CN106054273A - 一种智能穿戴设备皮肤接触的检测方法及系统 - Google Patents

一种智能穿戴设备皮肤接触的检测方法及系统 Download PDF

Info

Publication number
CN106054273A
CN106054273A CN201610383311.XA CN201610383311A CN106054273A CN 106054273 A CN106054273 A CN 106054273A CN 201610383311 A CN201610383311 A CN 201610383311A CN 106054273 A CN106054273 A CN 106054273A
Authority
CN
China
Prior art keywords
capacitance
present sample
air reference
worn device
intelligent worn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610383311.XA
Other languages
English (en)
Other versions
CN106054273B (zh
Inventor
李伟超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Genius Technology Co Ltd
Original Assignee
Guangdong Genius Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Genius Technology Co Ltd filed Critical Guangdong Genius Technology Co Ltd
Priority to CN201610383311.XA priority Critical patent/CN106054273B/zh
Publication of CN106054273A publication Critical patent/CN106054273A/zh
Application granted granted Critical
Publication of CN106054273B publication Critical patent/CN106054273B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种智能穿戴设备皮肤接触的检测方法及系统。该检测方法包括:a.获取电容传感器的当前采样电容值;b.判断所述当前采样电容值是否小于空气基准电容值,若否,则继续步骤c;若是,则检测到所述智能穿戴设备没有皮肤接触,将所述当前采样电容值赋予所述空气基准电容值,并返回步骤a;c.判断所述当前采样电容值是否比空气基准电容值大预设百分比;d.若是,则开启红外传感器,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触。本发明在皮肤接触检测过程中调整空气基准电容值,避免了电容传感器生产中一致性不好的缺陷,生产时不需要对电容值进行校准,降低了生产的成本。

