CN106021638A - Modelling method for bubbling fluidized bed based on random motion of bubbles and particles - Google Patents

Modelling method for bubbling fluidized bed based on random motion of bubbles and particles Download PDF

Info

Publication number
CN106021638A
CN106021638A CN201610269145.0A CN201610269145A CN106021638A CN 106021638 A CN106021638 A CN 106021638A CN 201610269145 A CN201610269145 A CN 201610269145A CN 106021638 A CN106021638 A CN 106021638A
Authority
CN
China
Prior art keywords
bubble
granule
random
fluidized bed
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610269145.0A
Other languages
Chinese (zh)
Inventor
刘道银
庄亚明
陈晓平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610269145.0A priority Critical patent/CN106021638A/en
Publication of CN106021638A publication Critical patent/CN106021638A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a modelling method for a bubbling fluidized bed based on random motion of bubbles and particles. The method comprises the steps that (1) statistics for particle motion rules of the bubbling fluidized bed computed by CFD-DEM is carried out, and a Markov chain random model of a particle phase is established; (2) image identification is carried out to an instant distribution map of the bubbling fluidized bed particles computed by the CFD-DEM, statistics is carried out to rules for generation, motion and growth of the bubbles, and a bubble random development model is established; and (3) a baseball cap model of bubble shapes is used to couple the particle-phase Markov course with the bubble random model, and a random model of the particle motion of the bubbling fluidized bed is established. The method disclosed by the invention has the advantages that the defect that a single particle-phase Markov course cannot reflect bubble information and influences of the information on the particle motion can be solved; and computation loads are greatly reduced, and a computation speed is increased on the premise of guarantee of accuracy of the bubbling fluidized bed particle motion.

Description

A kind of bubbling fluidized bed modeling method based on bubble and granule random motion
Technical field
The present invention relates to a kind of bubbling fluidized bed modeling method based on bubble and granule random motion, belong to gas-particle two-phase Flow computer numerical simulation technology field.
Background technology
Bubbling fluidized bed has the highest heat transfer and rate of heat transfer, in chemical industry, the energy, food and medicine processing and other fields Extensive application.Bubbling fluidized bed is carried out Computer Numerical Simulation and contributes to the optimization design of system, it is possible to significantly drop Low experimentation cost.
Traditional experience and semiempirical model (such as plug flow model and bubbling tow phase model) computational efficiency are high, and model rings Answering speed fast, but this class model cannot provide detailed bubble and particle motion rule, computational accuracy is the lowest.Currently a popular base In Fluid Mechanics Computation and the method for numerical simulation of particle kinetics, because it is based on solving basic physics's formula, it is possible to relatively For calculating the characteristics of motion of granule accurately, and concentration distribution etc., particularly Eulerian-Lagrangian Method considers gas phase Interaction with granule phase.Wherein, CFD-DEM model also contemplates intergranular interaction so that it is can be the most accurate Simulated gas fixed double phase flow, but calculate time length and calculated load height and be always this class model and amplify further and be applied to reality Bottleneck.Stochastic model be then can the quick potential method of one of accurate simulation particle system, be based especially on CFD- The Markov chain stochastic model of DEM result of calculation has that model is simple, sample information is enriched, calculate fireballing feature, Preliminary Applications has been had in this kind of pure particle system of cylinder mixer.Interaction between bubbling fluidized bed gas-particle two-phase is very Strongly, more there is the impact brought that occurs granule is moved of bubble, when using the method identical with being applied to pure particle system When Markov chain stochastic model is applied to bubbling fluidization bed system, can only obtain the most macroscopical granule characteristics of motion, it is impossible to Gas-particle two-phase flow pattern complicated in simulating bed.Find the impact that granule is moved by suitable method by bubble in bubbling fluidized bed It is coupled with the Markov process of granule and becomes the key developing bubbling fluidized bed stochastic model further.
Summary of the invention
Goal of the invention: in order to overcome the deficiencies in the prior art, the present invention provide a kind of based on bubble and granule with The bubbling fluidized bed modeling method of machine motion, the method establishes the random progressions model of bubble, bubble is moved granule Impact couples with the Markov process of granule, sets up bubbling fluidized bed granule motion random model.Ensureing underload, quickly counting While calculation, it is greatly improved bubbling fluidized bed stochastic model numerical stability.
Technical scheme: for achieving the above object, the technical solution used in the present invention is:
A kind of bubbling fluidized bed modeling method based on bubble and granule random motion, comprises the following steps:
Step 1, by bubbling fluidized bed grid division, the analog result of statistics early stage CFD-DEM model obtains distribution of particles Figure.Calculate granule transition probability between grid, set up the Markov chain stochastic model of granule phase according to transition probability.Pass through Markov chain stochastic model obtains particle position information.
Step 2, the distribution of particles figure obtaining CFD-DEM modeling carries out image recognition, adds up the generation of bubble, fortune Rule that is dynamic and that grow up, sets up the random progressions model of bubble, determines that bubble phase is to position according to the random progressions model of bubble.
Step 3, utilizes the baseball cap model of bubble shape by the Markov chain stochastic model in step 1 and step 2 The random progressions model of bubble couples, and sets up the stochastic model of bubbling fluidized bed granule motion.By step 1) granule that obtains Positional information and step 2) bubble phase that determines substitutes into the stochastic model of bubbling fluidized bed granule motion and obtains coupling gas position The position of granule after bubble.
Preferred: the method for building up of Markov chain stochastic model described in described step 1, according to granule turning between grid Move probability and build the Markov chain transition probability matrix of granule motion.It is calculated granule grid by transition probability matrix to believe Breath, obtains particle position information by granule gridding information.
Preferred: the method for building up of the random progressions model of bubble in described step 2: statistics differing heights therapeutic method to keep the adverse QI flowing downwards alveolar substance respectively Edema with the heart involved mean place and the probability distribution of equivalent diameter, probability distribution utilizes random number to simulate bubble in bubbling fluidized bed accordingly Produce, moving and growing up obtains the random progressions model of bubble.
Preferred: the total number of bubble that described step 2 obtains in the random progressions model of bubble keeps constant in bed, bubble Total number is determined by average bubble number in the bed of CFD-DEM modeling, when a bubble barycenter is increased beyond bed mean height When spending, a new bubble i.e. produces bottom bed.Bubble constantly rises in evolution, grows up.
Preferred: granule is uniformly random distribution in grid.
Preferred: the baseball cap model of bubble shape in described step 3: the main body of bubble be radius be rtCircle C1 is by an equal basis Remainder after the round C2 intercepting of size, including three parts, respectively first area I, second area II and the 3rd district Territory III, the 3rd region III are that circle C2 intercepts the part of falling, and second area II is the arc that circle C2 intercepts in the part fallen on circle C2 And the two-end-point of this arc respectively with center of circle C1 line area defined, first area I is the circle remaining arc of C1 and this arc Two-end-point respectively with center of circle C1 line area defined.
Preferred: to be in granule and the bubble generation coupling in three kinds of regions before coupling, be bubble top, bubble respectively Bottom and bubble trailing vortex.
Preferred: near the bubble using Davison model to describe, the granule characteristics of motion calculates three kinds of regions particulate and gas The coupling of bubble.
Beneficial effect: a kind of based on bubble and granule random motion the bubbling fluidized bed modeling method that the present invention provides, Compared to existing technology, have the advantages that
The bubbling fluidized bed modeling method based on bubble and granule random motion of the present invention, by statistics bubbling fluidized bed CFD-DEM analog result, it is thus achieved that granule and the characteristics of motion of bubble, establish the random development of bubbling fluidized bed bubble first Model, and set up the baseball cap model of bubble shape, the Markov stochastic process of granule introduces the shadow that it is moved by bubble Ring;Present invention, avoiding Fluid Mechanics Computation and the particle kinetics equation solving complexity, computational efficiency is greatly improved, with Time, the random progressions model of bubble and granule Markov process couple the computational accuracy that ensure that bubbling fluidized bed stochastic model.
Accompanying drawing explanation
Fig. 1 is the baseball cap model of bubble shape and bubble and granule coupling algorithm schematic diagram.
Fig. 2 is that the bubble that statistics CFD-DEM result of calculation obtains produces probability distribution graph.
Fig. 3 is the bubble centroid position scattergram that statistics CFD-DEM result of calculation obtains.
Fig. 4 is that the statistics bubble diameter that obtains of CFD-DEM result of calculation is along height of bed scattergram.
Fig. 5 (a) is bubbling fluidized bed granule random motion design sketch before the coupling random progressions model of bubble.
Fig. 5 (b) is bubbling fluidized bed granule random motion design sketch after the coupling random progressions model of bubble.
Fig. 6 (a) is before and after stochastic model couples bubble and the lateral solids mixing curve comparison figure of CFD-DEM.
Fig. 6 (b) is before and after stochastic model couples bubble and the axial solids mixing curve comparison figure of CFD-DEM.
Detailed description of the invention
Below in conjunction with the accompanying drawings and specific embodiment, it is further elucidated with the present invention, it should be understood that these examples are merely to illustrate this Invention rather than limit the scope of the present invention, after having read the present invention, various to the present invention of those skilled in the art The amendment of the equivalent form of value all falls within the application claims limited range.
A kind of bubbling fluidized bed modeling method based on bubble and granule random motion, comprises the following steps:
Step 1, by bubbling fluidized bed grid division, the analog result of statistics early stage CFD-DEM model obtains distribution of particles Figure.Calculate through some time step, granule transition probability between grid, set up granule phase according to transition probability Markov chain stochastic model.Particle position information is obtained by Markov chain stochastic model.
The method for building up of Markov chain stochastic model described in described step 1: the transition probability structure between any two grid Becoming the Markov chain transition probability matrix that this time step granule moves, in timing statistics section, all transition probability matrixs is flat Average is as the final transition probability matrix of granule Markov process.It is calculated granule grid by transition probability matrix to believe Breath, obtains particle position information by granule gridding information.Granule is uniformly random distribution in grid.
Step 2, the distribution of particles figure obtained time step each in timing statistics section by CFD-DEM modeling is entered Row image recognition, the generation adding up bubble, the rule moved and grow up, set up the random progressions model of bubble, random according to bubble Progressions model determines that bubble phase is to position.
The method for building up of the random progressions model of bubble in described step 2: statistics differing heights bubble barycenter level respectively Position and the probability distribution of equivalent diameter, probability distribution accordingly, utilize the monte carlo method of the random number that computer produces to carry out mould Intend the generation of bubble in bubbling fluidized bed, moving and growing up obtains the random progressions model of bubble.
The rate of climb of bubble is calculated by empirical equation;The total number of bubble keeps constant in bed, the total number of bubble by In the bed of CFD-DEM modeling, average bubble number determines, when a bubble barycenter is increased beyond bed average height, and one New bubble i.e. produces bottom bed.Bubble constantly rises in evolution, grows up.
Step 3, utilizes the baseball cap model of bubble shape by the Markov chain stochastic model in step 1 and step 2 The random progressions model of bubble couples, and sets up the stochastic model of bubbling fluidized bed granule motion.By step 1) granule that obtains Positional information and step 2) bubble phase that determines substitutes into the stochastic model of bubbling fluidized bed granule motion and obtains coupling gas position The position of granule after bubble.
The baseball cap model of bubble shape in described step 3: as it is shown in figure 1, the main body of bubble is radius is rtCircle C1 quilt Remainder after the round C2 intercepting of equal size, including three parts, respectively first area I, second area II and the Three region III, the 3rd region III be circle C2 intercept fall part, second area II be circle C2 intercept fall part in circle C2 on Arc and this arc two-end-point respectively with center of circle C1 line area defined, first area I for circle the remaining arc of C1 and The two-end-point of this arc respectively with center of circle C1 line area defined.
Be in the granule in three kinds of regions and bubble generation coupling before coupling, be respectively bubble top, bubble bottom and Bubble trailing vortex.
Three kinds of regions particulate and bubble coupling algorithm meet the granule characteristics of motion near the bubble that Davison model describes. Therefore the granule characteristics of motion near the bubble that Davison model describes can be used to calculate the coupling of three kinds of regions particulate and bubble Close.
Below in conjunction with specific embodiment, the present invention will be further explained.
Embodiment describes with two dimension bubbling fluidized bed situation, and three-dimensional case can be by that analogy:
(1) first by two dimension bubbling fluidized bed grid division, the analog result of statistics early stage CFD-DEM, calculate through certain During one time step, granule transition probability between grid, the transition probability between any two grid constitutes this time step The Markov chain transition probability matrix of granule motion, in timing statistics section, the meansigma methods of all transition probability matrixs is as granule The transition probability matrix that Markov process is final.After being calculated granule gridding information by transition probability matrix, granule is at net Uniformly random distribution in lattice.
(2) the bubbling fluidized bed distribution of particles figure of each time step CFD-DEM simulation in timing statistics section is carried out figure As identifying, statistics differing heights bubble barycenter horizontal level and the probability distribution of equivalent diameter respectively, as shown in Figure 2,3, 4. It is distributed accordingly, utilizes computer to produce random number, judge the generation of bubble, motion in bubbling fluidized bed according to monte carlo method And grow up.Bubble produces position by random number r0Calculate with formula (1):
r 0 = r a n d o m ( 0 , 1 ) = ∫ 0 w 0 f ( w ) d w - - - ( 1 )
Wherein, r0Representing random number, (a b) represents that computer produces a random number between a to b, w to random0Represent root According to random number r0Bottom the bubbling bed calculated, bubble produces the abscissa of position, and f (w) represents at bubbling bed bottom transverse coordinate w Producing the probability of bubble, w represents that bubble produces the abscissa of position bottom bubbling bed.
The rate of climb of bubble is calculated by empirical equation (2), (3);
u t = 0.71 gd t - - - ( 2 )
ht+1=ht+Δt·ut (3)
Wherein, utRepresenting t bobble rise velocity, g represents acceleration of gravity, dtRepresent that t bubble homalographic circle is straight Footpath, htRepresenting t bubble height of center of mass, Δ t represents a time step.
The total number of bubble keeps constant in bed, CFD-DEM in the bed simulated, average bubble number determines, when a bubble When barycenter is increased beyond bed average height, a new bubble i.e. produces bottom bed;Bubble constantly rising in evolution, Growing up, bubble barycenter horizontal level is calculated by formula (4):
wt+1=random (w(t+1),1,wt+1,2) (4)
Wherein, wt+1Represent t+1 moment bubble barycenter abscissa, w(t+1),1Under the conditions of representing t+1 moment known bubble height The bubble barycenter minimum abscissa calculated according to Fig. 3, wt+1,2According to Fig. 3 meter under the conditions of expression t+1 moment known bubble height The bubble barycenter maximum abscissa calculated.
Air Bubble Size is calculated by formula (5):
dt+1=random (maximum (dt+1,5,dt+1,4,dt),dt+1,3) (5)
Wherein, dt+1Represent the face circular diameters such as t+1 moment bubble, dt+1,5Represent root under the conditions of t+1 moment known bubble height The bubble homalographic circular diameter minima calculated according to Fig. 4, dt+1,4According to Fig. 4 meter under the conditions of expression t+1 moment known bubble height The bubble homalographic circular diameter minima calculated, dtRepresent t bubble homalographic circular diameter, dt+1,3Represent t+1 moment known gas The bubble homalographic circular diameter maximum calculated according to Fig. 4 under the conditions of bubble height.
(3) the baseball cap model of bubble shape is set up, as shown in Figure 1.The main body of bubble is that circle C1 is by the circle of equal size Remainder after C2 intercepting.Being divided into white portion I and gray area II, the particle position before coupling calculates according to step (1), Representing by hollow dots, the particle position solid dot after coupling represents.In before coupling, granule location is bubble Region I or region II, or it is in the region III of bubble trailing vortex part, the position of granule after judging to couple.Three kinds of districts Territory granule and bubble coupling algorithm meet the granule characteristics of motion near the bubble that Davison model describes, specifically according to formula (6), (7), (8) calculate.
D′I=rt+random(0,1)·(rt-DI)2/rt (6)
D′II=rt-random(0,1)·(rt-DII)2/rt (7)
D′III=rt+random(0,1)·(rt-DIII)2/rt (8)
Wherein, D 'IRepresent the distance with the C1 center of circle, r after granule couples bubble in the I of regiontRepresent circle C1 and the half of circle C2 Footpath, DIRepresent the distance with the C1 center of circle, D ' before granule couples bubble in the I of regionIIRepresent in the II of region after granule coupling bubble with The distance in the C1 center of circle, DIIRepresent the distance with the C1 center of circle, D ' before granule couples bubble in the II of regionIIIRepresent granule in the III of region With the distance in the C2 center of circle, D after coupling bubbleIIIRepresent the distance with the C2 center of circle before granule couples bubble in the III of region.
The present embodiment is from the simulation of 15-20s, and CFD-DEM needs to expend about 150 hours, the Markov of pure granule phase with Machine process needs about 100 minutes, also merely add about 25 minutes after coupling bubble phase, so comparing CFD-DEM, application is originally Invention makes to calculate speed and improves about 70 times.Fig. 5 (a) and Fig. 5 (b) is that the instantaneous particle distribution before and after coupling bubble phase is right Ratio, after bubble and granule are moved and be coupled by the application present invention intuitively, analog result has successfully reappeared the configuration of bubble And evolution, significantly improve the feature of even particle distribution.What Fig. 6 (a) and Fig. 6 (b) was quantitative compares stochastic model Before and after coupling bubble and the radial and axial Mixing Curve of bubbling fluidized bed granule of CFD-DEM simulation, after the application present invention, The Markov process of grain is successfully introduced into the impact that it is moved by bubble, has significantly improved what granule Mixing Curve excessively smoothed Shortcoming, substantially increases the precision of stochastic model.
The above is only the preferred embodiment of the present invention, it should be pointed out that: for the ordinary skill people of the art For Yuan, under the premise without departing from the principles of the invention, it is also possible to make some improvements and modifications, these improvements and modifications also should It is considered as protection scope of the present invention.

Claims (8)

1. a bubbling fluidized bed modeling method based on bubble and granule random motion, it is characterised in that comprise the following steps:
Step 1, by bubbling fluidized bed grid division, the analog result of statistics early stage CFD-DEM model obtains distribution of particles figure;Meter Calculate granule transition probability between grid, set up the Markov chain stochastic model of granule phase according to transition probability;Pass through Markov Chain stochastic model obtains particle position information;
Step 2, the distribution of particles figure obtaining CFD-DEM modeling carries out image recognition, the statistics generation of bubble, motion and The rule grown up, sets up the random progressions model of bubble, determines that bubble phase is to position according to the random progressions model of bubble;
Step 3, utilizes the baseball cap model of bubble shape by the Markov chain stochastic model in step 1 and the bubble in step 2 Random progressions model couples, and sets up the stochastic model of bubbling fluidized bed granule motion;By step 1) particle position that obtains Information and step 2) position substitutes into after the stochastic model of bubbling fluidized bed granule motion obtains coupling bubble by the bubble phase that determines The position of granule.
Bubbling fluidized bed modeling method based on bubble and granule random motion the most according to claim 1, it is characterised in that:
The method for building up of Markov chain stochastic model described in described step 1, builds according to granule transition probability between grid The Markov chain transition probability matrix of granule motion;It is calculated granule gridding information, by this by transition probability matrix Grain gridding information obtains particle position information.
Bubbling fluidized bed modeling method based on bubble and granule random motion the most according to claim 1, it is characterised in that:
The method for building up of the random progressions model of bubble in described step 2: statistics differing heights bubble barycenter horizontal level respectively And the probability distribution of equivalent diameter, probability distribution utilizes random number to simulate the generation of bubble, motion in bubbling fluidized bed accordingly And grow up and obtain the random progressions model of bubble.
Bubbling fluidized bed modeling method based on bubble and granule random motion the most according to claim 2, it is characterised in that:
The total number of bubble that described step 2 obtains in the random progressions model of bubble keeps constant in bed, the total number of bubble by In the bed of CFD-DEM modeling, average bubble number determines, when a bubble barycenter is increased beyond bed average height, and one New bubble i.e. produces bottom bed;Bubble constantly rises in evolution, grows up.
Bubbling fluidized bed modeling method based on bubble and granule random motion the most according to claim 1, it is characterised in that:
Granule is uniformly random distribution in grid.
Bubbling fluidized bed modeling method based on bubble and granule random motion the most according to claim 1, it is characterised in that:
The baseball cap model of bubble shape in described step 3: the main body of bubble be radius be rtCircle C1 is cut by the round C2 of equal size Remainder after taking, including three parts, respectively first area I, second area II and the 3rd region III, the 3rd district Territory III is that circle C2 intercepts the part of falling, and second area II is the arc and the two of this arc that circle C2 intercepts in the part fallen on circle C2 End points respectively with center of circle C1 line area defined, first area I be the two-end-point of the circle remaining arc of C1 and this arc respectively With center of circle C1 line area defined.
Bubbling fluidized bed modeling method based on bubble and granule random motion the most according to claim 6, it is characterised in that:
It is in granule and the bubble generation coupling in three kinds of regions before coupling, is bubble top, bubble bottom and bubble respectively Trailing vortex.
Bubbling fluidized bed modeling method based on bubble and granule random motion the most according to claim 6, it is characterised in that:
The granule characteristics of motion near the bubble that Davison model describes is used to calculate coupling of three kinds of regions particulate and bubble.
CN201610269145.0A 2016-04-27 2016-04-27 Modelling method for bubbling fluidized bed based on random motion of bubbles and particles Pending CN106021638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610269145.0A CN106021638A (en) 2016-04-27 2016-04-27 Modelling method for bubbling fluidized bed based on random motion of bubbles and particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610269145.0A CN106021638A (en) 2016-04-27 2016-04-27 Modelling method for bubbling fluidized bed based on random motion of bubbles and particles

Publications (1)

Publication Number Publication Date
CN106021638A true CN106021638A (en) 2016-10-12

Family

ID=57082126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610269145.0A Pending CN106021638A (en) 2016-04-27 2016-04-27 Modelling method for bubbling fluidized bed based on random motion of bubbles and particles

Country Status (1)

Country Link
CN (1) CN106021638A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108687683A (en) * 2018-06-04 2018-10-23 湘潭大学 A kind of grinding wheel discrete element modeling method considering abrasive grain shape and its distribution randomness
CN109806734A (en) * 2019-01-28 2019-05-28 西安理工大学 The dynamic regulation method of desulfurizing agent distributing homogeneity in open ocean fluidized bed at elevated
CN109902760A (en) * 2019-03-18 2019-06-18 中国石油大学(北京) Two-Dimensional Bubble recognition methods in a kind of gas-solid bubbling bed
CN109948694A (en) * 2019-03-18 2019-06-28 中国石油大学(北京) Three-dimensional bubble recognition methods in a kind of gas-solid bubbling bed based on distance restraint algorithm
CN110516366A (en) * 2019-08-28 2019-11-29 北京工业大学 A kind of modeling method based on random bead micro-mixer in ultra performance liquid chromatography analysis
US11640145B2 (en) 2019-11-01 2023-05-02 Zhejiang University Of Technology Establishment of location correction system for processing seafood transportation displaced by wind waves and anti-accumulation drying processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338732A (en) * 2011-07-06 2012-02-01 浙江大学 Method for measuring fluidization parameter of gas-solid fluidized bed
CN104634708A (en) * 2015-02-13 2015-05-20 西安石油大学 Method for predicting density and particle size distribution of particles in fluidized bed based on computational fluid mechanics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338732A (en) * 2011-07-06 2012-02-01 浙江大学 Method for measuring fluidization parameter of gas-solid fluidized bed
CN104634708A (en) * 2015-02-13 2015-05-20 西安石油大学 Method for predicting density and particle size distribution of particles in fluidized bed based on computational fluid mechanics

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YAMING ZHUANG等: "Stochastic bubble developing model combined with Markov process of particles for bubbling fluidized beds", 《CHEMICAL ENGINEERING JOURNAL》 *
ZHUANG YAMING等: "Applicability of Markov chain-based stochastic model for bubbling fluidized beds", 《JOURNAL OF SOUTHEAST UNIVERSITY》 *
刘道银等: "流化床密相区颗粒扩散系数的CFD数值预测", 《化工学报》 *
庄亚明等: "流化床颗粒运动Markov链随机过程模型研究", 《中国工程热物理学会学术会议论文》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108687683A (en) * 2018-06-04 2018-10-23 湘潭大学 A kind of grinding wheel discrete element modeling method considering abrasive grain shape and its distribution randomness
CN108687683B (en) * 2018-06-04 2019-12-31 湘潭大学 Grinding wheel discrete element modeling method considering abrasive particle shape and distribution randomness thereof
CN109806734A (en) * 2019-01-28 2019-05-28 西安理工大学 The dynamic regulation method of desulfurizing agent distributing homogeneity in open ocean fluidized bed at elevated
CN109806734B (en) * 2019-01-28 2021-09-10 西安理工大学 Dynamic regulation and control method for distribution uniformity of desulfurizer in fluidized bed under ocean working condition
CN109902760A (en) * 2019-03-18 2019-06-18 中国石油大学(北京) Two-Dimensional Bubble recognition methods in a kind of gas-solid bubbling bed
CN109948694A (en) * 2019-03-18 2019-06-28 中国石油大学(北京) Three-dimensional bubble recognition methods in a kind of gas-solid bubbling bed based on distance restraint algorithm
CN109902760B (en) * 2019-03-18 2020-10-27 中国石油大学(北京) Two-dimensional bubble identification method in gas-solid bubbling bed
CN109948694B (en) * 2019-03-18 2020-12-22 中国石油大学(北京) Gas-solid bubbling bed three-dimensional bubble identification method based on distance constraint algorithm
CN110516366A (en) * 2019-08-28 2019-11-29 北京工业大学 A kind of modeling method based on random bead micro-mixer in ultra performance liquid chromatography analysis
CN110516366B (en) * 2019-08-28 2023-04-07 北京工业大学 Modeling method based on random microbead micromixer in ultra-high performance liquid chromatography analysis
US11640145B2 (en) 2019-11-01 2023-05-02 Zhejiang University Of Technology Establishment of location correction system for processing seafood transportation displaced by wind waves and anti-accumulation drying processing method

Similar Documents

Publication Publication Date Title
CN106021638A (en) Modelling method for bubbling fluidized bed based on random motion of bubbles and particles
Zhao et al. Nature inspired fractal tree-like photobioreactor via 3D printing for CO2 capture by microaglae
CN106801114B (en) A kind of blast furnace material distribution process burden distribution matrix optimization method and system
CN107784380A (en) The optimization method and optimization system of a kind of inspection shortest path
CN103984829A (en) Discrete element method based method for improving particle discrete contact detection efficiency
WO2017201813A1 (en) Method for simulating movement process of surface water flow in surface irrigation
CN112772098A (en) Variable irrigation and fertilization zoning method for large-scale sprinkler
Ye et al. Numerical simulation on promoting light/dark cycle frequency to improve microalgae growth in photobioreactor with serial lantern-shaped draft tube
CN104694680A (en) Control method for radial distribution of blast furnace burden layer structure
CN108875936A (en) The method for solving the minimum distance in three-dimensional space between any two polyhedron
Nikora et al. Diffusion of saltating particles in unidirectional water flow over a rough granular bed
CN107245540B (en) A kind of control strategy of blast furnace material distribution process radial direction thickness of feed layer distribution
CN113221200A (en) Three-dimensional efficient random arrangement method suitable for uncertainty analysis of reactor core particle distribution
CN102567594B (en) Method for simulation modeling of offshore island reef type artificial fish reef cluster flow field
Weber et al. Understanding active region origins and emergence on the sun and other cool stars
CN106530375A (en) Personalized emotional contagion population animation generation method
CN108710769A (en) The construction method of irregular sand grains model in a kind of emulation of discrete element
CN115686072B (en) Automatic generation method of unmanned aerial vehicle group safe operation air line based on spatial grid
CN114441397B (en) PM2.5 pollution source positioning method based on Gaussian plume and centroid positioning
CN110110455B (en) Method for regulating gate opening under given flow
CN115906487A (en) Urban PM2.5 pollution diffusion modeling method based on Lasso regression analysis
Djeridane et al. Investigation of the mean and turbulent particle velocity fields in a spouted bed using radioactive particle tracking
CN108090030A (en) A kind of processing method of circle single pile local flow field
Abd Razak et al. Mean wind flow field around idealized block arrays with various aspect ratios
CN104239730B (en) Non-Gaussian turbulent flow analogy method based on Lagrange random particulate matter model

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161012