CN106043690A - 固定翼无人机失速悬停降落方法及系统 - Google Patents

固定翼无人机失速悬停降落方法及系统 Download PDF

Info

Publication number
CN106043690A
CN106043690A CN201610606689.1A CN201610606689A CN106043690A CN 106043690 A CN106043690 A CN 106043690A CN 201610606689 A CN201610606689 A CN 201610606689A CN 106043690 A CN106043690 A CN 106043690A
Authority
CN
China
Prior art keywords
stall
point
unmanned plane
landing
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610606689.1A
Other languages
English (en)
Other versions
CN106043690B (zh
Inventor
张骞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Nan Yu Science And Technology Ltd
Original Assignee
Xiamen Nan Yu Science And Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Nan Yu Science And Technology Ltd filed Critical Xiamen Nan Yu Science And Technology Ltd
Priority to CN201610606689.1A priority Critical patent/CN106043690B/zh
Publication of CN106043690A publication Critical patent/CN106043690A/zh
Application granted granted Critical
Publication of CN106043690B publication Critical patent/CN106043690B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)

Abstract

本发明涉及固定翼无人机失速悬停降落方法及系统,其降落的方法通过降低无人机的飞行速度并且使其失速悬停,该降落方法对降落地点的场地要求简单,对净空范围要求低,可以实现较为精准的降落;固定翼无人机失速悬停降落的系统通过操控固定翼无人机的飞行航向,在降落过程中,使无人机失速悬停后再进行降落,该系统简单有效。

Description

固定翼无人机失速悬停降落方法及系统
技术领域
本发明涉及无人机技术领域,具体涉及固定翼无人机失速悬停降落方法及系统。
背景技术
固定翼无人机具有续航时间长,载重量大,适合远距离连续工作等优点,因此在大面积测绘、航拍中都有广泛的应用。
固定翼无人机在大面积测绘、航拍的过程中,经常要在不具备场地空旷、土地平整、无水塘或水田的地方降落。现有无人机的降落方式主要有跑道着陆、撞网回收、伞将回收这三种方式。跑道着陆降落对场地的要求比较高,需要有足够的开阔且需要平整可作为降落跑道的场地;
撞网回收对设备要求较高,必须携带支撑撞网的支架,并且要求降落地点足够空旷;
伞降回收对设备降落的位置比较难以把控,要求降落地点足够空旷,而且需要周边没有水塘、水田或树林。
由于对降落场地的要求复杂、飞行速度又比较快,导致在固定翼无人机使用中,使用场景和飞行距离受到了非常大的限制,而且增加了由于降落条件不完全具备而导致的坠机损失,严重提高了固定翼无人机的使用成本,因此固定翼无人机的降落是行业内一直难以解决的难题。
发明内容
本发明提供了一种固定翼无人机失速悬停降落方法及系统,该降落方法对降落地点的场地要求简单,对净空范围要求低,可以实现较为精准的降落,在降落地点判断不对或原有降落条件缺失的情况下,可以再次进入飞行状态,调整飞行路线重新降落,在降落地点接近地面悬停时可以选择手持回收、低空伞降、或缓慢坠地。
本发明是以如下技术方案实现的:
一种固定翼无人机失速悬停降落方法,包括以下步骤:
S1. 获取固定翼无人机的航行信息;
S2. 计算降落航线,确定出失速悬停降落起点、姿态转换点、失速点和降落点的位置;
S3. 固定翼无人机飞行至失速悬停降落起点,根据降落航线从失速悬停降落起点俯冲至姿态转换点,到达姿态转换点后拉高至失速点,当固定翼无人机处于失速点时,固定翼无人机的机身与地面垂直,并处于失速状态,固定翼无人机进入失速点后,螺旋桨马达加速,使固定翼无人机处于悬停状态;
S4. 在悬停状态下,降低悬停高度,进入降落点进行回收。
优选的,固定翼无人机启动降落程序后,判断降落点是否处于无人机飞行航向的正前方,
降落点处于飞行航向的正前方时,执行权利要求1的降落步骤;
降落点不处于飞行航向的正前方时,调整无人机的飞行航向,使降落点处于飞行航向的正前方,再执行权利要求1的降落步骤。
优选的,固定翼无人机飞行至失速悬停降落起点时,所述降落点位于飞行航向的正前方。
优选的,固定翼无人机进入失速悬停降落起点后,螺旋桨马达停止运转,以航迹角γ下滑至姿态转换点;到达姿态转换点后,螺旋桨马达启动与舵机一同将机身姿态调整至机头向上,当机身与地面垂直时,螺旋桨马达加速,使固定翼无人机处于失速悬停状态。
优选的,所述失速悬停降落起点、姿态转换点和降落点分布在同一条直线上,航迹角γ为失速悬停降落起点、姿态转换点和降落点三者的连线与地平面之间的夹角。
优选的,失速悬停降落起点和姿态转换点的高度差为H,航迹角γ,其中H符合以下公式:
H=Hσexp(-(x-xflare)/σ)+(x-xTD)tanγ
其中σ为指数衰减因子,x为失速悬停降落起点和降落点之间的水平距离,xTD为姿态转换点和降落点之间的水平距离,xflare为失速悬停降落起点和姿态转换点之间的水平距离。
优选的,无人机到达降落点后,判断降落点的环境是否符合回收条件,符合回收条件时,进入回收程序;不符合回收条件时,控制系统操控该固定翼无人机再次进入飞行状态,重新计算降落航线,然后再启动降落程序。
本发明还提供了一种固定翼无人机失速悬停降落系统,该系统包括定位系统、计算系统和控制系统,
定位系统:用于实时获取固定翼无人机的位置;
计算系统:用于计算固定翼无人机的降落航线;
控制系统:用于控制螺旋桨马达的运转、机翼导流板和尾翼舵板的扭转;所述降落航线包括失速悬停降落起点、姿态转换点、失速点和降落点。
优选的,所述失速悬停降落起点、姿态转换点和降落点分布在同一条直线上,所述姿态转换点设置在失速悬停降落起点和降落点之间。
优选的,所述定位系统为机载实时传输协议(RTP)差分GPS定位系统,该定位系统能够获取固定翼无人机飞行速度、高度和航向信息。
本发明提供了一种固定翼无人机失速悬停降落方法,该降落方法采用失速悬停的降落步骤,可以使飞行速度非常高的无人机迅速进入近地低速悬停状态,适用于不同环境的降落点;该降落方法对降落地点的场地要求简单,对净空范围要求低,可以实现较为精准的降落,在降落地点判断不对或原有降落条件缺失的情况下,可以再次进入飞行状态,调整飞行路线重新降落,在降落地点接近地面悬停时可以选择手持回收、低空伞降、或缓慢坠地。
附图说明
图1是固定翼无人机降落过程示意图。
图2是固定翼无人机降落过程的流程图。
图3是固定翼无人机失速悬停降落的系统的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
如图1所示,本实施例公开了一种固定翼无人机失速悬停降落方法,该方法包括以下步骤:
第一步,获取固定翼无人机的航行信息,航行信息包括飞行速度和航向信息,这些航行信息可以通过记载的实时传输协议(RTP)差分GPS定位系统来获取。
第二步,计算降落航线,确定出失速悬停降落起点A、姿态转换点B、失速点C和降落点D的位置;其中降落点D的位置优选以土地平整、无水塘或水田等适宜回收的地点。
第三步,固定翼无人机飞行至失速悬停降落起点A,根据降落航线从失速悬停降落起点A俯冲至姿态转换点B,到达姿态转换点B后拉高至失速点C,当固定翼无人机处于失速点C时,固定翼无人机的机身与地面垂直,并处于失速状态,固定翼无人机进入失速点C后,螺旋桨马达加速,使固定翼无人机处于悬停状态。
第四步,在悬停状态下,降低悬停高度,进入降落点D进行回收。在降落点接近地面悬停时可以选择手持回收、低空伞降、或缓慢坠地。
参考图2,在固定翼无人机启动降落程序后,首先根据RTP差分GPS定位系统获取的无人机的飞行高度、速度和飞行航向等航行信息,根据获取的航行信息判断降落点的位置是否处于飞行航向的正前方,处于正前方时,无人机执行上述的降落步骤;不处于正前方时,先调整无人机的飞行航向,使得降落点位于无人机飞行航向的正前方,再执行上述的降落步骤。
参考图1,降落程序启动后,固定翼无人机飞行至失速悬停降落起点时,所述降落点位于飞行航向的正前方。为了快速的降低无人机的飞行速度,缩短降落航线的行程,固定翼无人机进入失速悬停降落起点后,螺旋桨马达停止运转,以航迹角γ下滑至姿态转换点;到达姿态转换点后,螺旋桨马达启动与舵机一同将机身姿态调整至机头向上,当机身与地面垂直时,螺旋桨马达加速,使固定翼无人机处于失速悬停状态。优选的,失速悬停降落起点、姿态转换点和降落点分布在同一条直线上,航迹角γ为失速悬停降落起点、姿态转换点和降落点的连线与地平面的夹角。
参考图1,失速悬停降落起点和姿态转换点的高度差为H,航迹角γ,其中H符合以下公式:
H=Hσexp(-(x-xflare)/σ)+(x-xTD)tanγ
其中σ为指数衰减因子,x为失速悬停降落起点和降落点之间的水平距离,xTD为姿态转换点和降落点之间的水平距离,xflare为失速悬停降落起点和姿态转换点之间的水平距离。
参考图1和图2,固定翼无人机启动降落程序后,根据无人机上机载的RTP差分GPS系统,获取无人机的航行信息,调整无人机的飞行航向,使得降落点位于无人机的正前方,无人机飞行至失速悬停降落起点A后,关闭螺旋桨的马达,使无人机沿着降落航线AB俯冲滑行至姿态转换点B,到达姿态转换点B后,调整机翼导流板、尾翼舵板的舵机扭转,使无人机拉高至失速点C,到达失速点C时,无人机的机身与地平面处于垂直姿态,然后迅速启动螺旋桨的马达,使无人机处于悬停状态,然后缓慢降落无人机的高度,使其到达降落点D,到达降落点D后,无人机到达降落点后,判断降落点的环境是否符合回收条件,符合回收条件时,进入回收程序;不符合回收条件时,控制系统操控该固定翼无人机再次进入飞行状态,重新计算降落航线,然后再启动降落程序。
实施例2:
如图3所示,本实施例公开了一种固定翼无人机失速悬停降落的系统,该系统包括定位系统、计算系统和控制系统,其中,
定位系统:用于实时获取固定翼无人机的航行信息;
计算系统:用于计算固定翼无人机的降落航线;
控制系统:用于控制螺旋桨马达的运转、机翼导流板和尾翼舵板的舵机扭转;
所述降落航线包括失速悬停降落起点、姿态转换点、失速点和降落点。
控制系统操控无人机飞行至失速悬停降落起点,根据降落航线从失速悬停降落起点俯冲至姿态转换点,到达姿态转换点后螺旋桨马达启动,调整姿态并拉高至失速点,当固定翼无人机处于失速点时,固定翼无人机的机身与地面垂直,并处于失速状态,固定翼无人机进入失速点后,螺旋桨马达加速,使固定翼无人机处于悬停状态;在悬停状态下,降低悬停高度,进入降落点进行回收。
参考图1,所述失速悬停降落起点、姿态转换点和降落点分布在同一条直线上,所述姿态转换点设置在失速悬停降落起点和降落点之间。优选的,所述定位系统为机载实时传输协议(RTP)差分GPS定位系统,该定位系统能够获取固定翼无人机飞行速度、高度和航向信息。进一步优选的,所述计算系统在MATLAB环境下实现降落航线的计算。
参考图1、图2和图3,该固定翼无人机失速悬停降落系统启动降落程序后,根据无人机上机载的RTP差分GPS系统,获取无人机的航行信息,控制系统操控无人机的飞行航向,调整无人机的飞行航向,使得降落点位于无人机的正前方,无人机飞行至失速悬停降落起点A后,关闭螺旋桨的马达,使无人机沿着降落航线AB俯冲滑行至姿态转换点B,到达姿态转换点B后,调整机翼导流板、尾翼舵板的舵机扭转,使无人机拉高至失速点C,到达失速点C时,无人机的机身与地平面处于垂直姿态,然后迅速启动螺旋桨的马达,使无人机处于悬停状态,然后缓慢降落无人机的高度,使其到达降落点D,到达降落点D后,进行回收。如果降落点的位置判断不对或者原有降落条件缺失的情况下,控制系统可以操控无人机再次进入飞行状态,然后再次执行降落程序,直至降落点的环境适宜降落。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

1.一种固定翼无人机失速悬停降落方法,其特征在于,包括以下步骤:
S1. 获取固定翼无人机的航行信息;
S2. 计算降落航线,确定出失速悬停降落起点、姿态转换点、失速点和降落点的位置;
S3. 固定翼无人机飞行至失速悬停降落起点,根据降落航线从失速悬停降落起点俯冲至姿态转换点,到达姿态转换点后拉高至失速点,当固定翼无人机处于失速点时,固定翼无人机的机身与地面垂直,并处于失速状态,固定翼无人机进入失速点后,螺旋桨马达加速,使固定翼无人机处于悬停状态;
S4. 在悬停状态下,降低悬停高度,进入降落点进行回收。
2.根据权利要求1所述的固定翼无人机失速悬停降落方法,其特征在于,固定翼无人机启动降落程序后,判断降落点是否处于无人机飞行航向的正前方,
降落点处于飞行航向的正前方时,执行权利要求1的降落步骤;
降落点不处于飞行航向的正前方时,调整无人机的飞行航向,使降落点处于飞行航向的正前方,再执行权利要求1的降落步骤。
3.根据权利要求2所述的固定翼无人机失速悬停降落方法,其特征在于,固定翼无人机飞行至失速悬停降落起点时,所述降落点位于飞行航向的正前方。
4.根据权利要求3所述的固定翼无人机失速悬停降落方法,其特征在于,固定翼无人机进入失速悬停降落起点后,螺旋桨马达停止运转,以航迹角γ下滑至姿态转换点;到达姿态转换点后,螺旋桨马达启动,与舵机一同将机身姿态调整至机头向上,当机身与地面垂直时,螺旋桨马达加速,使固定翼无人机处于失速悬停状态。
5.根据权利要求4所述的固定翼无人机失速悬停降落方法,其特征在于,所述失速悬停降落起点、姿态转换点和降落点分布在同一条直线上,航迹角γ为失速悬停降落起点、姿态转换点和降落点三者的连线与地平面之间的夹角。
6.根据权利要求5所述的固定翼无人机失速悬停降落方法,其特征在于,失速悬停降落起点和姿态转换点的高度差为H,航迹角γ,其中H符合以下公式:
H=Hσexp(-(x-xflare)/σ)+(x-xTD)tanγ
其中σ为指数衰减因子,x为失速悬停降落起点和降落点之间的水平距离,xTD为姿态转换点和降落点之间的水平距离,xflare为失速悬停降落起点和姿态转换点之间的水平距离。
7.根据权利要1-6任一所述的固定翼无人机失速悬停降落方法,其特征在于,无人机到达降落点后,判断降落点的环境是否符合回收条件,符合回收条件时,进入回收程序;不符合回收条件时,控制系统操控该固定翼无人机再次进入飞行状态,重新计算降落航线,然后再启动降落程序。
8.固定翼无人机失速悬停降落的系统,其特征在于,该系统包括定位系统、计算系统和控制系统,
定位系统:用于实时获取固定翼无人机的航行信息;
计算系统:用于计算固定翼无人机的降落航线;
控制系统:用于控制螺旋桨马达的运转、机翼导流板和尾翼舵板的扭转;所述定位系统与计算系统相连接,所述控制系统与计算系统相连接,所述降落航线包括失速悬停降落起点、姿态转换点、失速点和降落点。
9.根据权利要求8所述的固定翼无人机失速悬停降落系统,其特征在于,所述失速悬停降落起点、姿态转换点和降落点分布在同一条直线上,所述姿态转换点设置在失速悬停降落起点和降落点之间。
10.根据权利要求8所述的固定翼无人机失速悬停降落系统,其特征在于,所述定位系统为机载实时传输协议(RTP)差分GPS定位系统,该定位系统能够获取固定翼无人机飞行速度、高度和航向信息。
CN201610606689.1A 2016-07-29 2016-07-29 固定翼无人机失速悬停降落方法及系统 Expired - Fee Related CN106043690B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610606689.1A CN106043690B (zh) 2016-07-29 2016-07-29 固定翼无人机失速悬停降落方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610606689.1A CN106043690B (zh) 2016-07-29 2016-07-29 固定翼无人机失速悬停降落方法及系统

Publications (2)

Publication Number Publication Date
CN106043690A true CN106043690A (zh) 2016-10-26
CN106043690B CN106043690B (zh) 2018-09-07

Family

ID=57195687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610606689.1A Expired - Fee Related CN106043690B (zh) 2016-07-29 2016-07-29 固定翼无人机失速悬停降落方法及系统

Country Status (1)

Country Link
CN (1) CN106043690B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807666A (zh) * 2017-11-29 2018-03-16 天津聚飞创新科技有限公司 飞行器、飞行控制方法及装置
CN111213106A (zh) * 2019-03-27 2020-05-29 深圳市大疆创新科技有限公司 一种无人机的降落控制方法、飞行控制设备及无人机
CN114049798A (zh) * 2021-11-10 2022-02-15 中国人民解放军国防科技大学 一种无人机自主撞网回收航线的自动生成方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102133926A (zh) * 2011-03-08 2011-07-27 上海大学 一种尾坐式垂直起降无人飞行器
CN103640696A (zh) * 2013-12-05 2014-03-19 新誉集团有限公司 垂降无人机及其控制方法
US20150102157A1 (en) * 2013-10-15 2015-04-16 Swift Engineering, Inc. Vertical take-off and landing aircraft
CN204473140U (zh) * 2015-03-05 2015-07-15 华北电力大学科技学院 新型垂直起降倾转旋翼二轴飞行器
CN105711834A (zh) * 2016-02-02 2016-06-29 深圳市高端玩具有限公司 旋翼推进垂直启飞式滑翔机及其飞行控制方法
CN205931251U (zh) * 2016-07-29 2017-02-08 厦门南羽科技有限公司 固定翼无人机失速悬停降落系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102133926A (zh) * 2011-03-08 2011-07-27 上海大学 一种尾坐式垂直起降无人飞行器
US20150102157A1 (en) * 2013-10-15 2015-04-16 Swift Engineering, Inc. Vertical take-off and landing aircraft
CN103640696A (zh) * 2013-12-05 2014-03-19 新誉集团有限公司 垂降无人机及其控制方法
CN204473140U (zh) * 2015-03-05 2015-07-15 华北电力大学科技学院 新型垂直起降倾转旋翼二轴飞行器
CN105711834A (zh) * 2016-02-02 2016-06-29 深圳市高端玩具有限公司 旋翼推进垂直启飞式滑翔机及其飞行控制方法
CN205931251U (zh) * 2016-07-29 2017-02-08 厦门南羽科技有限公司 固定翼无人机失速悬停降落系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807666A (zh) * 2017-11-29 2018-03-16 天津聚飞创新科技有限公司 飞行器、飞行控制方法及装置
CN111213106A (zh) * 2019-03-27 2020-05-29 深圳市大疆创新科技有限公司 一种无人机的降落控制方法、飞行控制设备及无人机
CN114049798A (zh) * 2021-11-10 2022-02-15 中国人民解放军国防科技大学 一种无人机自主撞网回收航线的自动生成方法和装置
CN114049798B (zh) * 2021-11-10 2022-07-29 中国人民解放军国防科技大学 一种无人机自主撞网回收航线的自动生成方法和装置

Also Published As

Publication number Publication date
CN106043690B (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
CN205931251U (zh) 固定翼无人机失速悬停降落系统
CN109911231B (zh) 基于gps和图像识别混合导航的无人机自主着舰方法与系统
CN107544550B (zh) 一种基于视觉引导的无人机自动着陆方法
CN102582826B (zh) 一种四旋翼无人飞行器的驾驶方法和系统
CN104991565B (zh) 伞降固定翼无人机自主定点回收方法
CN101893892B (zh) 一种无人机自动伞降回收控制方法
CN102806990B (zh) 便捷型测绘无人机
CN109683629B (zh) 基于组合导航和计算机视觉的无人机电力架线系统
CN107240063A (zh) 一种面向移动平台的旋翼无人机自主起降方法
US9221557B1 (en) UAV retrieval system and method
CN105938369A (zh) 飞行器的控制系统及控制方法
CN100541372C (zh) 一种无人机发动机意外停车下的自动归航控制方法
CN105292494A (zh) 无人机伞降方法和装置
Tariq et al. Development of a low cost and light weight uav for photogrammetry and precision land mapping using aerial imagery
CN106043690A (zh) 固定翼无人机失速悬停降落方法及系统
CN108319284B (zh) 一种适用于障碍物环境的无人机下滑段轨迹设计方法
CN105487092B (zh) 机场廊桥对接飞机舱口导航系统
CN106379552A (zh) 基于系留气球的小型无人机收放方法
CN111650962A (zh) 一种适用于带状测区的多旋翼无人机航线规划与航摄方法
CN114661065A (zh) 固定翼无人机的起飞与降落系统及方法
US10453350B2 (en) Fixed-wing aircraft and flight control method and system thereof
CN202935570U (zh) 便捷型测绘无人机
CN104571127B (zh) 无人直升机前飞速度/垂直速度匹配的巡线飞行控制方法
EP4255804A1 (en) Steerable dependent vehicle for unmanned aerial vehicles
CN115686043A (zh) 固定翼飞行器和旋翼飞行器的空中对接方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180907

Termination date: 20210729