij1)的下一次迭代结果。δ>0,为一常数,表示第i个源端云提供商SCPi进行资源数量迭代时的步长因子。in the formula x ij1 ) represents the number of resources that the i-th source cloud provider SCPi plans to store in the j-th destination storage node D_nodej of the destination cloud provider DCP after the τ 1 iteration, x ij1 +1 ) represents the next iteration result of x ij1 ). δ>0, which is a constant, represents the step size factor when SCPi, the i-th source cloud provider, iterates the number of resources.

D、在源端云提供商SCP不断修正自身存储资源数量的同时,目的端云提供商的各存储节点D_nodej则根据所有源端云提供商SCPi存储资源数量的变化不断地调整其自身存储资源的单位价格。调整方法以公式十一的形式迭代进行。D. While the source-end cloud provider SCPi is constantly revising the amount of its own storage resources, each storage node D_nodej of the destination-end cloud provider is constantly adjusting the amount of its own storage resources according to the changes in the number of storage resources of all source-end cloud providers SCPi unit price. The adjustment method is performed iteratively in the form of formula eleven.

公式十一、 formula eleven,

公式中τ2表示源端云提供商的迭代次数。formula τ 2 represents the number of iterations of the source cloud provider.

pj2)表示第τ2次迭代后目的端云提供商DCP的第j个存储节点D_nodej的存储资源单位价格,pj2+1)表示pj2)的下一次迭代结果。θ>0,为一常数,表示目的端云提供商DSP的第j个存储节点D_nodej进行资源存储单位价格迭代时的步长因子。p j2 ) represents the storage resource unit price of the jth storage node D_nodej of the destination cloud provider DCP after the τ 2 iteration, and p j2 +1) represents the next iteration of p j2 ) Iterate over the results. θ>0, which is a constant, represents the step size factor when the jth storage node D_nodej of the destination cloud provider DSP performs resource storage unit price iteration.

E、根据上述步骤C中计算得出的源端云提供商SCPi计划存储于目的端云提供商DCP的第j个目的存储节点D_nodej的资源数量xij以及步骤D中计算得出的目的端云提供商DCP的第j个存储节点D_nodej的存储资源单位价格pj,采用公式九所述方法计算目的端云提供商DCP的效用函数Udcp的新的迭代结果。判断Udcp是否为最大值,如果是,则继续执行步骤F,如果否返回执行步骤D;E. According to the source cloud provider SCPi calculated in the above step C, the number of resources x ij stored in the jth destination storage node D_nodej of the destination cloud provider DCP and the destination cloud calculated in step D The storage resource unit price p j of the jth storage node D_nodej of the provider DCP uses the method described in formula 9 to calculate the new iterative result of the utility function U dcp of the destination cloud provider DCP. Judging whether U dcp is the maximum value, if yes, then proceed to step F, if not return to step D;

F、根据公式五计算第i个源端云提供商SCPi的效用函数Uscpi,并判断Uscpi是否为最大值,如果否,则返回执行步骤C;如果是,即为最终的纳什均衡,使得博弈参与者双方:源端云提供商SCP与目的端云提供商DCP的利益最大化。F. Calculate the utility function U scpi of the i-th source cloud provider SCPi according to formula 5, and judge whether U scpi is the maximum value, if not, return to step C; if yes, it is the final Nash equilibrium, so that Both game participants: the source-end cloud provider SCP and the destination-end cloud provider DCP maximize the benefits.

G、源端云提供商SCPi分别将xij大小的数据以价格pj备份至目的端云提供商的存储节点D_nodej中。G. The source-end cloud provider SCPi backs up the data with the size of xij to the storage node D_nodej of the destination-end cloud provider at the price pj respectively.

具体实施方式二、结合图1至图9说明本实施方式,本实施方式为具体实施方式一所述的基于博弈论的云容灾数据备份方法的实施例:Specific embodiment two, in conjunction with Fig. 1 to Fig. 9 illustrate this embodiment, this embodiment is the embodiment of the cloud disaster recovery data backup method based on game theory described in specific embodiment one:

a、用户将数据分别备份至不同源端云提供商SCP1,SCP2,SCP3,SCP4,SCP5上。结合图1,各源端云提供商SCP1,SCP2,SCP3,SCP4,SCP5需将自身存有的用户数据备份至另一个云服务提供商,即目的端云提供商DCP。DCP包含三个存储价格可变的目的存储节点D_node1,D_node2和D_node3。目的存储节点D_node1,D_node2,D_node3根据源端云提供商SCP1,SCP2,SCP3,SCP4,SCP5所需备份的数据量的大小动态调整存储价格。a. The user backs up data to different source cloud providers SCP1, SCP2, SCP3, SCP4, SCP5 respectively. Referring to Figure 1, each source cloud provider SCP1, SCP2, SCP3, SCP4, and SCP5 needs to back up their own user data to another cloud service provider, that is, the destination cloud provider DCP. DCP contains three destination storage nodes D_node1, D_node2 and D_node3 with variable storage prices. The destination storage nodes D_node1, D_node2, and D_node3 dynamically adjust the storage price according to the amount of data backed up by the source cloud providers SCP1, SCP2, SCP3, SCP4, and SCP5.

b、将源端云提供商SCP1,SCP2,SCP3,SCP4,SCP5与目的端云提供商DCP的目的存储节点D_node1,D_node2,D_node3之间的动态交互过程建模为存储资源定价模型,具体过程如下:b. Model the dynamic interaction process between the source cloud provider SCP1, SCP2, SCP3, SCP4, and SCP5 and the destination storage nodes D_node1, D_node2, and D_node3 of the destination cloud provider DCP as a storage resource pricing model. The specific process is as follows :

一、计算所述源端云提供商SCP的效用函数:1. Calculate the utility function of the SCP of the source cloud provider:

Uu sthe s cc pp ii == &Sigma;&Sigma; jj == 11 33 (( BB ii jj -- CC ii jj -- NN ii jj )) ii == 11 ,, 22 ,, 33 ,, 44 ,, 55 jj == 11 ,, 22 ,, 33 -- -- -- (( 11 ))

式中Uscpi表示第i个源端云提供商SCPi的效用函数。Bij表示SCPi希望在目的端云提供商DCP的第j个目的存储节点D_nodej上存储资源后所获取的利益,即SCPi完成数据备份后用户所付的费用:where U scpi represents the utility function of the i-th source cloud provider SCPi. B ij represents the benefit that SCPi hopes to obtain after storing resources on the jth destination storage node D_nodej of the destination cloud provider DCP, that is, the fee paid by the user after SCPi completes data backup:

BB ii jj == bb ii &CenterDot;&CenterDot; (( 11 ++ xx ii jj )) 11 tt jj ii == 11 ,, 22 ,, 33 ,, 44 ,, 55 jj == 11 ,, 22 ,, 33 -- -- -- (( 22 ))

式(2)中bi为一个正参数,用以区分每一个源端云提供商,在本实施例中b1=2.5,b2=2.6,b3=2.7,b4=2.8,b5=2.9。tj为一个大于1的正参数,用以区分目的端云提供商的不同目的存储节点,在本实施例中t1=4,t2=3,t3=2。xij表示源端云提供商的策略,即第i个源端云提供商SCPi想要在目的端云提供商DCP的第j个目的存储节点D_nodej上租用的存储资源的数量,初始值均为0。In formula (2), b i is a positive parameter to distinguish each source cloud provider. In this embodiment, b 1 =2.5, b 2 =2.6, b 3 =2.7, b 4 =2.8, b 5 = 2.9. t j is a positive parameter greater than 1, which is used to distinguish different destination storage nodes of the destination cloud provider. In this embodiment, t 1 =4, t 2 =3, and t 3 =2. x ij represents the strategy of the source cloud provider, that is, the number of storage resources that the i-th source cloud provider SCPi wants to lease on the j-th destination storage node D_nodej of the destination cloud provider DCP, and the initial value is 0.

Cij表示第i个源端云提供商SCPi从目的端云提供商DCP的第j个目的存储节点D_nodej上租用存储资源所花费的成本:C ij represents the cost of renting storage resources by the i-th source cloud provider SCPi from the j-th destination storage node D_nodej of the destination cloud provider DCP:

Cij=pj·xij(i=1,2,3,4,5 j=1,2,3) (3)C ij =p j x ij (i=1,2,3,4,5 j=1,2,3) (3)

式(3)中pj表示目的存储节点的策略,即目的端云提供商DCP的第j个目的存储节点D_nodej上的存储资源单位价格,在本实施例中分别为p1=0.1,p2=0.2,p3=0.3。In formula (3), p j represents the policy of the destination storage node, that is, the unit price of storage resources on the jth destination storage node D_nodej of the destination cloud provider DCP, which in this embodiment are respectively p 1 =0.1, p 2 =0.2, p 3 =0.3.

式(1)中的Nij表示网络负载均衡:N ij in formula (1) represents network load balancing:

NN ii jj == 11 LL jj -- &Sigma;&Sigma; ii == 11 55 xx ii jj ii == 11 ,, 22 ,, 33 ,, 44 ,, 55 jj == 11 ,, 22 ,, 33 -- -- -- (( 44 ))

Lj表示目的端云提供商DCP的第j个目的存储节点D_nodej上的最大负载均衡,即最大存储容量,在本实施例中分别为L1=35,L2=20,L3=11。L j represents the maximum load balancing on the jth destination storage node D_nodej of the destination cloud provider DCP, that is, the maximum storage capacity, which are respectively L 1 =35, L 2 =20, and L 3 =11 in this embodiment.

将公式(2)、公式(3)、公式(4)代入公式(1)可得:Substituting formula (2), formula (3) and formula (4) into formula (1) can get:

Uu sthe s cc pp ii == &Sigma;&Sigma; jj == 11 33 (( bb ii &CenterDot;&Center Dot; (( 11 ++ xx ii jj )) 11 tt jj -- pp jj &CenterDot;&Center Dot; xx ii jj -- 11 LL jj -- &Sigma;&Sigma; ii == 11 55 xx ii jj )) ii == 11 ,, 22 ,, 33 ,, 44 ,, 55 jj == 11 ,, 22 ,, 33 -- -- -- (( 55 ))

二、计算所述目的端云提供商DCP的效用函数:2. Calculating the utility function of the destination cloud provider DCP:

Uu dd cc pp == &Sigma;&Sigma; jj == 11 33 (( BB jj &prime;&prime; -- CC jj &prime;&prime; )) (( jj == 11 ,, 22 ,, 33 )) -- -- -- (( 66 ))

式(6)中Udcp表示所选中的目的端云提供商DCP的效用函数,即DCP所获得的最大收益,包括出租存储资源给源端云提供商SCP所获取的利益和所花费的成本。U dcp in formula (6) represents the utility function of the selected destination cloud provider DCP, that is, the maximum benefit obtained by DCP, including the benefits and costs of leasing storage resources to the source cloud provider SCP.

Bj'表示目的端云提供商DCP的第j个目的存储节点D_nodej将存储资源出租给源端云提供商所获取的收益:B j 'indicates the revenue obtained by the jth destination storage node D_nodej of the destination cloud provider DCP from leasing storage resources to the source cloud provider:

BB jj &prime;&prime; == &Sigma;&Sigma; ii == 11 55 pp jj &CenterDot;&Center Dot; xx ii jj ii == 11 ,, 22 ,, 33 ,, 44 ,, 55 jj == 11 ,, 22 ,, 33 -- -- -- (( 77 ))

式(6)中Cj'表示目的端云提供商DCP的第j个目的存储节点D_nodej的消耗成本,包括维护成本、电力损耗,如公式(8)所示:In formula (6), C j ' represents the consumption cost of the jth destination storage node D_nodej of the destination cloud provider DCP, including maintenance costs and power consumption, as shown in formula (8):

CC jj &prime;&prime; == &Sigma;&Sigma; ii == 11 55 pp jj &prime;&prime; &CenterDot;&CenterDot; xx ii jj ii == 11 ,, 22 ,, 33 ,, 44 ,, 55 jj == 11 ,, 22 ,, 33 -- -- -- (( 88 ))

式(8)中pj'表示目的端云提供商DCP的第j个目的存储节点D_nodej上的存储资源单位消耗成本,pj'<pj,在本实施例中pj'=0.7pjIn formula (8), p j ' represents the unit consumption cost of storage resources on the jth destination storage node D_nodej of the destination cloud provider DCP, p j '<p j , in this embodiment p j '=0.7p j .

将公式(7),公式(8)代入公式(6)可得:Substitute formula (7) and formula (8) into formula (6) to get:

Uu dd cc pp == &Sigma;&Sigma; jj 33 &Sigma;&Sigma; ii == 11 55 (( pp jj &CenterDot;&CenterDot; xx ii jj -- pp jj &prime;&prime; &CenterDot;&CenterDot; xx ii jj )) == &Sigma;&Sigma; jj 33 &Sigma;&Sigma; ii == 11 55 &lsqb;&lsqb; (( pp jj -- pp jj &prime;&prime; )) &CenterDot;&Center Dot; xx ii jj &rsqb;&rsqb; ii == 11 ,, 22 ,, 33 ,, 44 ,, 55 jj == 11 ,, 22 ,, 33 -- -- -- (( 99 ))

分别用式(5)与式(9)计算所述源端云提供商SCP的效用函数Uscpi初始值及所述目的端云提供商DCP的效用函数Udcp初始值。The initial value of the utility function U scpi of the source cloud provider SCP and the initial value of the utility function U dcp of the destination cloud provider DCP are calculated by formula (5) and formula (9) respectively.

c、使用迭代算法实现纳什均衡。τ1表示源端云提供商的迭代次数,第i个源端云提供商SCPi以公式(10)方法迭代计算想要存储于目的端云提供商DCP的第j个目的存储节点D_nodej的资源数量。c. Use an iterative algorithm to achieve Nash equilibrium. τ 1 represents the number of iterations of the source cloud provider, and the i-th source cloud provider SCPi uses formula (10) to iteratively calculate the number of resources to be stored in the jth destination storage node D_nodej of the destination cloud provider DCP .

xx ii jj (( &tau;&tau; 11 ++ 11 )) == xx ii jj (( &tau;&tau; 11 )) ++ &delta;&delta; &CenterDot;&CenterDot; &lsqb;&lsqb; &part;&part; Uu sthe s cc pp ii &part;&part; xx ii jj &rsqb;&rsqb; ii == 11 ,, 22 ,, 33 ,, 44 ,, 55 jj == 11 ,, 22 ,, 33 -- -- -- (( 1010 ))

式中的 in the formula

xij1)表示第τ1次迭代后第i个源端云提供商SCPi计划存储于目的端云提供商DCP的第j个目的存储节点D_nodej的资源数量,xij1+1)表示xij1)的下一次迭代结果。δ>0,为一常数,表示第i个源端云提供商SCPi进行资源数量迭代时的步长因子,在本实施例中δ=0.1。x ij1 ) represents the number of resources that the i-th source cloud provider SCPi plans to store in the j-th destination storage node D_nodej of the destination cloud provider DCP after the τ 1 iteration, x ij1 +1 ) represents the next iteration result of x ij1 ). δ>0 is a constant, representing the step size factor when the i-th source cloud provider SCPi performs resource number iteration, and in this embodiment, δ=0.1.

d、在源端云提供商不断修正自身存储资源数量的同时,目的端云提供商的各存储节点D_nodej(j=1,2,3)则根据所有源端云提供商SCPi(i=1,2,3,4,5)存储资源数量的变化不断地调整其自身存储资源的单位价格。d. While the source-end cloud provider is constantly revising its own storage resource quantity, each storage node D_nodej (j=1,2,3) of the destination-end cloud provider is based on all source-end cloud provider SCPi(i=1, 2, 3, 4, 5) Changes in the quantity of storage resources constantly adjust the unit price of its own storage resources.

pp jj (( &tau;&tau; 22 ++ 11 )) == pp jj (( &tau;&tau; 22 )) ++ &theta;&theta; &CenterDot;&CenterDot; &lsqb;&lsqb; &part;&part; Uu dd cc pp &part;&part; pp jj &rsqb;&rsqb; (( jj == 11 ,, 22 ,, 33 )) -- -- -- (( 1111 ))

公式(11)中τ2表示源端云提供商的迭代次数。In formula (11) τ 2 represents the number of iterations of the source cloud provider.

pj2)表示第τ2次迭代后目的端云提供商DCP的第j个存储节点D_nodej的存储资源单位价格,pj2+1)表示pj2)的下一次迭代结果。θ>0,为一常数,表示目的端云提供商DSP的第j个存储节点D_nodej进行资源存储单位价格迭代时的步长因子,在本实施例中θ=0.001。p j2 ) represents the storage resource unit price of the jth storage node D_nodej of the destination cloud provider DCP after the τ 2 iteration, and p j2 +1) represents the next iteration of p j2 ) Iterate over the results. θ>0 is a constant, indicating the step size factor when the jth storage node D_nodej of the destination cloud provider DSP performs resource storage unit price iteration. In this embodiment, θ=0.001.

e、根据上述步骤三中计算得出的源端云提供商SCPi计划存储于目的端云提供商DCP的第j个目的存储节点D_nodej的资源数量xij,及步骤四中计算得出的目的端云提供商DCP的第j个存储节点D_nodej的存储资源单位价格pj,使用公式九所述方法计算目的端云提供商DCP的效用函数Udcp的新的迭代结果。判断Udcp是否为最大值,如果否返回步骤d,如果是,则继续执行步骤f。e. According to the source cloud provider SCPi calculated in the above step 3, the number of resources x ij stored in the jth destination storage node D_nodej of the destination cloud provider DCP, and the destination calculated in step 4 The storage resource unit price p j of the jth storage node D_nodej of the cloud provider DCP uses the method described in Formula 9 to calculate the new iterative result of the utility function U dcp of the destination cloud provider DCP. Determine whether U dcp is the maximum value, if not return to step d, if yes, continue to execute step f.

f、根据上述步骤c中计算得出的源端云提供商SCPi计划存储于目的端云提供商DCP的第j个目的存储节点D_nodej的资源数量xij以及步骤d中计算得出的目的端云提供商DCP的第j个存储节点D_nodej的存储资源单位价格pj,根据公式五计算第i个源端云提供商SCPi的效用函数Uscpi,并判断Uscpi是否为最大值,如果否,则返回步骤c,如果是,则结合图3至图9,USCPi和Udcp达到最大值,博弈双方达到纳什均衡,获得最优xij和pj值,即为最终的纳什均衡,使得博弈参与者双方:源端云提供商SCP与目的端云提供商DCP的利益最大化。f. According to the source cloud provider SCPi calculated in the above step c, the number of resources x ij stored in the jth destination storage node D_nodej of the destination cloud provider DCP and the destination cloud calculated in step d For the storage resource unit price p j of the jth storage node D_nodej of the provider DCP, calculate the utility function U scpi of the i-th source cloud provider SCPi according to formula 5, and judge whether U scpi is the maximum value, if not, then Return to step c, if it is, then combine Figure 3 to Figure 9, U SCPi and U dcp reach the maximum value, both sides of the game reach the Nash equilibrium, and obtain the optimal xij and pj values, which is the final Nash equilibrium, so that both game participants : The benefits of source-end cloud provider SCP and destination-end cloud provider DCP are maximized.

g、源端云提供商SCP1、SCP2、SCP3、SCP4、SCP5分别将xij大小的数据以价格pj备份至目的端云提供商的存储节点D_node1、D_node2、D_node3中。g. The source-end cloud providers SCP1, SCP2, SCP3, SCP4, and SCP5 respectively back up the data with the size of xij to the storage nodes D_node1, D_node2, and D_node3 of the destination-end cloud provider at a price pj.

Claims (3)

1. based on game theoretic cloud disaster tolerance data back up method, it is characterized in that, the method is realized by following steps:
Data are backed up on i source cloud provider SCPi by step one, user respectively, and described source cloud provider SCP will be from The user data backup of body storage is in destination cloud service provider DCP, and described destination cloud service provider DCP comprises j The purpose memory node D_nodej of individual storage price change;I is the number of source cloud provider, Duan Yun provider for the purpose of j The number of memory node;
Step 2, utility function U of calculating source cloud provider SCPscpiUtility function U with destination cloud provider DCPdcp; Specifically it is expressed as with following formula:
Formula one,
In formula, UscpiRepresent the utility function of i-th source cloud provider SCPi, BijFor SCPi at destination cloud provider DCP Jth purpose memory node D_nodej on store interests acquired after resource, described BijIt is expressed as with formula two:
Formula two,
In formula, biFor positive parameter, it is used for distinguishing each source cloud provider, tjFor the positive parameter more than 1, it is used for distinguishing destination The different purpose memory nodes of cloud provider;xijStrategy for source cloud provider;CijFor i-th source cloud provider SCPi The cost that storage resource is spent is rented, by public affairs from the jth purpose memory node D_nodej of destination cloud provider DCP Formula three is expressed as:
Formula three, Cij=pj·xij
In formula, pjFor the purpose of the strategy of Duan Yun provider memory node, it may be assumed that j the purpose storage joint of destination cloud provider DCP The unit price of the storage resource on some D_nodej;
Described NijFor Network Load Balance, it is expressed as with formula four:
Formula four,
In formula, LjRepresent the maximum load equilibrium on the jth purpose memory node D_nodej of destination cloud provider DCP;
Formula two, formula three, formula four are substituted into formula one, it is thus achieved that formula five:
Formula five,
In formula, m is the positive integer more than j, and n is the positive integer more than i;
The utility function formula six of described destination cloud provider DCP is expressed as:
Formula six,
In formula, UdcpThe utility function of the destination cloud provider DCP by being chosen, BjThe jth of Duan Yun provider DCP for the purpose of ' Storage resource is leased to the income acquired in source cloud provider by individual purpose memory node D_nodej, represents with formula seven:
Formula seven,
Described CjThe consuming cost of the jth purpose memory node D_nodej of Duan Yun provider DCP for the purpose of ', with formula eight table It is shown as:
Formula eight,
In formula, pj' represent that the storage resource units on the jth purpose memory node D_nodej of destination cloud provider DCP disappears Consumption cost, described pj' < pj
By formula seven, formula eight substitutes into formula six, it is thus achieved that formula nine:
Formula nine,
Formula five and formula nine is used to calculate utility function U obtaining described source cloud provider SCPscpiInitial value and described mesh Utility function U of Duan Yun provider DCPdcpInitial value;
Step 3, employing iterative algorithm realize Nash Equilibrium;
Particularly as follows: use iterative algorithm to calculate the tactful x of source cloud providerij;It is expressed as with formula ten:
Formula ten,
In formula,xij1) it is τ1I-th source cloud provider after secondary iteration SCPi plan is stored in the resource quantity of the jth purpose memory node D_nodej of destination cloud provider DCP, τ1Expression source The iterations of Duan Yun provider, xij1+ 1) x is representedij1) next iteration result;δ is i-th source cloud provider SCPi carries out step factor during resource quantity iteration;
Step 4, source cloud provider SCP revise self storage resource quantity, j the memory node of destination cloud provider DCP D_nodej then constantly adjusts the unit valency of storage resource according to the change of i source cloud provider SCPi storage resource quantity Lattice pj, method of adjustment formula 11 is expressed as:
Formula 11,
In formula,τ2For the iterations of source cloud provider, pj2) it is τ2After secondary iteration, destination cloud provides The storage resource units price of the jth memory node D_nodej of business DCP, pj2+ 1) p is representedj2) next iteration knot Really;Step-length when the jth memory node D_nodej of Duan Yun provider DSP carries out resource storage cell price iteration for the purpose of θ The factor;
Step 5, the tactful x of the source cloud provider obtained according to step 3ijThe destination cloud provider obtained with step 4 deposits The tactful p of storage nodej, use formula nine to calculate utility function U of destination cloud provider DCPdcpNew iteration result, and Judge UdcpWhether it is maximum, if it is not, then return step 4;If it is, execution step 6;
Step 6, calculate utility function U of i-th source cloud provider SCPi according to formula fivescpi, and judge UscpiIt is whether Maximum, performs step 3 if it is not, then return, if it is, source cloud provider SCP reaches with destination cloud provider DCP Nash Equilibrium, it is thus achieved that optimum xij value and pj value, it is achieved final Nash Equilibrium.
The most according to claim 1 based on game theoretic cloud disaster tolerance data back up method, it is characterised in that described purpose is deposited The size of the data volume that storage node D_nodej is backed up according to source cloud provider SCP dynamically adjusts storage price, by not The disconnected resource price adjusting Backup Data and resource quantity make source cloud provider SCP and destination cloud service provider DCP Benefit.
The most according to claim 1 and 2 based on game theoretic cloud disaster tolerance data back up method, it is characterised in that also to include Step 7, described source cloud provider SCP respectively by the data of the tactful xij of source cloud provider according to destination cloud provider The tactful pj of memory node backs up in the memory node D_nodej of destination cloud provider.
CN201610340271.0A 2016-05-20 2016-05-20 Cloud disaster tolerance data back up method based on game theory Active CN106055425B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610340271.0A CN106055425B (en) 2016-05-20 2016-05-20 Cloud disaster tolerance data back up method based on game theory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610340271.0A CN106055425B (en) 2016-05-20 2016-05-20 Cloud disaster tolerance data back up method based on game theory

Publications (2)

Publication Number Publication Date
CN106055425A true CN106055425A (en) 2016-10-26
CN106055425B CN106055425B (en) 2018-09-18

Family

ID=57176570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610340271.0A Active CN106055425B (en) 2016-05-20 2016-05-20 Cloud disaster tolerance data back up method based on game theory

Country Status (1)

Country Link
CN (1) CN106055425B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630176A (en) * 2021-09-18 2021-11-09 长春理工大学 A Game Cache Multipath Transmission Method for Earth Observation LEO Satellite Data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102984249A (en) * 2012-11-22 2013-03-20 北京邮电大学 Distributed resource allocation method in horizontal dynamic cloud alliance
CN104318486A (en) * 2014-10-08 2015-01-28 华北电力大学(保定) Cloud computing-based power dispatching data disaster recovery method
CN104407944A (en) * 2014-12-24 2015-03-11 浪潮(北京)电子信息产业有限公司 Disaster recovery backup method and disaster recovery backup system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102984249A (en) * 2012-11-22 2013-03-20 北京邮电大学 Distributed resource allocation method in horizontal dynamic cloud alliance
CN104318486A (en) * 2014-10-08 2015-01-28 华北电力大学(保定) Cloud computing-based power dispatching data disaster recovery method
CN104407944A (en) * 2014-12-24 2015-03-11 浪潮(北京)电子信息产业有限公司 Disaster recovery backup method and disaster recovery backup system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
严晔: "基于Swiftstack的云存储关键技术研究", 《长春理工大学学报》 *
王春才: "基于iSCSI的网络数据存储技术研究", 《吉林师范大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630176A (en) * 2021-09-18 2021-11-09 长春理工大学 A Game Cache Multipath Transmission Method for Earth Observation LEO Satellite Data
CN113630176B (en) * 2021-09-18 2022-07-15 长春理工大学 Game cache multi-path transmission method for earth observation of LEO satellite data

Also Published As

Publication number Publication date
CN106055425B (en) 2018-09-18

Similar Documents

Publication Publication Date Title
CN110738405A (en) Method and device for evaluating effectiveness of power market and storage medium
CN104077634B (en) active-reactive type dynamic project scheduling method based on multi-objective optimization
Kálmán et al. Links between the economy competitiveness and logistics performance in the Visegrád Group countries: Empirical evidence for the years 2007-2018
Gaivoronski et al. Cost/risk balanced management of scarce resources using stochastic programming
Krcmar et al. Innovation, society and business: Internet-based business models and their implications
CN106817401A (en) A kind of resource allocation method in cloud environment
CN105184653A (en) Trust-based crowdsourcing worker screening method for social network
CN116596640A (en) Recommended method, system, device and storage medium for electricity retail tariff package
Chipango Reinterpreting energy poverty in Zimbabwe: a scalar perspective
CN106506607A (en) Cloud computing resources distribution method based on fair credible two way auction mechanism
CN106055425B (en) Cloud disaster tolerance data back up method based on game theory
Ahmad et al. Learning from optimal: Energy procurement strategies for data centers
CN117635189A (en) Virtual power plant master-slave multi-chain resource interactive matching method based on improved consensus algorithm
CN118537164A (en) Power transaction decision generation method, device, medium and equipment
Xu et al. Resource allocation based on double auction for cloud computing system
CN106203861A (en) A kind of finishing based on distributed system management cloud system
CN106127420A (en) A kind of finishing based on distributed deployment system management cloud system
CN106294539A (en) Data directory list storage strategy under mixed cloud environment
Lin et al. Game-theoretic strategy analysis for data reliability management in cloud storage systems
Freeman Building an energy cooperation regime in Northeast Asia
Wang et al. When group-buying meets cloud computing
CN106251036A (en) A kind of finishing based on distributed system management cloud system
Rosellón et al. A combined merchant-regulatory mechanism for electricity transmission expansion in Europe
CN112149982A (en) Inter-provincial transaction clearing method, system and terminal device considering shared reserve
Casanova et al. Emerging Markets Multinationals Report 2019

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant