CN106052962A - 一种无风度风向测量的无线传感器网络气源定位技术 - Google Patents

一种无风度风向测量的无线传感器网络气源定位技术 Download PDF

Info

Publication number
CN106052962A
CN106052962A CN201610318200.0A CN201610318200A CN106052962A CN 106052962 A CN106052962 A CN 106052962A CN 201610318200 A CN201610318200 A CN 201610318200A CN 106052962 A CN106052962 A CN 106052962A
Authority
CN
China
Prior art keywords
gas
location
wind direction
source
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610318200.0A
Other languages
English (en)
Inventor
魏善碧
石华云
李晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201610318200.0A priority Critical patent/CN106052962A/zh
Publication of CN106052962A publication Critical patent/CN106052962A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air

Abstract

本发明公开了一种无风度风向测量的无线传感器网络气源定位技术,包括以下步骤:通过无线传感器网络来检测气体浓度;采用基于湍流扩散理论的烟羽模型,得到气体浓度表达式;通过传感器检测到的浓度,通过偏差平方和来得到需要的目标函数,为参加计算的传感器测量值与真实值的误差平方和;使用优化的粒子群算对目标函数求解,得到定位结果和环境信息。本发明在不增加检测手段的情况下,对风速和风向进行在线估计,提高气源定位的鲁棒性和准确性。

Description

一种无风度风向测量的无线传感器网络气源定位技术
技术领域
本发明属于气体源无线定位领域,涉及无风度风向测量的无线传感器网络气源定位技术。
背景技术
随着工业化的飞速发展,对有毒有害气体的使用也日益增加,越来越多的人关注气体泄漏问题。在工业生产中,气体发生泄漏也是存在的,由于气体泄漏存在不确定性,发生的位置,当时的环境也是不可预测的,一旦有毒有害气体泄漏,则极易发生安全隐患。对工业生产和人员安全造成很大损失。
近年来,随着无线通信技术和半导体技术的发展,使得体积小,功耗低,灵敏度高的,通信范围大的微型传感器可以实现量产。无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖区域中被感知对象的信息,并发送给观察者。传感器、感知对象和观察者构成了无线传感器网络的三个要素。
过去的气源定位依靠传统的环境监控系统,监控设备提前安装在指定位置,通常采用高分辨率的传感器装置,实时将监测信息传回融合中心进行分析,这类的传感器通常体形较大,安装成本和维护成本较高,在监控区域较大的情况下,少量的传感器会导致定位信息不准确,需要定期更换和维护,花费较多。
另一种新兴的定位方式是通过小型自治机器人群移动搜索定位,其特点是采用的模型复杂度低,自治小机器人移动性较高。单个机器人通过浓度传感器测量周围的浓度信息并预测气体扩散的方向和速度。多个机器人整合信息协同移动搜索,利用群体智能算法完成泄漏源的定位。这种方式的缺点也是显而易见的,安装维护成本较高,在监控区域较大的情况下无法保证每个机器人有足够的能量长时间移动。
无线传感器网络定位泄漏源是研究的新兴方向,传感器节点体积小,成本低,能耗低,节点位置固定,可以长时间工作。无线传感器节点定位有着一下优点:
1)节点成本低,可在监测区域大量布置。
2)传感器节点随机放置,覆盖范围大,对浓度变化响应较快。
3)无线传感器网络应用范围广,对于一些危险区域和一些不适于使用机器人的密闭障碍空间,无线传感器可以完成监测任务。
4)低功耗嵌入式技术的飞速发展使得传感器节点功耗低,可以长时间对环境进行监测。
然而气体扩散过程易受风速,风向和湍流的影响,传统的定位算法精度并不高还会受到起始点的影响,在未知外界环境因素和噪声的情况下,则很难获得理想的效果。
为了克服以上的缺陷,需要一种既能快速准确的定位气体源,又能避免风速、噪声分布等因素影响其定位精度的方法。
发明内容
为解决气体泄漏源的定位算法存在的缺陷,本发明的目的在于提供一种无风度风向测量的无线传感器网络气源定位技术。首先通过已知位置的浓度传感器采集浓度信息,结合所用的烟羽扩散模型,求出偏差平方和形式的包含增维状态矢量的目标函数,考虑风速和风向的不确定性,系统进行了增维状态向量估计,系统非线性严重,为了实现高精度估计,得到更优化的解,采用粒子群算法为达到上述目的,本发明提供如下技术方案:
步骤一:在检测区域布置一定数量的浓度传感器,位置已知,来检测气体浓度;
步骤二:基于采用的烟羽模型,得到气体浓度表达式;
步骤三:本发明引入了气体浓度测量阈值,只有超过阈值的节点才会参加定位计算,舍弃掉低于阈值的节点。通过偏差平方和来得到需要的目标函数,为参加计算的传感器测量值与真实值的偏差平方和;
步骤四:使用优化的粒子群算对目标函数求解,得到定位结果和环境信息。本发明的有益技术效果为:本发明采用的基于粒子群算法的无线传感器预定位设计,考虑风速和风向的不确定性对气源定位的影响,在不增加检测手段的情况下,对风速和风向进行在线估计,提高气源定位的鲁棒性和准确性。避免了传统定位算法对初始点敏感的缺陷而导致局部收敛的情况,并且比传统定位算法有着更好的抗噪声性能。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明所述气体源定位方法的结构图
图2为通过偏差平方和来得到需要的目标函数流程图
图3为基于粒子群算法的定位算法流程图
图4为湍流扩散模型的气体分布图
图5为传感器节点布置图
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
发明采用的一种无风度风向测量的无线传感器网络气源定位技术,考虑风速和风向的不确定性对气源定位的影响,在不增加检测手段的情况下,对风速和风向进行在线估计,提高气源定位的鲁棒性和准确性。避免了传统定位算法对初始点敏感的缺陷而导致局部收敛的情况,并且比传统定位算法有着更好的抗噪声性能。
图1为本发明所述气体源定位方法的结构图。如图所示,该定位算法共分为四个步骤。步骤一:在检测区域布置一定数量的浓度传感器,位置已知,来检测气体浓度;步骤二:基于采用的烟羽模型,得到气体浓度表达式;步骤三:通过传感器检测到的浓度,通过偏差平方和来得到需要的目标函数,为参加计算的传感器测量值与真实值的偏差平方和;步骤四:使用优化的粒子群算对目标函数求解,得到定位结果和环境信息。
图2为通过偏差平方和来得到需要的目标函数流程图。在监测区域内随机分布一定数量的传感器节点用来收集浓度信息,根据采用的烟羽扩散模型来求出节点浓度的真实值。本发明引入了气体浓度测量阈值,只有超过阈值的节点才会参加定位计算,舍弃掉低于阈值的节点。
本发明采用基于湍流扩散理论的烟羽模型,公式如下:
C ( x i , y i ) = q 2 π K 1 x i exp [ - U 2 K ( d - Δ x ) ] - - - ( 1 )
d = ( x i - x s ) 2 - ( y i - y s ) 2 - - - ( 2 )
Δx=(xi-xs)cosθ+(yi-ys)sinθ (3)
K为湍流扩散系数,U为风速,θ为风速和x轴的夹角、(xs,ys)为当前气体源的位置。
在步骤三中,得到了传感器节点的真实值和测量值分别为:
C f ( x i , y i ) = q 2 π K 1 x i exp [ - U 2 K ( d - ( x i - x ^ s ) ) ] - - - ( 4 )
C ( x i , y i ) = q 2 π K 1 x i exp [ - U 2 K ( d - Δ x ) ] + w i - - - ( 5 )
将真实值和测量值的偏差平方和作为目标函数:
fiti=C(xi,yi)-Cf(xi,yi) (6)
f i t n e s s = - Σ i = 1 n fit i 2 - - - ( 7 )
图3为粒子群算法的流程图,仿真模型选用基于湍流扩散理论的烟羽模型,种群规模为Pnum,粒子维度为5,设为pop=(x,y,U,K,θ)。x,y为泄漏源坐标,U为风速,K为气体扩散系数,θ为风向与x轴正向的夹角。
图4为湍流扩散模型的气体分布图,气源位置(100,500)处,x轴正方向为下风向。传感器随机分布在该区域内,如图5所示。
根据适应度函数计算每个粒子的适应度值,每个粒子根据自己的飞行记录选择个体极值pbesti,然后选择适应度值最小的粒子作为全局极值gbest。根据速度更新公式和位置更新公式,更新粒子的速度和位置。
v k + 1 = wv k + c 1 rand 1 ( p best k - x k ) + c 2 rand 2 ( g best k - x k ) - - - ( 8 )
xk+1=xk+vk+1 (9)
c1和c2为学习因子,通常取[0,2]之间的随机数,rand1和rand2为0和1之间的随机数。xk和vk是粒子的当前位置和速度矢量,w为惯性权重,范围通常在0和1之间,用来保持粒子的运动惯性,使其具有扩展搜索空间的能力。
图5为传感器节点布置二维图,本发明所用的节点布置方式为随机布置。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (6)

1.一种无风度风向测量的无线传感器网络气源定位技术,首先通过已知位置信息的传感器检测泄漏气体浓度,通过偏差平方和来估计泄漏源的位置,得到定位所需的目标函数,考虑到风速和风向的不确定性后,系统进行了增维状态向量估计,系统非线性严重,为了实现高精度估计,得到更优化的解,采用粒子群算法优化目标函数,得到泄漏源位置(x,y),当时的风向与x轴的夹角θ,风速信息U和气体扩散系数K。具体包括以下步骤:
步骤一:在检测区域布置一定数量的浓度传感器,位置已知,来检测气体浓度;
步骤二:基于采用的烟羽模型,得到气体浓度表达式;
步骤三:引入了气体浓度测量阈值,只有超过阈值的节点才会参加定位计算,舍弃掉低于阈值的节点。通过偏差平方和来得到需要的目标函数,为参加计算的传感器测量值与真实值的偏差平方和;
步骤四:使用优化的粒子群算对目标函数求解,得到定位结果和环境信息。
2.根据权利要求1所述的一种无风度风向测量的无线传感器网络气源定位技术,其特征在于:步骤二中,当气体扩散达到稳定时,传感器得到气体浓度信息,
首先利用误差平方和得到需要的定位目标函数,具体步骤如下:
1)传感器检测泄漏气体浓度,确定使用的烟羽扩散模型;
2)参加定位的传感器位置为(x1,y1),(x2,y2),(x3,y3)…,(xn,yn),测量值为C(xi,yi),通过烟羽模型得到的真实值为Cf(xi,yi)。
3)最小二乘法计算误差平方和fiti=C(xi,yi)-Cf(xi,yi);
4)得到所需的定位目标函数
3.根据权利要求1所述的一种无风度风向测量的无线传感器网络气源定位技术,其特征在于:步骤三中,引入了气体浓度测量阈值,只有超过阈值的节点才会参加定位计算,舍弃掉低于阈值的节点。
4.根据权利要求1所述的一种无风度风向测量的无线传感器网络气源定位技术,其特征在于:步骤四中所使用的优化粒子群算法来求解定位目标函数,具体步骤如下:
1)随机在监测区域放置一定的传感器节点测量浓度信息;
2)通过所使用的烟羽扩散模型得到测量节点的真实值Cf(xi,yi),由于考虑到外界干扰的影响,只有浓度值达到一定阈值的节点才参加定位计算;
3)粒子群算法的适应度函数选择为传感器测量值与真实值的误差平方和;
4)根据监测区域大小灵活选择种群规模和迭代次数,得到最终结果。
5.根据权利要求1所述的一种无风度风向测量的无线传感器网络气源定位技术,其特征在于:步骤四中的粒子群优化算法,考虑风速和风向的不确定性对气源 定位的影响,在不增加检测手段的情况下,对风速和风向进行在线估计,提高气源定位的鲁棒性和准确性。具体步骤如下:
1)仿真模型选用基于湍流扩散理论的烟羽模型,种群规模为Pnum,粒子维度为5,设为pop=(x,y,U,K,θ)。x,y为泄漏源坐标,U为风速,K为气体扩散系数,U为风向。
2)估计定位位置(xs,ys),风速U,风向θ,气体扩散系数K的真实值和估计值的误差体现在fiti=C(xi,yi)-Cf(xi,yi)。
3)根据适应度函数计算粒子的适应度值,每个粒子根据飞行记录选择个体极值pbesti和全局极值gbest
4)动态改变惯性权重,使用线性微分策略:
5)根据位置和速度更新公式,更新粒子的速度和位置矢量:
vk+1=wvk+c1rand1(pbestk-xk)+c2rand2(gbestk-xk)
xk+1=xk+vk+1
6.一种应用权利要求1至5中任一项所述的一种无风度风向测量的无线传感器网络气源定位技术。
CN201610318200.0A 2016-05-13 2016-05-13 一种无风度风向测量的无线传感器网络气源定位技术 Pending CN106052962A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610318200.0A CN106052962A (zh) 2016-05-13 2016-05-13 一种无风度风向测量的无线传感器网络气源定位技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610318200.0A CN106052962A (zh) 2016-05-13 2016-05-13 一种无风度风向测量的无线传感器网络气源定位技术

Publications (1)

Publication Number Publication Date
CN106052962A true CN106052962A (zh) 2016-10-26

Family

ID=57177778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610318200.0A Pending CN106052962A (zh) 2016-05-13 2016-05-13 一种无风度风向测量的无线传感器网络气源定位技术

Country Status (1)

Country Link
CN (1) CN106052962A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107944070A (zh) * 2017-10-09 2018-04-20 中国电子科技集团公司第二十八研究所 一种城市气体危化品泄漏的扩散仿真方法及系统
CN108828140A (zh) * 2018-04-26 2018-11-16 中国计量大学 一种基于粒子群算法的多无人机协同恶臭溯源方法
CN109520679A (zh) * 2018-11-21 2019-03-26 哈尔滨工业大学(威海) 一种管廊气体泄漏检测及预测系统
CN109781945A (zh) * 2019-02-14 2019-05-21 北京市环境保护监测中心 一种基于移动装置的污染物区域间传输排查方法与系统
CN110308250A (zh) * 2019-07-15 2019-10-08 重庆文理学院 一种生姜姜瘟病植株自动监测定位方法及系统
CN110596327A (zh) * 2019-06-25 2019-12-20 北京机械设备研究所 一种污染气体成分及浓度检测方法
CN110778923A (zh) * 2019-11-11 2020-02-11 安徽恒宇环保设备制造股份有限公司 一种用于化工厂的气体泄漏点逆向寻源定位系统
CN113705763A (zh) * 2020-05-20 2021-11-26 贵州电网有限责任公司 一种基于神经计算棒的配网变压器实时检测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102314748A (zh) * 2011-07-05 2012-01-11 万达信息股份有限公司 一种基于无线传感器网络的毒气泄漏源定位方法
US20120068822A1 (en) * 2010-09-22 2012-03-22 General Electric Company System and method for determining the location of wireless sensors
CN104007240A (zh) * 2014-06-13 2014-08-27 重庆大学 一种基于双目识别与电子鼻网络气体检测的融合定位技术
CN104280789A (zh) * 2014-10-29 2015-01-14 清华大学 化学品泄漏源定位方法、定位装置、处理装置及系统
CN104834017A (zh) * 2015-04-30 2015-08-12 华南理工大学 一种有毒有害气体泄漏扩散事故源定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120068822A1 (en) * 2010-09-22 2012-03-22 General Electric Company System and method for determining the location of wireless sensors
CN102314748A (zh) * 2011-07-05 2012-01-11 万达信息股份有限公司 一种基于无线传感器网络的毒气泄漏源定位方法
CN104007240A (zh) * 2014-06-13 2014-08-27 重庆大学 一种基于双目识别与电子鼻网络气体检测的融合定位技术
CN104280789A (zh) * 2014-10-29 2015-01-14 清华大学 化学品泄漏源定位方法、定位装置、处理装置及系统
CN104834017A (zh) * 2015-04-30 2015-08-12 华南理工大学 一种有毒有害气体泄漏扩散事故源定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张久凤 等: "《粒子群优化算法在源强反算问题中的应用研究》", 《中国安全科学学报》 *
李铭泽: "《基于无线传感器网络的气味源定位方法》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107944070A (zh) * 2017-10-09 2018-04-20 中国电子科技集团公司第二十八研究所 一种城市气体危化品泄漏的扩散仿真方法及系统
CN107944070B (zh) * 2017-10-09 2021-06-25 中国电子科技集团公司第二十八研究所 一种城市气体危化品泄漏的扩散仿真方法及系统
CN108828140A (zh) * 2018-04-26 2018-11-16 中国计量大学 一种基于粒子群算法的多无人机协同恶臭溯源方法
CN109520679A (zh) * 2018-11-21 2019-03-26 哈尔滨工业大学(威海) 一种管廊气体泄漏检测及预测系统
CN109781945A (zh) * 2019-02-14 2019-05-21 北京市环境保护监测中心 一种基于移动装置的污染物区域间传输排查方法与系统
CN110596327A (zh) * 2019-06-25 2019-12-20 北京机械设备研究所 一种污染气体成分及浓度检测方法
CN110308250A (zh) * 2019-07-15 2019-10-08 重庆文理学院 一种生姜姜瘟病植株自动监测定位方法及系统
CN110778923A (zh) * 2019-11-11 2020-02-11 安徽恒宇环保设备制造股份有限公司 一种用于化工厂的气体泄漏点逆向寻源定位系统
CN113705763A (zh) * 2020-05-20 2021-11-26 贵州电网有限责任公司 一种基于神经计算棒的配网变压器实时检测方法及系统
CN113705763B (zh) * 2020-05-20 2024-02-20 贵州电网有限责任公司 一种基于神经计算棒的配网变压器实时检测方法及系统

Similar Documents

Publication Publication Date Title
CN106052962A (zh) 一种无风度风向测量的无线传感器网络气源定位技术
Cai et al. Multi-objective three-dimensional DV-hop localization algorithm with NSGA-II
Kim et al. Target localization using ensemble support vector regression in wireless sensor networks
La et al. Distributed sensor fusion for scalar field mapping using mobile sensor networks
Bulten et al. Human SLAM, indoor localisation of devices and users
Rani et al. An optimized approach of dynamic target nodes in wireless sensor network using bio inspired algorithms for maritime rescue
Habibi et al. Distributed coverage control of mobile sensor networks subject to measurement error
Bhat et al. Is localization of wireless sensor networks in irregular fields a challenge?
CN102186194B (zh) 基于无线传感器网络的无源目标测量模型的建立方法
CN102752784A (zh) 无线传感器网络中基于图论的分布式事件域的检测方法
Ma et al. Location of natural gas leakage sources on offshore platform by a multi-robot system using particle swarm optimization algorithm
Huang et al. Wearable indoor localisation approach in Internet of Things
Xue et al. DeepTAL: Deep learning for TDOA-based asynchronous localization security with measurement error and missing data
Xia et al. Localizability judgment in UWSNs based on skeleton and rigidity theory
Nkemeni et al. A distributed computing solution based on distributed kalman filter for leak detection in WSN-based water pipeline monitoring
Wu et al. An improved underwater acoustic network localization algorithm
Sharma et al. Localization in wireless sensor networks for accurate event detection
Chouhan et al. Experimental Analysis for Position Estimation using Trilateration and RSSI in Industry 4.0
Huang et al. Performance limits in sensor localization
Chen et al. Particle source localization with a low-cost robotic sensor system: Algorithmic design and performance evaluation
Wu et al. Motion parameter capturing of multiple mobile targets in robotic sensor networks
Cavalcanti et al. On improving temporal and spatial mobility metrics for wireless ad hoc networks
Patil et al. Robust state and unknown input estimator and its application to robot localization
Ghelichi et al. Target localization in wireless sensor network based on time difference of arrival
Yadav et al. Q-Learning based optimized localization in WSN

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161026

WD01 Invention patent application deemed withdrawn after publication