Description

一种智能穿戴设备皮肤接触的检测方法及系统
技术领域
本发明涉及检测技术领域,尤其涉及一种智能穿戴设备皮肤接触的检测方法及系统。
背景技术
使用电容传感器加红外传感器进行皮肤接触检测是目前电话手表上判断是否佩戴的基本方法。然而,由于生产工艺的原因,生产出来的每一个手表,其跟皮肤接触的电容值都有一定差别,这导致很容易出现误判。目前一般的做法有两种,一是使用固定的电容阀值作为接触皮肤的判断标准,此方法受生产工艺影响严重,必须要求生产出来了每个手表在同一物质上的电容值保持在一个相差不大的范围,但是工艺上很难做到且成本很高;二是生产的时候先对每一个手表进行校准,记录空气中的基准值与皮肤接触的值,确定一个阀值,这种方式虽可降低生产工艺要求,但对于生产中的校准有一定困难,由于生产夹具的差异,生产环境变化等因素,会导致校准值难以达到要求,而且手表出厂后,由于温湿度等环境因素的变更,会导致原先校准好的值不能再适用。
发明内容
本发明提供了一种智能穿戴设备皮肤接触的检测方法及系统,解决电容传感器生产中一致性不好的问题,生产时不需要对电容值进行校准,降低了生产的成本。
为实现上述设计,本发明采用以下技术方案:
一方面,提供了一种智能穿戴设备皮肤接触的检测方法,该检测方法包括:
a.获取电容传感器的当前采样电容值;
b.判断所述当前采样电容值是否小于空气基准电容值,若否,则继续步骤c;若是,则检测到所述智能穿戴设备没有皮肤接触,将所述当前采样电容值赋予所述空气基准电容值,并返回步骤a;
c.判断所述当前采样电容值是否比空气基准电容值大预设百分比;
d.若是,则开启红外传感器,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触。
优选的,所述判断所述当前采样电容值是否比空气基准电容值大预设百分比之后,还包括:若否,则返回步骤a。
优选的,所述开启红外传感器之前,还包括:将所述当前采样电容值赋予所述空气基准电容值。
优选的,将所述当前采样电容值赋予所述空气基准电容值之前,还包括,临时储存所述当前采样电容值和所述空气基准电容值;
所述获取电容传感器的当前采样电容值之前,还包括:开启所述智能穿戴设备,获取上次关机过程中写入所述智能穿戴设备的FLASH中的最后一次临时储存的所述当前采样电容值和所述空气基准电容值,将两者中的较小值作为本次开机时的空气基准电容值;
所述方法还包括:获取关闭所述智能穿戴设备的指令,将最后一次临时储存的所述当前采样电容值和所述空气基准电容值写入所述智能穿戴设备的FLASH中,关闭所述智能穿戴设备。
优选的,所述开启红外传感器之后,还包括:若所述红外传感器未检测到有物体接近,则检测到所述智能穿戴设备没有皮肤接触,并返回步骤a。
另一方面,提供了一种智能穿戴设备皮肤接触的检测系统,包括:
采样电容值获取模块,用于获取电容传感器的当前采样电容值;
第一判断模块,用于判断所述当前采样电容值是否小于空气基准电容值;
第一赋值模块,用于若所述第一判断模块判断所述当前采样电容值小于空气基准电容值,则检测到所述智能穿戴设备没有皮肤接触,将所述当前采样电容值赋予所述空气基准电容值;
第二判断模块,用于若所述第一判断模块判断所述当前采样电容值大于或等于空气基准电容值,则判断所述当前采样电容值是否比空气基准电容值大预设百分比;
检测模块,用于若所述第二判断模块判断所述当前采样电容值比空气基准电容值大预设百分比,则开启红外传感器,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触;
所述采样电容值获取模块,还用于若所述第一赋值模块将所述当前采样电容值赋予所述空气基准电容值,则再次获取电容传感器的采样电容值。
优选的,所述采样电容值获取模块,还用于若所述第二判断模块判断所述当前采样电容值不比空气基准电容值大预设百分比,则再次获取电容传感器的当前采样电容值。
优选的,还包括:第二赋值模块,用于若所述第二判断模块判断所述当前采样电容值比空气基准电容值大预设百分比,将所述当前采样电容值赋予所述空气基准电容值。
优选的,还包括:储存模块,用于将所述当前采样电容值赋予所述空气基准电容值之前,临时储存所述当前采样电容值和所述空气基准电容值;
开启模块,用于获取上次关机过程中写入所述智能穿戴设备的FLASH中的最后一次临时储存的所述当前采样电容值和所述空气基准电容值,将两者中的较小值作为本次开机时的空气基准电容值;
关闭模块,用于获取关闭所述智能穿戴设备的指令,将所述储存模块最后一次临时储存的所述当前采样电容值和所述空气基准电容值写入所述智能穿戴设备的FLASH中,关闭所述智能穿戴设备。
优选的,所述检测模块,还用于若所述红外传感器未检测到有物体接近,则所述智能穿戴设备没有皮肤接触;
所述采样电容值获取模块,还用于若所述检测模块开启的所述红外传感器未检测到有物体接近,所述智能穿戴设备没有皮肤接触,则再次获取电容传感器的当前采样电容值。
与现有技术相比,本发明的有益效果为:在检测过程中适应性调整空气基准电容值,避免了电容片生产中一致性不好的缺陷,生产时不需要对电容值进行校准,降低了生产的成本;此外,避免手表出厂后因环境变化导致电容值变化,引起校准值不可用的缺陷,进一步确保手表佩戴检测功能的持续可用性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本发明实施例的内容和这些附图获得其他的附图。
图1是本发明具体实施方式中提供的一种智能穿戴设备皮肤接触的检测方法的第一实施例的方法流程图。
图2是本发明具体实施方式中提供的一种智能穿戴设备皮肤接触的检测方法的第二实施例的方法流程图。
图3是本发明具体实施方式中提供的一种智能穿戴设备皮肤接触的检测方法的第三实施例的方法流程图。
图4是本发明具体实施方式中提供的一种智能穿戴设备皮肤接触的检测系统的第一实施例的结构方框图。
图5是本发明具体实施方式中提供的一种智能穿戴设备皮肤接触的检测系统的第二实施例的结构方框图。
具体实施方式
为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
请参考图1,其是本发明具体实施方式中提供的一种智能穿戴设备皮肤接触的检测方法的第一实施例的方法流程图。如图所示,该方法包括:
步骤S101:获取电容传感器的当前采样电容值;
获取智能穿戴设备的电容传感器的当前采样电容值,优选地,所述智能穿戴设备包括智能手表和智能手环等。电容传感器具有以下特性:①用于检测皮肤的电容传感器受到电路、结构等因素的影响,生产出来的不同智能穿戴设备的个体在同一物质上检测出来的电容值有较大差异;②对每台智能穿戴设备来说,放置在生活中大部分物体上和放置于皮肤上的电容都有一定的差异,一般置于空气中的电容值最小,在空气中的电容值与皮肤上的电容值,大约都是相差一个固定的百分比;③放置在金属铜片上的电容值与放置在人体皮肤上的电容值非常接近;④对同一台智能穿戴设备来说,在温湿度等环境因素变化时,在同一物质上检测出来的电容值会有不同。
步骤S102:判断所述当前采样电容值是否小于空气基准电容值,若否,则继续步骤S103;若是,则执行步骤S104;
空气基准电容值为电容传感器置于空气中的电容值,若智能穿戴设备为第一次使用,空气基准电容值可以在出厂前预储存于设备中。
判断所述当前采样电容值是否小于空气基准电容值,若是,则检测到所述智能穿戴设备没有皮肤接触,并且说明此时的空气基准电容值并不是实际的空气基准电容值,由于出厂环境的改变,空气基准电容值已经不再试用,需要对空气基准电容值进行校准,将所述当前采样电容值赋予所述空气基准电容值,并重新获取采样电容值。
判断所述当前采样电容值是否小于空气基准电容值,若否,则判断所述当前采样电容值是否比空气基准电容值大预设百分比。
步骤S104:检测到所述智能穿戴设备没有皮肤接触,将所述当前采样电容值赋予所述空气基准电容值,并返回步骤S101;
步骤S103:判断所述当前采样电容值是否比空气基准电容值大预设百分比,若是,则继续步骤S105;
对每台智能穿戴设备来说,放置在生活中大部分物体上和放置于皮肤上的电容都有一定的差异,一般置于空气中的电容值最小,在空气中的电容值与皮肤上的电容值,大约都是相差一个固定的百分比,这个固定的百分比跟电容传感器的本身属性,即材料或大小等参数相关,本发明对预设百分比不作具体限定,本领域技术人员可以根据实际设计进行选择。
步骤S105:开启红外传感器,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触。
优选地,步骤S105中开启红外传感器之后,还包括,若所述红外传感器未检测到有物体接近,则检测到所述智能穿戴设备没有皮肤接触,并返回步骤S101。
开启红外传感器,使用红外传感器维持皮肤接触状态的检测,排除由于外部环境变化导致电容值的变化所产生的误判,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触,若红外传感器判断到没有物体接近,则检测到所述智能穿戴设备离开皮肤。
优选地,步骤S103中判断所述当前采样电容值是否比空气基准电容值大预设百分比之后,还包括,若否,则返回步骤S101。
判断所述当前采样电容值是否比空气基准电容值大预设百分比,若否,则检测到所述智能穿戴设备没有与皮肤接触,重新获取采样电容值。
综上所述,本实施例在皮肤接触检测过程中调整空气基准电容值,避免了电容传感器生产中一致性不好的缺陷,生产时不需要对电容值进行校准,降低了生产的成本。
实施例二
请参考图2,其是本发明具体实施方式中提供的一种智能穿戴设备皮肤接触的检测方法的第二实施例的方法流程图。如图所示,该方法,包括:
步骤S101:获取电容传感器的当前采样电容值;
获取智能穿戴设备的电容传感器的当前采样电容值,优选地,所述智能穿戴设备包括智能手表和智能手环等。电容传感器具有以下特性:①用于检测皮肤的电容传感器受到电路、结构等因素的影响,生产出来的不同智能穿戴设备的个体在同一物质上检测出来的电容值有较大差异;②对每台智能穿戴设备来说,放置在生活中大部分物体上和放置于皮肤上的电容都有一定的差异,一般置于空气中的电容值最小,在空气中的电容值与皮肤上的电容值,大约都是相差一个固定的百分比;③放置在金属铜片上的电容值与放置在人体皮肤上的电容值非常接近;④对同一台智能穿戴设备来说,在温湿度等环境因素变化时,在同一物质上检测出来的电容值会有不同。
步骤S102:判断所述当前采样电容值是否小于空气基准电容值,若否,则继续步骤S103;若是,则执行步骤S104;
空气基准电容值为电容传感器置于空气中的电容值,若智能穿戴设备为第一次使用,空气基准电容值可以在出厂前预储存于设备中。
判断所述当前采样电容值是否小于空气基准电容值,若是,则检测到所述智能穿戴设备没有皮肤接触,并且说明此时的空气基准电容值并不是实际的空气基准电容值,由于出厂环境的改变,空气基准电容值已经不再试用,需要对空气基准电容值进行校准,将所述当前采样电容值赋予所述空气基准电容值,并重新获取采样电容值。
判断所述当前采样电容值是否小于空气基准电容值,若否,则判断所述当前采样电容值是否比空气基准电容值大预设百分比。
步骤S104:检测到所述智能穿戴设备没有皮肤接触,将所述当前采样电容值赋予所述空气基准电容值,并返回步骤S101;
步骤S103:判断所述当前采样电容值是否比空气基准电容值大预设百分比,若是,则继续步骤S106;
因为对每台智能穿戴设备来说,放置在生活中大部分物体上和放置于皮肤上的电容都有一定的差异,一般置于空气中的电容值最小,在空气中的电容值与皮肤上的电容值,大约都是相差一个固定的百分比,这个固定的百分比跟电容传感器的属性,即材料或大小等参数相关,本发明对预设百分比不作具体限定,本领域技术人员可以根据实际设计进行选择。
步骤S106:将所述当前采样电容值赋予所述空气基准电容值;
判断所述当前采样电容值是否比空气基准电容值大预设百分比,若是,将所述当前采样电容值赋予所述空气基准电容值,排除由于外部环境变化导致电容值的变化所产生的误判。由于外部环境变化,导致空气基准电容值并不是实际的空气基准电容值,若环境变化太大,也许会出现最初提供的空气基准电容值过小,而电容传感器的采样电容值不管是不是与皮肤接触都比空气基准电容值大预设百分比,此时,若将所述当前采样电容值赋予所述空气基准电容值,则可以避免在后续的检测过程中避免空气基准电容值不适用的缺陷。
步骤S105:开启红外传感器,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触。
优选地,步骤S105中开启红外传感器之后,还包括,若所述红外传感器未检测到有物体接近,则检测到所述智能穿戴设备没有皮肤接触,并返回步骤S101。
开启红外传感器,使用红外传感器维持皮肤接触状态的检测,排除由于外部环境变化导致电容值的变化所产生的误判,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触,若红外传感器判断到没有物体接近,则检测到所述智能穿戴设备离开皮肤。
本实施例综上所述,本实施例在皮肤接触检测过程中调整空气基准电容值,避免了电容传感器生产中一致性不好的缺陷,生产时不需要对电容值进行校准,降低了生产的成本;此外,避免手表出厂后因环境变化导致电容值变化,引起校准值不可用的缺陷,进一步确保手表佩戴检测功能的持续可用性。
实施例三
请参考图3,其是本发明具体实施方式中提供的一种智能穿戴设备皮肤接触的检测方法的第三实施例的方法流程图。如图所示,该方法,包括:
步骤S100:开启所述智能穿戴设备,获取上次关机过程中写入所述智能穿戴设备的FLASH中的最后一次临时储存的所述当前采样电容值和所述空气基准电容值,将两者中的较小值作为本次开机时的空气基准电容值;
本发明实施例在将所述当前采样电容值赋予所述空气基准电容值之前,都临时储存所述当前采样电容值和所述空气基准电容值,并将最后一次临时储存的所述当前采样电容值和所述空气基准电容值写入所述智能穿戴设备的FLASH中,将两者中的较小值作为本次开机时的空气基准电容值,解决佩戴着智能穿戴设备后再进行开机时无法得到实际的空气基准电容值的问题,同时也提高了空气基准电容值的可靠性,提高了检测方法的准确性。
步骤S101:获取电容传感器的当前采样电容值;
获取智能穿戴设备的电容传感器的当前采样电容值,优选地,所述智能穿戴设备包括智能手表和智能手环等。电容传感器具有以下特性:①用于检测皮肤的电容传感器受到电路、结构等因素的影响,生产出来的不同智能穿戴设备的个体在同一物质上检测出来的电容值有较大差异;②对每台智能穿戴设备来说,放置在生活中大部分物体上和放置于皮肤上的电容都有一定的差异,一般置于空气中的电容值最小,在空气中的电容值与皮肤上的电容值,大约都是相差一个固定的百分比;③放置在金属铜片上的电容值与放置在人体皮肤上的电容值非常接近;④对同一台智能穿戴设备来说,在温湿度等环境因素变化时,在同一物质上检测出来的电容值会有不同。
步骤S102:判断所述当前采样电容值是否小于空气基准电容值,若否,则继续步骤S103;若是,则执行步骤S104;
空气基准电容值为电容传感器置于空气中的电容值,若智能穿戴设备为第一次使用,空气基准电容值可以在出厂前预储存于设备中。
判断所述当前采样电容值是否小于空气基准电容值,若是,则检测到所述智能穿戴设备没有皮肤接触,并且说明此时的空气基准电容值并不是实际的空气基准电容值,由于出厂环境的改变,空气基准电容值已经不再试用,需要对空气基准电容值进行校准,将所述当前采样电容值赋予所述空气基准电容值,并重新获取采样电容值。
判断所述当前采样电容值是否小于空气基准电容值,若否,则判断所述当前采样电容值是否比空气基准电容值大预设百分比。
步骤S104:检测到所述智能穿戴设备没有皮肤接触,临时储存所述当前采样电容值和所述空气基准电容值,将所述当前采样电容值赋予所述空气基准电容值,并返回步骤S101;
步骤S103:判断所述当前采样电容值是否比空气基准电容值大预设百分比,若是,则继续步骤S106;
因为对每台智能穿戴设备来说,放置在生活中大部分物体上和放置于皮肤上的电容都有一定的差异,一般置于空气中的电容值最小,在空气中的电容值与皮肤上的电容值,大约都是相差一个固定的百分比,这个固定的百分比跟电容传感器的属性,即材料或大小等参数相关,本发明对预设百分比不作具体限定,本领域技术人员可以根据实际设计进行选择。
步骤S106:临时储存所述当前采样电容值和所述空气基准电容值,将所述当前采样电容值赋予所述空气基准电容值;
判断所述当前采样电容值是否比空气基准电容值大预设百分比,若是,临时储存所述当前采样电容值和所述空气基准电容值,将所述当前采样电容值赋予所述空气基准电容值,排除由于外部环境变化导致电容值的变化所产生的误判。由于外部环境变化,导致空气基准电容值并不是实际的空气基准电容值,若环境变化太大,也许会出现空气基准电容值过小,而电容传感器的采样电容值不管是不是与皮肤接触都比空气基准电容值大预设百分比,此时,若将所述当前采样电容值赋予所述空气基准电容值,则可以避免在后续的检测过程中避免空气基准电容值不适用的缺陷。
临时储存所述当前采样电容值和所述空气基准电容值,则是保证在下一次开启智能穿戴设备,进行佩戴检测时所提供的空气基准电容值的可靠性。
步骤S105:开启红外传感器,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触。
优选地,步骤S105中开启红外传感器之后,还包括,若所述红外传感器未检测到有物体接近,则检测到所述智能穿戴设备没有皮肤接触,并返回步骤S101。
开启红外传感器,使用红外传感器维持皮肤接触状态的检测,排除由于外部环境变化导致电容值的变化所产生的误判,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触,若红外传感器判断到没有物体接近,则检测到所述智能穿戴设备离开皮肤。
步骤S107:获取关闭所述智能穿戴设备的指令,将最后一次临时储存的所述当前采样电容值和所述空气基准电容值写入所述智能穿戴设备的FLASH中,关闭所述智能穿戴设备。
本实施例综上所述,本实施例在皮肤接触检测过程中调整空气基准电容值,避免了电容传感器生产中一致性不好的缺陷,生产时不需要对电容值进行校准,降低了生产的成本;此外,避免手表出厂后因环境变化导致电容值变化,引起校准值不可用的缺陷,进一步确保手表佩戴检测功能的持续可用性。
以下是本发明具体实施方式中提供的一种智能穿戴设备皮肤接触的检测系统的实施例,系统的实施例基于上述的方法的实施例实现,在系统中未尽的描述,请参考前述方法的实施例。
实施例四
请参考图4,其是本发明具体实施方式中提供的一种智能穿戴设备皮肤接触的检测系统的第一实施例的结构方框图。如图所示,该系统,包括:
采样电容值获取模块101,用于获取电容传感器的当前采样电容值;
第一判断模块102,用于判断所述当前采样电容值是否小于空气基准电容值;
第一赋值模块104,用于若所述第一判断模块判断所述当前采样电容值小于空气基准电容值,则检测到所述智能穿戴设备没有皮肤接触,将所述当前采样电容值赋予所述空气基准电容值;
第二判断模块103,用于若所述第一判断模块判断所述当前采样电容值大于或等于空气基准电容值,则判断所述当前采样电容值是否比空气基准电容值大预设百分比;
检测模块105,用于若所述第二判断模块判断所述当前采样电容值比空气基准电容值大预设百分比,则开启红外传感器,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触;
其中,所述采样电容值获取模块101,还用于若所述第一赋值模块将所述当前采样电容值赋予所述空气基准电容值,则再次获取电容传感器的采样电容值。
优选地,所述检测模块105,还用于若所述红外传感器未检测到有物体接近,则所述智能穿戴设备没有皮肤接触;所述采样电容值获取模块101,还用于若所述检测模块开启的所述红外传感器未检测到有物体接近,所述智能穿戴设备没有皮肤接触,则再次获取电容传感器的当前采样电容值。
优选地,所述采样电容值获取模块101,还用于若所述第二判断模块104判断所述当前采样电容值不比空气基准电容值大预设百分比,则再次获取电容传感器的当前采样电容值。
综上所述,本实施例综上所述,本实施例在皮肤接触检测过程中调整空气基准电容值,避免了电容传感器生产中一致性不好的缺陷,生产时不需要对电容值进行校准,降低了生产的成本;此外,避免手表出厂后因环境变化导致电容值变化,引起校准值不可用的缺陷,进一步确保手表佩戴检测功能的持续可用性。
实施例五
请参考图5,其是本发明具体实施方式中提供的一种智能穿戴设备皮肤接触的检测系统的第二实施例的结构方框图。如图所示,该系统,包括:
采样电容值获取模块101,用于获取电容传感器的当前采样电容值;
第一判断模块102,用于判断所述当前采样电容值是否小于空气基准电容值;
第一赋值模块104,用于若所述第一判断模块102判断所述当前采样电容值小于空气基准电容值,则检测到所述智能穿戴设备没有皮肤接触,将所述当前采样电容值赋予所述空气基准电容值;
第二判断模块103,用于若所述第一判断模块102判断所述当前采样电容值大于或等于空气基准电容值,则判断所述当前采样电容值是否比空气基准电容值大预设百分比;
第二赋值模块106,用于若所述第二判断模块103判断所述当前采样电容值比空气基准电容值大预设百分比,将所述当前采样电容值赋予所述空气基准电容值;
检测模块105,用于若所述第二判断模块103判断所述当前采样电容值比空气基准电容值大预设百分比,则开启红外传感器,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触;
其中,所述采样电容值获取模块101,还用于若所述第一赋值模块将所述当前采样电容值赋予所述空气基准电容值,则再次获取电容传感器的采样电容值。
优选地,所述采样电容值获取模块101,还用于若所述第二判断模块104判断所述当前采样电容值不比空气基准电容值大预设百分比,则再次获取电容传感器的当前采样电容值。
优选地,所述检测模块105,还用于若所述红外传感器未检测到有物体接近,则所述智能穿戴设备没有皮肤接触;所述采样电容值获取模块101,还用于若所述检测模块开启的所述红外传感器未检测到有物体接近,所述智能穿戴设备没有皮肤接触,则再次获取电容传感器的当前采样电容值。
综上所述,本实施例综上所述,本实施例在皮肤接触检测过程中调整空气基准电容值,避免了电容传感器生产中一致性不好的缺陷,生产时不需要对电容值进行校准,降低了生产的成本;此外,避免手表出厂后因环境变化导致电容值变化,引起校准值不可用的缺陷,进一步确保手表佩戴检测功能的持续可用性。
实施例六
本发明具体实施方式中提供的一种智能穿戴设备皮肤接触的检测系统的第三实施例的结构方框图。该系统,包括:
开启模块,用于获取上次关机过程中写入所述智能穿戴设备的FLASH中的最后一次临时储存的所述当前采样电容值和所述空气基准电容值,将两者中的较小值作为本次开机时的空气基准电容值;
采样电容值获取模块101,用于获取电容传感器的当前采样电容值;
第一判断模块102,用于判断所述当前采样电容值是否小于空气基准电容值;
第一赋值模块104,用于若所述第一判断模块102判断所述当前采样电容值小于空气基准电容值,则检测到所述智能穿戴设备没有皮肤接触,将所述当前采样电容值赋予所述空气基准电容值;
第二判断模块103,用于若所述第一判断模块102判断所述当前采样电容值大于或等于空气基准电容值,则判断所述当前采样电容值是否比空气基准电容值大预设百分比;
第二赋值模块106,用于若所述第二判断模块103判断所述当前采样电容值比空气基准电容值大预设百分比,将所述当前采样电容值赋予所述空气基准电容值;
检测模块105,用于若所述第二判断模块103判断所述当前采样电容值比空气基准电容值大预设百分比,则开启红外传感器,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触;
储存模块,用于将所述当前采样电容值赋予所述空气基准电容值之前,临时储存所述当前采样电容值和所述空气基准电容值;
其中,所述采样电容值获取模块101,还用于若所述第一赋值模块104将所述当前采样电容值赋予所述空气基准电容值,则再次获取电容传感器的采样电容值;
关闭模块,用于获取关闭所述智能穿戴设备的指令,将所述储存模块最后一次临时储存的所述当前采样电容值和所述空气基准电容值写入所述智能穿戴设备的FLASH中,关闭所述智能穿戴设备。
优选地,所述采样电容值获取模块101,还用于若所述第二判断模块103判断所述当前采样电容值不比空气基准电容值大预设百分比,则再次获取电容传感器的当前采样电容值。
优选地,所述检测模块105,还用于若所述红外传感器未检测到有物体接近,则所述智能穿戴设备没有皮肤接触;所述采样电容值获取模块101,还用于若所述检测模块105开启的所述红外传感器未检测到有物体接近,所述智能穿戴设备没有皮肤接触,则再次获取电容传感器的当前采样电容值
综上所述,本实施例综上所述,本实施例在皮肤接触检测过程中调整空气基准电容值,避免了电容传感器生产中一致性不好的缺陷,生产时不需要对电容值进行校准,降低了生产的成本;此外,避免手表出厂后因环境变化导致电容值变化,引起校准值不可用的缺陷,进一步确保手表佩戴检测功能的持续可用性。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (10)

1.一种智能穿戴设备皮肤接触的检测方法,其特征在于,包括:
a.获取电容传感器的当前采样电容值;
b.判断所述当前采样电容值是否小于空气基准电容值,若否,则继续步骤c;若是,则检测到所述智能穿戴设备没有皮肤接触,将所述当前采样电容值赋予所述空气基准电容值,并返回步骤a;
c.判断所述当前采样电容值是否比空气基准电容值大预设百分比;
d.若是,则开启红外传感器,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触。
2.根据权利要求1所述的检测方法,其特征在于,所述判断所述当前采样电容值是否比空气基准电容值大预设百分比之后,还包括:
若否,则返回步骤a。
3.根据权利要求1或2所述的检测方法,其特征在于,所述开启红外传感器之前,还包括:
将所述当前采样电容值赋予所述空气基准电容值。
4.根据权利要求3所述的检测方法,其特征在于,将所述当前采样电容值赋予所述空气基准电容值之前,还包括,临时储存所述当前采样电容值和所述空气基准电容值;
所述获取电容传感器的当前采样电容值之前,还包括:
开启所述智能穿戴设备,获取上次关机过程中写入所述智能穿戴设备的FLASH中的最后一次临时储存的所述当前采样电容值和所述空气基准电容值,将两者中的较小值作为本次开机时的空气基准电容值;
所述方法还包括:
获取关闭所述智能穿戴设备的指令,将最后一次临时储存的所述当前采样电容值和所述空气基准电容值写入所述智能穿戴设备的FLASH中,关闭所述智能穿戴设备。
5.根据权利要求1所述的检测方法,其特征在于,所述开启红外传感器之后,还包括:
若所述红外传感器未检测到有物体接近,则检测到所述智能穿戴设备没有皮肤接触,并返回步骤a。
6.一种智能穿戴设备皮肤接触的检测系统,其特征在于,包括:
采样电容值获取模块,用于获取电容传感器的当前采样电容值;
第一判断模块,用于判断所述当前采样电容值是否小于空气基准电容值;
第一赋值模块,用于若所述第一判断模块判断所述当前采样电容值小于空气基准电容值,则检测到所述智能穿戴设备没有皮肤接触,将所述当前采样电容值赋予所述空气基准电容值;
第二判断模块,用于若所述第一判断模块判断所述当前采样电容值大于或等于空气基准电容值,则判断所述当前采样电容值是否比空气基准电容值大预设百分比;
检测模块,用于若所述第二判断模块判断所述当前采样电容值比空气基准电容值大预设百分比,则开启红外传感器,若所述红外传感器检测到有物体接近,则检测到所述智能穿戴设备有皮肤接触;
所述采样电容值获取模块,还用于若所述第一赋值模块将所述当前采样电容值赋予所述空气基准电容值,则再次获取电容传感器的采样电容值。
7.根据权利要求6所述的检测系统,其特征在于,
所述采样电容值获取模块,还用于若所述第二判断模块判断所述当前采样电容值不比空气基准电容值大预设百分比,则再次获取电容传感器的当前采样电容值。
8.根据权利要求6或7所述的检测系统,其特征在于,还包括:
第二赋值模块,用于若所述第二判断模块判断所述当前采样电容值比空气基准电容值大预设百分比,将所述当前采样电容值赋予所述空气基准电容值。
9.根据权利要求8所述的检测系统,其特征在于,还包括:
储存模块,用于将所述当前采样电容值赋予所述空气基准电容值之前,临时储存所述当前采样电容值和所述空气基准电容值;
开启模块,用于获取上次关机过程中写入所述智能穿戴设备的FLASH中的最后一次临时储存的所述当前采样电容值和所述空气基准电容值,将两者中的较小值作为本次开机时的空气基准电容值;
关闭模块,用于获取关闭所述智能穿戴设备的指令,将所述储存模块最后一次临时储存的所述当前采样电容值和所述空气基准电容值写入所述智能穿戴设备的FLASH中,关闭所述智能穿戴设备。
10.根据权利要求6所述的检测系统,其特征在于,所述检测模块,还用于若所述红外传感器未检测到有物体接近,则所述智能穿戴设备没有皮肤接触;
所述采样电容值获取模块,还用于若所述检测模块开启的所述红外传感器未检测到有物体接近,所述智能穿戴设备没有皮肤接触,则再次获取电容传感器的当前采样电容值。
CN201610383311.XA 2016-06-01 2016-06-01 一种智能穿戴设备皮肤接触的检测方法及系统 Active CN106054273B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610383311.XA CN106054273B (zh) 2016-06-01 2016-06-01 一种智能穿戴设备皮肤接触的检测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610383311.XA CN106054273B (zh) 2016-06-01 2016-06-01 一种智能穿戴设备皮肤接触的检测方法及系统

Publications (2)

Publication Number Publication Date
CN106054273A true CN106054273A (zh) 2016-10-26
CN106054273B CN106054273B (zh) 2018-06-01

Family

ID=57173216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610383311.XA Active CN106054273B (zh) 2016-06-01 2016-06-01 一种智能穿戴设备皮肤接触的检测方法及系统

Country Status (1)

Country Link
CN (1) CN106054273B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645978A (zh) * 2016-10-28 2017-05-10 广东美的制冷设备有限公司 智能穿戴设备的穿戴状态检测方法及检测装置
CN107817537A (zh) * 2017-10-27 2018-03-20 华米(北京)信息科技有限公司 佩戴检测的控制方法及装置、可穿戴设备
WO2019063021A3 (zh) * 2018-09-30 2019-08-15 深圳市汇顶科技股份有限公司 电容检测模组、方法及电子设备
CN112468913A (zh) * 2019-09-06 2021-03-09 华为技术有限公司 佩戴检测装置
CN114111851A (zh) * 2021-11-30 2022-03-01 成都维客昕微电子有限公司 一种将电容检测和光电检测相结合的接近检测系统及方法
CN114485739A (zh) * 2021-12-27 2022-05-13 荣耀终端有限公司 参数校准方法和穿戴设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2406691B (en) * 2003-10-03 2006-09-06 Michael O'driscoll Voice reminder device
EP2703965A1 (en) * 2012-08-30 2014-03-05 Huawei Device Co., Ltd. Method for calibration and capacitive touch screen and capacitive touch apparatus
CN104939927A (zh) * 2015-05-26 2015-09-30 深圳市宏电技术股份有限公司 智能穿戴设备的穿戴状态检测方法、装置及智能穿戴设备
CN204833636U (zh) * 2015-08-05 2015-12-02 深圳五洲无线技术有限公司 一种识别穿戴设备穿戴状态装置
CN105167761A (zh) * 2015-09-22 2015-12-23 深圳市元征科技股份有限公司 智能穿戴设备佩戴状态检测方法及装置
CN105301949A (zh) * 2015-10-23 2016-02-03 广东小天才科技有限公司 一种智能手表佩戴状态的检测方法、系统及智能手表
CN105467825A (zh) * 2015-12-30 2016-04-06 深圳市鼎芯东方科技有限公司 智能手表佩戴检测方法和智能手表
US9310912B2 (en) * 2007-01-03 2016-04-12 Apple Inc. Storing baseline information in EEPROM

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2406691B (en) * 2003-10-03 2006-09-06 Michael O'driscoll Voice reminder device
US9310912B2 (en) * 2007-01-03 2016-04-12 Apple Inc. Storing baseline information in EEPROM
EP2703965A1 (en) * 2012-08-30 2014-03-05 Huawei Device Co., Ltd. Method for calibration and capacitive touch screen and capacitive touch apparatus
CN104939927A (zh) * 2015-05-26 2015-09-30 深圳市宏电技术股份有限公司 智能穿戴设备的穿戴状态检测方法、装置及智能穿戴设备
CN204833636U (zh) * 2015-08-05 2015-12-02 深圳五洲无线技术有限公司 一种识别穿戴设备穿戴状态装置
CN105167761A (zh) * 2015-09-22 2015-12-23 深圳市元征科技股份有限公司 智能穿戴设备佩戴状态检测方法及装置
CN105301949A (zh) * 2015-10-23 2016-02-03 广东小天才科技有限公司 一种智能手表佩戴状态的检测方法、系统及智能手表
CN105467825A (zh) * 2015-12-30 2016-04-06 深圳市鼎芯东方科技有限公司 智能手表佩戴检测方法和智能手表

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645978A (zh) * 2016-10-28 2017-05-10 广东美的制冷设备有限公司 智能穿戴设备的穿戴状态检测方法及检测装置
WO2018076744A1 (zh) * 2016-10-28 2018-05-03 广东美的制冷设备有限公司 智能穿戴设备的穿戴状态检测方法及检测装置
CN106645978B (zh) * 2016-10-28 2019-07-19 广东美的制冷设备有限公司 智能穿戴设备的穿戴状态检测方法及检测装置
CN107817537A (zh) * 2017-10-27 2018-03-20 华米(北京)信息科技有限公司 佩戴检测的控制方法及装置、可穿戴设备
CN107817537B (zh) * 2017-10-27 2019-09-17 华米(北京)信息科技有限公司 佩戴检测的控制方法及装置、可穿戴设备
WO2019063021A3 (zh) * 2018-09-30 2019-08-15 深圳市汇顶科技股份有限公司 电容检测模组、方法及电子设备
US11448675B2 (en) 2018-09-30 2022-09-20 Shenzhen GOODIX Technology Co., Ltd. Capacitance detection module, method and electronic device
CN112468913A (zh) * 2019-09-06 2021-03-09 华为技术有限公司 佩戴检测装置
CN112468913B (zh) * 2019-09-06 2022-07-19 华为技术有限公司 佩戴检测装置
CN114111851A (zh) * 2021-11-30 2022-03-01 成都维客昕微电子有限公司 一种将电容检测和光电检测相结合的接近检测系统及方法
CN114485739A (zh) * 2021-12-27 2022-05-13 荣耀终端有限公司 参数校准方法和穿戴设备

Also Published As

Publication number Publication date
CN106054273B (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
CN106054273A (zh) 一种智能穿戴设备皮肤接触的检测方法及系统
CN105786155B (zh) 一种可穿戴设备佩戴状态的判断方法及系统
CN105162928B (zh) 调节移动终端屏幕亮度的方法和装置
CN105304064B (zh) 调节电子设备屏幕亮度的方法和系统
CN102680414B (zh) 基于机器视觉的红提葡萄自动分级装置及其方法
CN103458111B (zh) 一种手机智能睡眠的方法
CN105487372A (zh) 智能手表的佩戴检测方法和装置
CN104375628B (zh) 一种信息处理方法及电子设备
CN107315468B (zh) 电量提醒方法、装置、存储介质及终端
CN104301461B (zh) 一种设备皮套状态的检测方法和装置
CN208076736U (zh) 一种佩戴检测电路及智能穿戴设备
CN104287705B (zh) 一种健康管理用智能手环及其检测方法
CN106647952A (zh) 检测可穿戴设备是否佩戴的方法与装置以及可穿戴设备
US20140349629A1 (en) Mobile device that activates upon removal from storage
CN107783644A (zh) 穿戴设备及其控制方法
CN110049152A (zh) 用来识别手机与遮蔽物距离的方法与系统
CN105975084A (zh) 环形穿戴设备的控制方法、环形穿戴设备及智能控制系统
CN105759142A (zh) 一种可穿戴设备皮肤电容阀值的校准方法及系统
CN109786278A (zh) 一种探针卡的针尖的智能检测及处理方法
CN106679102B (zh) 一种基于终端设备的空调控制方法和装置
CN113017591A (zh) 可穿戴设备的佩戴状态检测方法、装置、设备及存储介质
CN106937462A (zh) 一种终端指示灯的控制方法和终端
CN109599066A (zh) 屏幕背光调节装置及电子设备
CN109696536A (zh) 一种水质监测采样探头
CN105841807B (zh) 一种提高光传感器检测稳定性的方法、系统及智能终端

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant