CN106026334B - 超级电容三段式充电电路及其为超级电容快速充电的方法 - Google Patents

超级电容三段式充电电路及其为超级电容快速充电的方法 Download PDF

Info

Publication number
CN106026334B
CN106026334B CN201610599055.8A CN201610599055A CN106026334B CN 106026334 B CN106026334 B CN 106026334B CN 201610599055 A CN201610599055 A CN 201610599055A CN 106026334 B CN106026334 B CN 106026334B
Authority
CN
China
Prior art keywords
circuit
voltage
super capacitor
output end
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610599055.8A
Other languages
English (en)
Other versions
CN106026334A (zh
Inventor
刘树林
张法旺
周闵阳光
韩跃云
徐惠三
聂燊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Science and Technology
Original Assignee
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Science and Technology filed Critical Xian University of Science and Technology
Priority to CN201610599055.8A priority Critical patent/CN106026334B/zh
Publication of CN106026334A publication Critical patent/CN106026334A/zh
Application granted granted Critical
Publication of CN106026334B publication Critical patent/CN106026334B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种超级电容三段式充电电路,包括Buck变换器电路、电流采样电路、充电模式控制电路和充电驱动电路,超级电容与Buck变换器电路的输出端连接,电流采样电路与Buck变换器电路连接,充电模式控制电路与电流采样电路的输出端、超级电容和充电驱动电路的参考电压输出端均连接,充电驱动电路与充电模式控制电路的输出端和电流采样电路的输出端均连接,Buck变换器电路与充电驱动电路的PWM信号输出端连接;本发明公开还公开了一种超级电容三段式充电电路为超级电容快速充电的方法。本发明实现方便且成本低,提高了超级电容的充电速度,工作稳定性和可靠性高,能够有效的保护超级电容的充放电性能,实用性强。

Description

超级电容三段式充电电路及其为超级电容快速充电的方法
技术领域
本发明属于超级电容充电电路技术领域,具体涉及一种超级电容三段式充电电路及其为超级电容快速充电的方法。
背景技术
随着社会经济的发展,人们对于绿色能源和生态环境越来越关注,超级电容器作为一种新型的储能器件,因其无可替代的优越性,越来越受到人们的重视。超级电容具有存储能量大、充电速度快、循环使用寿命长、功率密度高、超低温特性好和绿色环保等诸多优点。与蓄电池相比,它具有更低的串联等效电阻、更长的使用寿命、更宽的温度工作范围、更宽的电压变化范围、免维护和可密封等优势。目前,关于超级电容的充电方式主要由以下几种,恒流充电、恒压充电、恒流转恒压充电、脉冲电流充电以及恒功率充电等。采取恒流充电,此方法比较简单,但它的缺点在于,如果充电电流较小,充电时间会很长,若充电电流较大,充电后期可能对超级电容造成一定的损坏,大电流充电在实现缩短充电时间的同时,超级电容器的储能量也受到了较大的限制。恒压充电能够在很大程度上稳定电容器的双电层平衡电势,有利于双电层的稳定形成。恒压充电刚开始时充电效率随着充电时间的增加而增加,但当充电效率达到一定时,充电效率随着充电时间的增加将会将低。恒功率充电能够有效的提高充电效率,缩短充电时间,但是其控制电路实现比较复杂。充电方式对超级电容的充电效率,储能容量,充电时间等都有很大的影响。恒流充电效率高但是到了充电的后期电容两端电压过大且会影响超级电容的储能容量;恒压充电效率过低,充电时间慢;恒功率充电控制电路复杂。所以可以采取组合充电的方式,来克服不同充电方式对超级电容性能的影响。但是,现在技术中还缺乏电路结构简单、设计合理、工作可靠性高,能够解决超级电容在单一充电模式时带来的弊端、能够有效的保护超级电容的充放电性能的超级电容充电电路。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种电路结构简单、计新颖合理、实现方便且成本低、提高了超级电容的充电速度、工作稳定性和可靠性高、能够有效的保护超级电容的充放电性能、实用性强、使用效果好、便于推广使用的超级电容三段式充电电路。
为解决上述技术问题,本发明采用的技术方案是:一种超级电容三段式充电电路,其特征在于:包括与电压源的输出端连接的Buck变换器电路、用于对Buck变换器电路的输出电流进行采样的电流采样电路、充电模式控制电路和充电驱动电路,所述超级电容与Buck变换器电路的输出端连接,所述电流采样电路与Buck变换器电路连接,所述充电模式控制电路与电流采样电路的输出端、超级电容和充电驱动电路的参考电压输出端均连接,所述充电驱动电路与充电模式控制电路的输出端和电流采样电路的输出端均连接,所述Buck变换器电路与充电驱动电路的PWM信号输出端连接;
所述充电模式控制电路包括运算放大器U2和运算放大器U3,稳压二极管D2、开关二极管D3和开关二极管D4;所述运算放大器U2的同相输入端通过电阻R5与电流采样电路的输出端连接,且通过电阻R6与稳压二极管D2的阳极连接,所述稳压二极管D2的阴极与超级电容的正极连接,所述运算放大器U2的反相输入端通过电阻R10与充电驱动电路的参考电压输出端连接,且通过电阻R11接地,所述运算放大器U2的反相输入端与输出端之间接有非极性电容C5,所述运算放大器U2的输出端与开关二极管D3的阳极连接;所述运算放大器U3的同相输入端通过电阻R4与超级电容的正极连接,且通过电阻R3接地,所述运算放大器U3的反相输入端通过电阻R8与充电驱动电路的参考电压输出端连接,且通过电阻R7接地,所述运算放大器U3的反相输入端与输出端之间接有非极性电容C6,所述运算放大器U3的输出端与开关二极管D4的阳极连接;所述开关二极管D3的阴极与开关二极管D4的阴极连接且为充电模式控制电路的输出端;
所述充电驱动电路包括芯片UC3843和三极管Q2,所述芯片UC3843的第1引脚与第2引脚之间接有并联的非极性电容C2和电阻R15,所述芯片UC3843的第2引脚与充电模式控制电路的输出端连接,所述芯片UC3843的第3引脚通过电阻R13与电流采样电路的输出端连接,所述芯片UC3843的第4引脚通过非极性电容C3接地,所述芯片UC3843的第5引脚接地,所述芯片UC3843的第4引脚与第8引脚之间接有电阻R12,所述芯片UC3843的第8引脚为充电驱动电路的参考电压输出端,所述三极管Q2的基极通过电阻R14与所述芯片UC3843的第6引脚连接,所述三极管Q2的发射极接地,所述三极管Q2的集电极为充电驱动电路的PWM信号输出端。
上述的超级电容三段式充电电路,其特征在于:所述Buck变换器电路包括PMOS开关管Q1、快恢复二极管D1、电感L和极性电容C1,所述PMOS开关管Q1的漏极与电压源的正极输出端连接,所述PMOS开关管Q1的漏极与栅极之间接有电阻R1,所述PMOS开关管Q1的栅极通过电阻R2与充电驱动电路的PWM信号输出端连接,所述电感L的一端和快恢复二极管D1的阴极均与PMOS开关管Q1的源级连接,所述快恢复二极管D1的阳极与电压源的负极输出端连接且接地,所述极性电容C1的正极与电感L的另一端连接且为Buck变换器电路的正极输出端,所述极性电容C1的负极为Buck变换器电路的负极输出端,所述超级电容的正极与Buck变换器电路的正极输出端连接,所述超级电容的负极与Buck变换器电路的负极输出端连接。
上述的超级电容三段式充电电路,其特征在于:所述电流采样电路由电阻RS构成,所述电阻RS的一端与Buck变换器电路的负极输出端连接,所述电阻RS的另一端接地。
上述的一种超级电容三段式充电电路,其特征在于:所述三极管Q2为NPN型三极管。
本发明还提供了一种方法步骤简单、实现方便的超级电容三段式充电电路为超级电容快速充电的方法,其特征在于,该方法包括以下步骤:
步骤一、电路连接:将Buck变换器电路的输入端与电压源的输出端连接,并将超级电容的正极与Buck变换器电路的正极输出端连接,将超级电容的负极与Buck变换器电路的负极输出端连接;
步骤二、恒流充电:刚上电时,所述电流采样电路对Buck变换器电路的输出电流进行采样并转化为电压信号后经电阻R5传输到运算放大器U2的同相输入端,运算放大器U2将其同相输入端的电压与其反相输入端的充电驱动电路输出给其的参考电压相比较,当其同相输入端的电压高于其反相输入端的参考电压时,说明Buck变换器电路的输出电流大于给定恒流充电电流,此时,运算放大器U2的输出电压增加,所述充电驱动电路中芯片UC3843的输出占空比减小,使Buck变换器电路的充电电流减小,从而实现超级电容恒流充电;
步骤三、恒功率充电:随着超级电容两端的电压增加,当超级电容两端的电压增加到达到稳压二极管D2的击穿电压时,超过稳压二极管D2的击穿电压的电压通过电阻R6与所述电流采样电路输出的电压叠加后加在运算放大器U2的同相输入端,随着超级电容两端电压的持续增加,使得运算放大器U2的输出电压也相应增加,所述充电驱动电路中芯片UC3843的输出占空比减小,使Buck变换器电路的充电电流减小,从而实现超级电容恒功率充电;
步骤四、恒压充电:随着超级电容两端电压继续增大,当超级电容两端的电压增加到高于设定的恒压充电电压值时,运算放大器U3的同相输入端的电压高于运算放大器U3的反相输入端的充电驱动电路输出给其的参考电压,运算放大器U3的输出电压增加,所述充电驱动电路中芯片UC3843的输出占空比减小,使Buck变换器电路的充电电压减小,从而实现超级电容恒压充电。
本发明与现有技术相比具有以下优点:
1、本发明超级电容三段式充电电路的电路结构简单,设计新颖合理,实现方便且成本低。
2、本发明超级电容三段式充电电路的功能完备,能够实现对超级电容恒流、恒功率、恒压三种充电模式的充电,三种充电模式的转换能够解决超级电容在单一充电模式时带来的弊端,发挥充电电源效能,提高充电速度。
3、本发明能够方便地实现恒流、恒功率、恒压三种充电模式的转换,恒流充电能够避免超级电容低压时对充电电源的大电流冲击,并提高充电速度;恒功率充电能够在提高充电电源功率利用率的同时,加快充电速度;而且恒功率充电进一步提高了充电效率;恒压充电不仅能够避免超级电容因内部高温对其容量特性的影响,又避免了超级电容自身漏电而引起的容量损失,还可保证超级电容不因过充电而损坏。
4、本发明超级电容三段式充电电路的工作稳定性和可靠性高,能够有效的保护超级电容的充放电性能。
5、本发明超级电容三段式充电电路为超级电容快速充电的方法步骤简单,实现方便。
6、本发明的实用性强,使用效果好,便于推广使用。
综上所述,本发明设计新颖合理,实现方便且成本低,提高了超级电容的充电速度,工作稳定性和可靠性高,能够有效的保护超级电容的充放电性能,实用性强,使用效果好,便于推广使用。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明超级电容三段式充电电路的电路原理框图。
图2为本发明超级电容三段式充电电路的电路原理图。
图3为本发明超级电容三段式充电电路为超级电容快速充电的方法的流程框图。
附图标记说明:
1—Buck变换器电路; 2—电流采样电路; 3—充电模式控制电路;
4—充电驱动电路; 5—超级电容; 6—电压源。
具体实施方式
如图1所示,本发明的超级电容三段式充电电路,包括与电压源6的输出端连接的Buck变换器电路1、用于对Buck变换器电路1的输出电流进行采样的电流采样电路2、充电模式控制电路3和充电驱动电路4,所述超级电容5与Buck变换器电路1的输出端连接,所述电流采样电路2与Buck变换器电路1连接,所述充电模式控制电路3与电流采样电路2的输出端、超级电容5和充电驱动电路4的参考电压输出端均连接,所述充电驱动电路4与充电模式控制电路3的输出端和电流采样电路2的输出端均连接,所述Buck变换器电路1与充电驱动电路4的PWM信号输出端连接;
如图2所示,所述充电模式控制电路3包括运算放大器U2和运算放大器U3,稳压二极管D2、开关二极管D3和开关二极管D4;所述运算放大器U2的同相输入端通过电阻R5与电流采样电路2的输出端连接,且通过电阻R6与稳压二极管D2的阳极连接,所述稳压二极管D2的阴极与超级电容5的正极连接,所述运算放大器U2的反相输入端通过电阻R10与充电驱动电路4的参考电压输出端连接,且通过电阻R11接地,所述运算放大器U2的反相输入端与输出端之间接有非极性电容C5,所述运算放大器U2的输出端与开关二极管D3的阳极连接;所述运算放大器U3的同相输入端通过电阻R4与超级电容5的正极连接,且通过电阻R3接地,所述运算放大器U3的反相输入端通过电阻R8与充电驱动电路4的参考电压输出端连接,且通过电阻R7接地,所述运算放大器U3的反相输入端与输出端之间接有非极性电容C6,所述运算放大器U3的输出端与开关二极管D4的阳极连接;所述开关二极管D3的阴极与开关二极管D4的阴极连接且为充电模式控制电路3的输出端;
如图2所示,所述充电驱动电路4包括芯片UC3843和三极管Q2,所述芯片UC3843的第1引脚与第2引脚之间接有并联的非极性电容C2和电阻R15,所述芯片UC3843的第2引脚与充电模式控制电路3的输出端连接,所述芯片UC3843的第3引脚通过电阻R13与电流采样电路2的输出端连接,所述芯片UC3843的第4引脚通过非极性电容C3接地,所述芯片UC3843的第5引脚接地,所述芯片UC3843的第4引脚与第8引脚之间接有电阻R12,所述芯片UC3843的第8引脚为充电驱动电路4的参考电压输出端,所述三极管Q2的基极通过电阻R14与所述芯片UC3843的第6引脚连接,所述三极管Q2的发射极接地,所述三极管Q2的集电极为充电驱动电路4的PWM信号输出端。
本实施例中,如图2所示,所述Buck变换器电路1包括PMOS开关管Q1、快恢复二极管D1、电感L和极性电容C1,所述PMOS开关管Q1的漏极与电压源6的正极输出端连接,所述PMOS开关管Q1的漏极与栅极之间接有电阻R1,所述PMOS开关管Q1的栅极通过电阻R2与充电驱动电路4的PWM信号输出端连接,所述电感L的一端和快恢复二极管D1的阴极均与PMOS开关管Q1的源级连接,所述快恢复二极管D1的阳极与电压源6的负极输出端连接且接地,所述极性电容C1的正极与电感L的另一端连接且为Buck变换器电路1的正极输出端,所述极性电容C1的负极为Buck变换器电路1的负极输出端,所述超级电容5的正极与Buck变换器电路1的正极输出端连接,所述超级电容5的负极与Buck变换器电路1的负极输出端连接。使用时,在PMOS开关管Q1导通期间,快恢复二极管D1截止,电压源6通过电感L向超级电容5充电,同时流过电感L的电流线性增加,将电能转换成磁能储存在电感L中;在PMOS开关管Q1关断期间,快恢复二极管D1导通续流,流过电感L的电流线性减小,电感L储存的能量继续给超级电容5充电。
本实施例中,如图2所示,所述电流采样电路2由电阻RS构成,所述电阻RS的一端与Buck变换器电路1的负极输出端连接,所述电阻RS的另一端接地。
本实施例中,所述三极管Q2为NPN型三极管。
如图3所示,本发明的超级电容三段式充电电路为超级电容快速充电的方法,包括以下步骤:
步骤一、电路连接:将Buck变换器电路1的输入端与电压源6的输出端连接,并将超级电容5的正极与Buck变换器电路1的正极输出端连接,将超级电容5的负极与Buck变换器电路1的负极输出端连接;
步骤二、恒流充电:刚上电时,所述电流采样电路2对Buck变换器电路1的输出电流进行采样并转化为电压信号后经电阻R5传输到运算放大器U2的同相输入端,运算放大器U2将其同相输入端的电压与其反相输入端的充电驱动电路4输出给其的参考电压相比较,当其同相输入端的电压高于其反相输入端的参考电压时,说明Buck变换器电路1的输出电流大于给定恒流充电电流,此时,运算放大器U2的输出电压增加,所述充电驱动电路4中芯片UC3843的输出占空比减小,使Buck变换器电路1的充电电流减小,从而实现超级电容5恒流充电;刚上电时,超级电容5两端电压很低,Buck变换器电路1工作于恒流充电模式;
步骤三、恒功率充电:随着超级电容5两端的电压增加,当超级电容5两端的电压增加到达到稳压二极管D2的击穿电压时,超过稳压二极管D2的击穿电压的电压通过电阻R6与所述电流采样电路2输出的电压叠加后加在运算放大器U2的同相输入端,随着超级电容5两端电压(充电电压)的持续增加,使得运算放大器U2的输出电压也相应增加,所述充电驱动电路4中芯片UC3843的输出占空比减小,使Buck变换器电路1的充电电流减小,从而实现超级电容5恒功率充电;由于运算放大器U2的反相输入端的参考电压不变,因此随着超级电容5两端电压的增加,当运算放大器U2的同相输入端电压增大时,为了维持运算放大器U2的同相输入端电压不变,迫使所述充电驱动电路4中芯片UC3843的输出占空比减小,使Buck变换器电路1的充电电流减小,功率不变,从而实现超级电容5恒功率充电;
步骤四、恒压充电:随着超级电容5两端电压继续增大,当超级电容5两端的电压增加到高于设定的恒压充电电压值时,运算放大器U3的同相输入端的电压即电阻R3两端的电压高于运算放大器U3的反相输入端的充电驱动电路4输出给其的参考电压,运算放大器U3的输出电压增加,所述充电驱动电路4中芯片UC3843的输出占空比减小,使Buck变换器电路1的充电电压减小,从而实现超级电容5恒压充电。即为浮充模式。具体实施时,根据超级电容额定电压设定恒压充电电压值,当超级电容5两端的电压增加到高于设定的恒压充电电压值时,电阻R3分得的电压大于了电阻R7分得的电压,运算放大器U3的输出电压增加,所述充电驱动电路4中芯片UC3843的输出占空比减小,使Buck变换器电路1的充电电压减小,从而实现超级电容5恒压充电。
步骤二、步骤三和步骤四中,当运算放大器U2的输出电压增加或运算放大器U3的输出电压增加时,芯片UC3843的第2引脚的反馈电压也增加,芯片UC3843的第6引脚输出的PWM波的占空比减小,将会使三极管Q2的导通时间减小,PMOS开关管Q1的导通时间也随之减小,相对应的输出电流或者电压也减小,从而使超级电容5的充电电流、功率或电压稳定。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (3)

1.一种超级电容三段式充电电路,其特征在于:包括与电压源(6)的输出端连接的Buck变换器电路(1)、用于对Buck变换器电路(1)的输出电流进行采样的电流采样电路(2)、充电模式控制电路(3)和充电驱动电路(4),所述超级电容(5)与Buck变换器电路(1)的输出端连接,所述电流采样电路(2)与Buck变换器电路(1)连接,所述充电模式控制电路(3)与电流采样电路(2)的输出端、超级电容(5)和充电驱动电路(4)的参考电压输出端均连接,所述充电驱动电路(4)与充电模式控制电路(3)的输出端和电流采样电路(2)的输出端均连接,所述Buck变换器电路(1)与充电驱动电路(4)的PWM信号输出端连接;
所述充电模式控制电路(3)包括运算放大器U2和运算放大器U3,稳压二极管D2、开关二极管D3和开关二极管D4;所述运算放大器U2的同相输入端通过电阻R5与电流采样电路(2)的输出端连接,且通过电阻R6与稳压二极管D2的阳极连接,所述稳压二极管D2的阴极与超级电容(5)的正极连接,所述运算放大器U2的反相输入端通过电阻R10与充电驱动电路(4)的参考电压输出端连接,且通过电阻R11接地,所述运算放大器U2的反相输入端与输出端之间接有非极性电容C5,所述运算放大器U2的输出端与开关二极管D3的阳极连接;所述运算放大器U3的同相输入端通过电阻R4与超级电容(5)的正极连接,且通过电阻R3接地,所述运算放大器U3的反相输入端通过电阻R8与充电驱动电路(4)的参考电压输出端连接,且通过电阻R7接地,所述运算放大器U3的反相输入端与输出端之间接有非极性电容C6,所述运算放大器U3的输出端与开关二极管D4的阳极连接;所述开关二极管D3的阴极与开关二极管D4的阴极连接且为充电模式控制电路(3)的输出端;
所述充电驱动电路(4)包括芯片UC3843和三极管Q2,所述芯片UC3843的第1引脚与第2引脚之间接有并联的非极性电容C2和电阻R15,所述芯片UC3843的第2引脚与充电模式控制电路(3)的输出端连接,所述芯片UC3843的第3引脚通过电阻R13与电流采样电路(2)的输出端连接,所述芯片UC3843的第4引脚通过非极性电容C3接地,所述芯片UC3843的第5引脚接地,所述芯片UC3843的第4引脚与第8引脚之间接有电阻R12,所述芯片UC3843的第8引脚为充电驱动电路(4)的参考电压输出端,所述三极管Q2的基极通过电阻R14与所述芯片UC3843的第6引脚连接,所述三极管Q2的发射极接地,所述三极管Q2的集电极为充电驱动电路(4)的PWM信号输出端;
所述电流采样电路(2)由电阻RS构成,所述电阻RS的一端与Buck变换器电路(1)的负极输出端连接,所述电阻RS的另一端接地;
所述三极管Q2为NPN型三极管。
2.按照权利要求1所述的超级电容三段式充电电路,其特征在于:所述Buck变换器电路(1)包括PMOS开关管Q1、快恢复二极管D1、电感L和极性电容C1,所述PMOS开关管Q1的漏极与电压源(6)的正极输出端连接,所述PMOS开关管Q1的漏极与栅极之间接有电阻R1,所述PMOS开关管Q1的栅极通过电阻R2与充电驱动电路(4)的PWM信号输出端连接,所述电感L的一端和快恢复二极管D1的阴极均与PMOS开关管Q1的源级连接,所述快恢复二极管D1的阳极与电压源(6)的负极输出端连接且接地,所述极性电容C1的正极与电感L的另一端连接且为Buck变换器电路(1)的正极输出端,所述极性电容C1的负极为Buck变换器电路(1)的负极输出端,所述超级电容(5)的正极与Buck变换器电路(1)的正极输出端连接,所述超级电容(5)的负极与Buck变换器电路(1)的负极输出端连接。
3.一种采用如权利要求1所述的超级电容三段式充电电路为超级电容快速充电的方法,其特征在于,该方法包括以下步骤:
步骤一、电路连接:将Buck变换器电路(1)的输入端与电压源(6)的输出端连接,并将超级电容(5)的正极与Buck变换器电路(1)的正极输出端连接,将超级电容(5)的负极与Buck变换器电路(1)的负极输出端连接;
步骤二、恒流充电:刚上电时,所述电流采样电路(2)对Buck变换器电路(1)的输出电流进行采样并转化为电压信号后经电阻R5传输到运算放大器U2的同相输入端,运算放大器U2将其同相输入端的电压与其反相输入端的充电驱动电路(4)输出给其的参考电压相比较,当其同相输入端的电压高于其反相输入端的参考电压时,说明Buck变换器电路(1)的输出电流大于给定恒流充电电流,此时,运算放大器U2的输出电压增加,所述充电驱动电路(4)中芯片UC3843的输出占空比减小,使Buck变换器电路(1)的充电电流减小,从而实现超级电容(5)恒流充电;
步骤三、恒功率充电:随着超级电容(5)两端的电压增加,当超级电容(5)两端的电压增加到达到稳压二极管D2的击穿电压时,超过稳压二极管D2的击穿电压的电压通过电阻R6与所述电流采样电路(2)输出的电压叠加后加在运算放大器U2的同相输入端,随着超级电容(5)两端电压的持续增加,使得运算放大器U2的输出电压也相应增加,所述充电驱动电路(4)中芯片UC3843的输出占空比减小,使Buck变换器电路(1)的充电电流减小,从而实现超级电容(5)恒功率充电;
步骤四、恒压充电:随着超级电容(5)两端电压继续增大,当超级电容(5)两端的电压增加到高于设定的恒压充电电压值时,运算放大器U3的同相输入端的电压高于运算放大器U3的反相输入端的充电驱动电路(4)输出给其的参考电压,运算放大器U3的输出电压增加,所述充电驱动电路(4)中芯片UC3843的输出占空比减小,使Buck变换器电路(1)的充电电压减小,从而实现超级电容(5)恒压充电。
CN201610599055.8A 2016-07-27 2016-07-27 超级电容三段式充电电路及其为超级电容快速充电的方法 Active CN106026334B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610599055.8A CN106026334B (zh) 2016-07-27 2016-07-27 超级电容三段式充电电路及其为超级电容快速充电的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610599055.8A CN106026334B (zh) 2016-07-27 2016-07-27 超级电容三段式充电电路及其为超级电容快速充电的方法

Publications (2)

Publication Number Publication Date
CN106026334A CN106026334A (zh) 2016-10-12
CN106026334B true CN106026334B (zh) 2019-01-11

Family

ID=57114197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610599055.8A Active CN106026334B (zh) 2016-07-27 2016-07-27 超级电容三段式充电电路及其为超级电容快速充电的方法

Country Status (1)

Country Link
CN (1) CN106026334B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359679B (zh) * 2017-09-13 2023-06-30 重庆大及电子科技有限公司 带基于ad采样的智能控制功能的充放电电路
CN110932531A (zh) * 2019-11-26 2020-03-27 上海军陶电源设备有限公司 驱动电路及供电控制电路
CN110957795B (zh) * 2019-12-05 2021-08-06 深圳市洲明科技股份有限公司 充电电路、充电装置及显示屏
CN112379204B (zh) * 2020-11-18 2024-03-29 苏州美思迪赛半导体技术有限公司 驱动电路的驱动端口状态检测电路及方法
CN112524811A (zh) * 2020-11-26 2021-03-19 广东美的白色家电技术创新中心有限公司 电热水器的加热方法、控制装置、电热水器及装置
CN113300447B (zh) * 2021-06-18 2023-05-05 新乡北方车辆仪表有限公司 一种高压超级电容模组的自适应充电方法
CN113708451A (zh) * 2021-08-27 2021-11-26 浪潮商用机器有限公司 一种超级电容充电电路
CN114362521B (zh) * 2022-01-05 2024-01-05 浙江大学 一种宽范围多模式输出的升降压混合电路的控制方法
CN114530920A (zh) * 2022-02-25 2022-05-24 普罗格智芯科技(湖北)有限公司 一种基于电池和超级电容的电源管理方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548154A (zh) * 2012-02-07 2012-07-04 黄克亚 一种太阳能led照明系统控制装置
CN102738872A (zh) * 2011-04-08 2012-10-17 郑佩尧 分充制蓄电池充电器
CN104319854A (zh) * 2014-11-18 2015-01-28 内蒙古科技大学 一种电动自行车独立光伏充电装置及其充电方法
CN104467077A (zh) * 2014-11-14 2015-03-25 合肥正美电源科技有限公司 蓄电池充电控制方法
CN205846829U (zh) * 2016-07-27 2016-12-28 西安科技大学 一种超级电容的快速充电电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738872A (zh) * 2011-04-08 2012-10-17 郑佩尧 分充制蓄电池充电器
CN102548154A (zh) * 2012-02-07 2012-07-04 黄克亚 一种太阳能led照明系统控制装置
CN104467077A (zh) * 2014-11-14 2015-03-25 合肥正美电源科技有限公司 蓄电池充电控制方法
CN104319854A (zh) * 2014-11-18 2015-01-28 内蒙古科技大学 一种电动自行车独立光伏充电装置及其充电方法
CN205846829U (zh) * 2016-07-27 2016-12-28 西安科技大学 一种超级电容的快速充电电路

Also Published As

Publication number Publication date
CN106026334A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106026334B (zh) 超级电容三段式充电电路及其为超级电容快速充电的方法
CN105978112B (zh) 一种超级电容多模式快速充电电路的设计方法
CN109374996A (zh) 一种飞跨电容三电平dcdc功率组件的双脉冲测试电路及方法
CN206250979U (zh) 一种准谐振有源箝位反激式变换器
CN204119020U (zh) 一种pfc保护电路和空调器
CN205846829U (zh) 一种超级电容的快速充电电路
CN104021978B (zh) 永磁真空开关分合闸电容恒流充电切换装置及其控制方法
CN202177974U (zh) 一种led交通信号灯及其驱动电路
CN103633839A (zh) 一种改进型z源升压dc-dc变换器
CN102005962A (zh) 升降压并网逆变器及其控制方法
CN104192014B (zh) 采用统一电压输出及双向dc/dc模块的双能源机车
CN103762843B (zh) 用于蓄电池储能系统的双向升降压电路及其数字控制方法
CN203814013U (zh) 单端过零检测的led驱动电路
CN203883673U (zh) 一种改进型z源升压dc-dc变换器
CN202872640U (zh) 具有输出可变和低交叉调整率的电源模块
CN205847086U (zh) 一种开关电容型高增益准z源dc‑dc变换器
CN205847091U (zh) 一种开关电感型准开关升压dc‑dc变换器
CN205847090U (zh) 一种混合型准开关升压dc‑dc变换器
CN206894507U (zh) 基于原边反馈的恒流式反激式变换器
CN103259295A (zh) 具有太阳能充电功能的便携式电子装置
CN205901623U (zh) 多绕组正激输出并联单级逆变器
CN204598427U (zh) 一种非隔离开关电源电路
CN101504898B (zh) 一种具有辅助触点的永磁接触器的控制装置
CN209088816U (zh) 一种buck变换器及太阳能充电装置
CN208904890U (zh) 一种超导磁体电源电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant