CN106018733A - 仿真环境下煤矿瓦斯动力灾害模拟实验装置及实验方法 - Google Patents

仿真环境下煤矿瓦斯动力灾害模拟实验装置及实验方法 Download PDF

Info

Publication number
CN106018733A
CN106018733A CN201610476952.XA CN201610476952A CN106018733A CN 106018733 A CN106018733 A CN 106018733A CN 201610476952 A CN201610476952 A CN 201610476952A CN 106018733 A CN106018733 A CN 106018733A
Authority
CN
China
Prior art keywords
cylinder
prominent
gas
coal
hydraulic cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610476952.XA
Other languages
English (en)
Other versions
CN106018733B (zh
Inventor
王登科
魏建平
李志强
刘勇
左伟芹
付启超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201610476952.XA priority Critical patent/CN106018733B/zh
Publication of CN106018733A publication Critical patent/CN106018733A/zh
Application granted granted Critical
Publication of CN106018733B publication Critical patent/CN106018733B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels, explosives
    • G01N33/222Solid fuels, e.g. coal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels, explosives
    • G01N33/225Gaseous fuels, e.g. natural gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种仿真环境下煤矿瓦斯动力灾害模拟实验装置,包括加载框架,加载框架安装有气动锤和两个Z向加载液压缸,两个Z向加载液压缸的活塞杆底端之间连接有Z向加载板;加载框架底部连接有Y向导轨和X向导轨;Y向轨道车上设有突出缸体和Y向加载液压缸,X向轨道车上设有X向加载液压缸;突出缸体顶部向上设有Z向加载口,突出缸体侧壁连接有沿Y向筒体和X向筒体,X向筒体上表面开设有突出口;X向筒体连接有末端敞口的第四管路;突出缸体连接有抽真空系统和瓦斯加载系统。本发明还公开了使用上述装置的实验方法,能够模拟煤矿冲击地压、瓦斯流场、覆岩层地应力以及水平构造应力,提高实验的仿真度,提高实验成功率和准确程度。

Description

仿真环境下煤矿瓦斯动力灾害模拟实验装置及实验方法
技术领域
本发明涉及一种仿真环境下煤矿瓦斯动力灾害模拟实验装置及实验方法,尤其涉及模拟冲击地压诱发的突出过程的实验装置。
背景技术
煤与瓦斯突出是煤矿生产过程中一种十分严重的事故灾害,但煤与瓦斯突出发生的机理一直没有定论,目前仍处于假说解释阶段。
目前,主要的假说有瓦斯作用假说、地应力作用假说、化学本质作用假说以及综合作用假说等,目前对综合作用引发煤与瓦斯突出的假说支持者较多。
综合作用假说认为在矿井生产过程中,采掘活动导致煤层所受地应力及煤层瓦斯压力改变打破原本的平衡状态,最后地应力、瓦斯压力以及其他相关因素综合作用导致煤岩体破坏失稳,从而发生煤与瓦斯突出灾害。
数据统计资料显示,大多数的突出发生在放炮和落煤工序过程中,具体的说就是多数的煤与瓦斯突出均是由于放炮、地震波以及顶板垮落等因素造成对煤岩体的冲击载荷诱发引起的。因此要对煤与瓦斯突出突出现象进行模拟实验研究,就不能避开冲击载荷的诱发因素。
尽管国内外学者在煤与瓦斯突出相似模拟实验研究装置方面做了大量工作并取得了许多成就,但是所研发出来的模拟实验装置还存在一些问题和不足:
1)不能施加侧向载荷来模拟水平构造应力。真实煤体在井下所受应力主要包括垂直方向上覆岩层地应力、水平方向构造应力以及煤层瓦斯孔隙压力。目前多数模拟突出实验装置只能实现垂直应力加载以及供给一定瓦斯压力,不能实现侧向水平加载载荷。
2)不能实现模拟冲击载荷诱发突出过程。井下放炮、地震波以及顶板垮落等因素造成的冲击地压是诱发突出的主要原因,多数突出是在这种情况下发生了,但是目前大部分实验装置考虑外载应力作用,都是通过对实验煤样进行静压加载的方法来实现的,不能模拟煤岩体承受的静压载荷与承受冲击载荷的双重作用,模拟实验中不能同时考虑到承受静压载荷与冲击载荷导致失稳破坏这两种因素。
3)数据统计除了石门揭煤,76%的煤与瓦斯突出事故发生在煤层巷道中。也就是说,大多数的煤与瓦斯突出均是在煤层已经暴露在采掘空间后发生的,此时的煤层瓦斯不在原始煤层瓦斯压力,已经卸压并发生流动,存在瓦斯流场。而目前的煤与瓦斯突出模拟实验装置只能在煤体处于密闭空间条件下进行突出实验,不能在瓦斯流场条件下进行瓦斯突出模拟实验。
4)目前设备大多结构复杂,装卸煤样麻烦,实验周期长效率低。
发明内容
本发明的目的在于提供一种能够模拟煤矿冲击地压、瓦斯流场、覆岩层地应力以及水平构造应力的煤矿瓦斯动力灾害模拟实验装置,使实验环境更加贴合煤矿的实际环境条件,使实验结果更加准确、更具有指导作用。
为实现上述目的,本发明的仿真环境下煤矿瓦斯动力灾害模拟实验装置以水平方向上相互垂直的两个方向分别为X向和Y向,以竖直方向为Z向;
本发明包括加载框架,加载框架包括四根立柱,四根立柱的水平截面围成正方形;四根立柱顶部之间固定连接有气动锤安装架,气动锤安装架上安装有气动锤;气动锤安装架下方的所述四根立柱之间固定连接有液压缸安装架,液压缸安装架上间隔设有两个Z向加载液压缸,两个Z向加载液压缸的活塞杆向下伸出液压缸安装架,两个Z向加载液压缸的活塞杆的底端之间固定连接有水平设置的Z向加载板;
两个Z向加载液压缸之间的液压缸安装架的中心位置设有上下贯通的竖向通孔,气动锤的伸出杆向下滑动穿过所述竖向通孔并正对所述Z向加载板;
所述加载框架底部固定连接有承载台,承载台固定连接有沿Y向设置的Y向底架和沿X向设置的X向底架;
承载台和Y向底架上设有Y向导轨,X向底架上设有X向导轨;Y向导轨上设有Y向轨道车,X向导轨上设有X向轨道车,Y向轨道车上设有突出缸体和Y向加载液压缸,X向轨道车上设有X向加载液压缸;
突出缸体顶部向上设有Z向加载口,Z向加载板与Z向加载口处的突出缸体内壁滑动密封连接; 突出缸体侧壁连接有沿Y向设置的Y向筒体,Y向加载液压缸的活塞杆伸入Y向筒体并连接有Y向加载板,Y向加载板与Y向筒体滑动密封连接;突出缸体的侧壁可拆卸连接有X向筒体,X向筒体固定连接在X向轨道车上,X向加载液压缸的活塞杆伸入X向筒体并连接有X向加载板,X向加载板与X向筒体滑动密封连接;X向筒体临近X向加载液压缸的端部上表面开设有突出口;所述突出口与突出缸体之间的X向筒体连接有第四管路,第四管路上设有第三压力表、第四阀门和流量计;第四管路末端敞口;
沿Y向导轨,突出缸体具有实验位置和装煤位置,突出缸体在实验位置时位于Z向加载板的正下方,突出缸体在装煤位置时位于加载框架外部;突出缸体连接有抽真空系统和瓦斯加载系统。
所述突出缸体与X向筒体之间通过法兰结构可拆卸连接在一起。
所述Y向轨道车和X向轨道车均设有刹车装置。
所述瓦斯加载系统包括高压瓦斯罐,高压瓦斯罐通过第一阀门连接有第一管路,沿瓦斯在第一管路内的流向,第一管路上依次设有减压阀、第一压力表和第二阀门;
所述抽真空系统包括真空泵,真空泵连接有第二管路,第二管路上设有第三阀门;
突出缸体连接有第三管路,第三管路上设有第二压力表;第三管路连接有三通阀,所述三通阀的三个接口分别连接第一管路、第二管路和第三管路。
本发明还公开了使用上述仿真环境下煤矿瓦斯动力灾害模拟实验装置的实验方法,依次按以下步骤进行:
一、本步骤是进行气密性检查,包括如下子步骤:①使第一阀门、第二阀门、第三阀门和第四阀门处于关闭状态;
②再使Y向轨道车带动突出缸体至突出缸体的实验位置,然后启动Y向加载液压缸、X向加载液压缸和Z向加载液压缸,从而使Y向加载板伸入Y向筒体并与Y向筒体滑动密封连接、使X向加载板伸入X向筒体并与X向筒体滑动密封连接并使Z向加载板与Z向加载口处的突出缸体内壁滑动密封连接;
③然后打开第二阀门和第一阀门,使突出缸体内充入瓦斯气体;
④最后关闭第二阀门和第一阀门,观察第二压力表的读数来确定突出缸体及其所连接的管路的气密性;如存在漏气现象,则检查漏气点并进行堵漏处理,然后返回执行本步骤的第③子步骤;
如果突出缸体及其所连接的管路具有气密性,则执行第二步骤;
二、本步骤是装煤粉,将颗粒煤粉通过三个入口装入突出缸体之内,包括如下三个子步骤:
①Z向加载口装煤粉,将X向筒体从突出缸体上拆卸开来,通过Y向轨道车将突出缸体沿Y向导轨拉出,并控制两个Z向加载液压缸的活塞杆向上运动,将Z向加载板从Z向加载口抽出,将实验用煤粉通过Z向加载口装入;
②Y向筒体装煤粉,控制Y向加载液压缸将Y向加载板抽出Y向筒体,然后向Y向筒体装入煤粉;
③突出口装煤粉,通过Y向轨道车将突出缸体沿Y向导轨送入加载框架至实验位置;将X向筒体与突出缸体通过法兰结构连接在一起,然后控制X向加载液压缸使X向加载板伸入X向筒体并位于突出口外侧,通过突出口向X向筒体装煤粉;X向筒体内装填的煤粉用于模拟现场突出前方的煤体厚度;
本步骤中第①和第②子步骤不分先后顺序,第③子步骤在第①和第②子步骤之后进行;
三、本步骤是将煤粉压成型煤煤样,具体是控制X向加载液压缸,使其活塞杆推动X向加载板对X向筒体内的煤粉施加X向水平压力;控制Y向加载液压缸,使其活塞杆推动Y向加载板对Y向筒体内的煤粉施加Y向水平压力;控制两个所述Z向加载液压缸,使其活塞杆推动Z向加载板对Z向加载口处突出缸体内的煤粉施加Z向压力;X向加载液压缸、Y向加载液压缸和Z向加载液压缸共同对煤粉施加静压载荷将煤粉压成型煤煤样;
四、本步骤是抽真空;打开第三阀门,利用真空泵对煤样进行抽真空处理;抽真空后,关闭真空泵和第三阀门。
五、本步骤是使煤样吸附瓦斯;
打开第一阀门和第二阀门,高压瓦斯罐向煤样中充入瓦斯气体,同时通过减压阀控制向煤样中充入的瓦斯气体的压力;使煤样在预定的瓦斯压力条件下充分吸附,并使煤样达到吸附解吸平衡的状态;本步骤中向煤样中充入的瓦斯形成的压力模拟瓦斯气体孔隙压力;
六、本步骤是对煤样施加静压载荷,依次进行如下操作:
保持第一阀门和第二阀门处于开启状态,打开第四阀门模拟现场瓦斯自然涌出过程,根据流量计的读数调节第四阀门的开启度,将瓦斯涌出速度调节至预定速度;然后保持X向加载液压缸和Y向加载液压缸不动,控制所述两个Z向加载液压缸通过Z向加载板对煤样施加Z向载荷到指定载荷后停止;
再控制Y向加载液压缸通过Y向加载板对煤样施加Y向载荷到指定载荷后停止,同时控制X向加载液压缸通过X向加载板对煤样施加X向载荷到指定载荷后停止;
此时,X向加载液压缸和Y向加载液压缸对煤样施加的水平压力模拟水平构造应力,Z向加载液压缸对煤样施加的Z向力压模拟垂直地应力;
七、控制X向加载液压缸,使其活塞杆带动X向加载板向外运动至突出口外侧,此时煤样与突出口连通从而打开突出口;如果连通后突出口处发生煤与瓦斯突出现象,则实验成功,本次实验中所模拟的垂直地应力、水平构造应力、瓦斯气体孔隙压力就是存在瓦斯涌出现象下引发突出的临界值;如果未发生煤与瓦斯突出现象,则进行第八步骤;
八、没有发生煤与瓦斯突出现象,表明在当前瓦斯涌出过程条件下,目前所施加的静压载荷及瓦斯压力未达到突出临界值;此时操作气动锤使其落下并冲击Z向加载板,从而向实验煤样施加冲击载荷,观察突出口处是否有煤与瓦斯突出现象发生;如果发生突出现象,则实验成功,本次实验中所模拟的垂直地应力、水平构造应力、瓦斯气体孔隙压力以及冲击载荷就是存在瓦斯涌出现象下引发突出的临界值;如果未发生煤与瓦斯突出现象,则进行第九步骤;
九、控制X向加载液压缸,使其活塞杆将X向加载板重新推动至突出口的内侧,从而关闭突出口;重复第三至第八步骤,并在第六步骤中,控制X向加载液压缸、Y向加载液压缸和两个Z向加载液压缸对煤样施加的压力,从而改变所模拟的垂直地应力和水平构造应力;并在第五步骤中调节减压阀,从而调节所模拟的瓦斯气体孔隙压力;重复第三至第八步骤,直到第七或第八步骤中发生煤与瓦斯突出现象,相应得到存在瓦斯涌出现象下引发突出的临界值。
所述第五步骤中,判断煤样达到吸附解吸平衡的方法包含如下三个子步骤:①在煤样吸附瓦斯12小时后,关闭第二阀门,再等待2小时之后,如果第二压力表和第三压力表的读数相等,则表明煤样已经达到吸附解吸平衡;②若第二压力表和第三压力表的读数不相等,表明煤样还没达到吸附解吸平衡,则需要再次打开第二阀门,继续向煤样中充入瓦斯,12小时后再次关闭第二阀门,等待2小时后若第二压力表和第三压力表的读数相等,则表明煤样已经达到吸附解吸平衡;③如果煤样已达到吸附解吸平衡,则进行第六步骤;若还未达到吸附解吸平衡,重复上述第②子步骤,直至煤样达到吸附解吸平衡状态。
在所述第六步骤中,开启Y向轨道车和X向轨道车的刹车装置。
本发明的装置及方法具有如下的优点:
本发明中的气动锤能够对煤样施加冲击载荷,从而模拟煤矿冲击地压;本发明中的四阀门19打开后能够模拟瓦斯流场(即模拟煤层具有的瓦斯涌出现象),本发明中的两个Z向加载液压缸能够模拟覆岩层地应力,本发明中的X向加载液压缸和Y向加载液压缸能够从两个相互垂直的方向模拟煤层复杂的水平构造应力,从而使本发明能够更加真实地模拟煤矿的实际环境条件,提高实验成功率和准确程度、更具有指导作用
本发明能通过静压加载的方式对实验煤样在三个方向(水平X、Y方向及垂直Z方向)上施加预定的静载应力,在模拟煤层上方覆岩层自重应力和水平构造应力组合条件下进行煤与瓦斯突出模拟实验;并且可以在垂直方向对装载好煤样给予一定能量的动力冲击载荷,来模拟现场生产过程中井下放炮、地震波以及顶板垮落等因素引起的冲击地压,对冲击地压诱发突出的过程进行模拟实验研究。
本发明设置瓦斯加载系统,并通过第四管路能够使瓦斯流出,构成了瓦斯流动的一个通路,保证实验是在瓦斯流动过程中进行,存在瓦斯流场,而不是密闭空间,这与真实煤层采掘时发生突出情况更加符合,提高实验的仿真程度,提高实验成功率和准确程度。
此外,本发明在实验不成功(未发生煤与瓦斯突出突出)的情况下,不需要重新进行气密性检查,不需要重新装填煤样,只需要在三个方向(X、Y、Z向)上重新对煤样施加静压载荷,即可再次试验。即仅需要重复执行第三至第八步骤即可,不需要执行第一和第二步骤,这样实现了“装一次煤样做多次突出实验”的快速重复实验的功能,提升了设备的使用效率,缩短了实验周期,提高了实验效率。
附图说明
图1是突出缸体位于装煤位置时本发明的结构示意图;
图2是本发明的左视示意图;
图3是突出缸体位于实验位置时本发明的俯视示意图;
图4是突出缸体、X向筒体、Y向筒体组合在一起的俯视示意图。
具体实施方式
本如发明中,以水平方向上相互垂直的两个方向分别为X向和Y向,以竖直方向为Z向。
如图1至图4所示,本发明的仿真环境下煤矿瓦斯动力灾害模拟实验装置包括加载框架1,加载框架1包括四根立柱,四根立柱的水平截面围成正方形;四根立柱顶部之间固定连接有气动锤安装架2,气动锤安装架2上安装有气动锤3;气动锤安装架2下方的所述四根立柱之间固定连接有液压缸安装架4,液压缸安装架4上间隔设有两个Z向加载液压缸5,两个Z向加载液压缸5的活塞杆向下伸出液压缸安装架4,两个Z向加载液压缸5的活塞杆的底端之间固定连接有水平设置的Z向加载板6;
两个Z向加载液压缸5之间的液压缸安装架4的中心位置设有上下贯通的竖向通孔,气动锤3的伸出杆向下滑动穿过所述竖向通孔并正对所述Z向加载板6;
所述加载框架1底部固定连接有承载台7,承载台7固定连接有沿Y向设置的Y向底架8和沿X向设置的X向底架9;
承载台7和Y向底架8上设有Y向导轨10,X向底架9上设有X向导轨11;Y向导轨10上设有Y向轨道车12,X向导轨11上设有X向轨道车13,Y向轨道车12上设有突出缸体14和Y向加载液压缸15,X向轨道车13上设有X向加载液压缸16;
突出缸体14顶部向上设有Z向加载口17,Z向加载板6与Z向加载口17处的突出缸体14内壁滑动密封连接; 突出缸体14侧壁连接有沿Y向设置的Y向筒体18,Y向加载液压缸15的活塞杆伸入Y向筒体18并连接有Y向加载板19,Y向加载板19与Y向筒体18滑动密封连接;突出缸体14的侧壁可拆卸连接有X向筒体20,X向筒体20固定连接在X向轨道车13上,X向加载液压缸16的活塞杆伸入X向筒体20并连接有X向加载板21,X向加载板21与X向筒体20滑动密封连接;X向筒体20临近X向加载液压缸16的端部上表面开设有突出口22;所述突出口22与突出缸体14之间的X向筒体20连接有第四管路23,第四管路23上设有第三压力表24、第四阀门25和流量计26;第四管路23末端敞口;
沿Y向导轨10,突出缸体14具有实验位置和装煤位置,突出缸体14在实验位置时位于Z向加载板6的正下方,突出缸体14在装煤位置时位于加载框架1外部;突出缸体14连接有抽真空系统和瓦斯加载系统。
其中,Z向加载液压缸5用于施加Z向力并模拟垂直地应力,X向加载液压缸16和Y向加载液压缸15施加水平力并用于模拟水平构造应力。
所述突出缸体14与X向筒体20之间通过法兰结构可拆卸连接在一起。所述Y向轨道车12和X向轨道车13均设有刹车装置,能够在实验时启动刹车装置,将轨道车固定在导轨上。刹车装置为常规技术,图未示。
所述瓦斯加载系统包括高压瓦斯罐30,高压瓦斯罐30通过第一阀门31连接有第一管路32,沿瓦斯在第一管路32内的流向,第一管路32上依次设有减压阀33、第一压力表34和第二阀门35;
所述抽真空系统包括真空泵36,真空泵36连接有第二管路37,第二管路37上设有第三阀门38;
突出缸体14连接有第三管路39,第三管路39上设有第二压力表40;第三管路39连接有三通阀41,所述三通阀41的三个接口分别连接第一管路32、第二管路37和第三管路39。
本发明可以配套的数据监测和采集系统,全程记录突出过程的冲击载荷能量、三个方向的应力及气体孔隙压力的大小等数据,来实时记录导致突出的各种组合的临界条件。
本发明还公开了使用上述仿真环境下煤矿瓦斯动力灾害模拟实验装置的实验方法,依次按以下步骤进行:
一、本步骤是进行气密性检查,包括如下子步骤:①使第一阀门31、第二阀门35、第三阀门38和第四阀门25处于关闭状态;
②再使Y向轨道车12带动突出缸体14至突出缸体14的实验位置,然后启动Y向加载液压缸15、X向加载液压缸16和Z向加载液压缸5,从而使Y向加载板19伸入Y向筒体18并与Y向筒体18滑动密封连接、使X向加载板21伸入X向筒体20并与X向筒体20滑动密封连接并使Z向加载板6与Z向加载口17处的突出缸体14内壁滑动密封连接;
③然后打开第二阀门35和第一阀门31,使突出缸体14内充入瓦斯气体;
④最后关闭第二阀门35和第一阀门31,观察第二压力表40的读数来确定突出缸体14及其所连接的管路的气密性。如存在漏气现象,则检查漏气点并进行堵漏处理,然后返回执行本步骤的第③子步骤;通过压力表来观察容器的气密性并检查漏气点和进行堵漏处理,均为本领域技术人员的常规技能,具体不再详述。
如果突出缸体14及其所连接的管路具有气密性,则执行第二步骤;
二、本步骤是装煤粉,将筛分好的颗粒煤粉通过三个入口装入突出缸体14之内,包括如下三个子步骤:
①Z向加载口17装煤粉,将X向筒体20从突出缸体14上拆卸开来,通过Y向轨道车12将突出缸体14沿Y向导轨10拉出,并控制两个Z向加载液压缸5的活塞杆向上运动,将Z向加载板6从Z向加载口17抽出,将大部分实验用煤粉通过Z向加载口17装入;
②Y向筒体18装煤粉,控制Y向加载液压缸15将Y向加载板19抽出Y向筒体18,然后向Y向筒体18装入煤粉;
③突出口22装煤粉,通过Y向轨道车12将突出缸体14沿Y向导轨10送入加载框架1至实验位置;将X向筒体20与突出缸体14通过法兰结构连接在一起,然后控制X向加载液压缸16使X向加载板21伸入X向筒体20并位于突出口22外侧(以靠近突出缸体14的方向为内向,反向为外向),通过突出口22向X向筒体20装煤粉;X向筒体20内装填的煤粉用于模拟现场突出前方的煤体厚度;
本步骤中第①和第②子步骤不分先后顺序,第③子步骤在第①和第②子步骤之后进行;
三、本步骤是将煤粉压成型煤煤样42,具体是控制X向加载液压缸16,使其活塞杆推动X向加载板21对X向筒体20内的煤粉施加X向水平压力;控制Y向加载液压缸15,使其活塞杆推动Y向加载板19对Y向筒体18内的煤粉施加Y向水平压力;控制两个所述Z向加载液压缸5,使其活塞杆推动Z向加载板6对Z向加载口17处突出缸体14内的煤粉施加Z向压力;X向加载液压缸16、Y向加载液压缸15和Z向加载液压缸5共同对煤粉施加静压载荷将煤粉压成型煤煤样42;
四、本步骤是抽真空;将所有装置都安装连接到位后,确保所有阀门处于关闭状态,打开第三阀门38,利用真空泵36对煤样42进行抽真空处理。抽真空后,关闭真空泵36和第三阀门38。
五、本步骤是使煤样42吸附瓦斯;
打开第一阀门31和第二阀门35,高压瓦斯罐30向煤样42中充入瓦斯气体,同时通过减压阀33控制向煤样42中充入的瓦斯气体的压力;使煤样42在预定的瓦斯压力条件下充分吸附,并使煤样42达到吸附解吸平衡的状态;本步骤中向煤样42中充入的瓦斯形成的压力模拟瓦斯气体孔隙压力;
六、本步骤是对煤样42施加静压载荷,依次进行如下操作:
保持第一阀门31和第二阀门35处于开启状态,打开第四阀门2519模拟现场瓦斯自然涌出过程,根据流量计2620的读数调节第四阀门2519的开启度,将瓦斯涌出速度调节至预定速度;然后保持X向加载液压缸16和Y向加载液压缸15不动,控制所述两个Z向加载液压缸5通过Z向加载板6对煤样42施加Z向载荷到指定载荷后停止;
再控制Y向加载液压缸15通过Y向加载板19对煤样42施加Y向载荷到指定载荷后停止,同时控制X向加载液压缸16通过X向加载板21对煤样42施加X向载荷到指定载荷后停止;
此时,X向加载液压缸16和Y向加载液压缸15对煤样42施加的水平压力模拟水平构造应力,Z向加载液压缸5对煤样42施加的Z向力压模拟垂直地应力;
七、控制X向加载液压缸16,使其活塞杆带动X向加载板21向外运动至突出口22外侧,此时煤样42与突出口22连通从而打开突出口22;如果连通后突出口22处发生煤与瓦斯突出现象,则实验成功,本次实验中所模拟的垂直地应力、水平构造应力、瓦斯气体孔隙压力就是存在瓦斯涌出现象下引发突出的临界值;如果未发生煤与瓦斯突出现象,则进行第八步骤;
八、没有发生煤与瓦斯突出现象,表明在当前瓦斯涌出过程条件下,目前所施加的静压载荷及瓦斯压力未达到突出临界值;此时操作气动锤3(即Z轴方向动压加载装置)使其落下并冲击Z向加载板6,从而向实验煤样42施加冲击载荷,观察突出口22处是否有煤与瓦斯突出现象发生;如果发生突出现象,则实验成功,本次实验中所模拟的垂直地应力、水平构造应力、瓦斯气体孔隙压力以及冲击载荷(所具有的能量)就是存在瓦斯涌出现象下引发突出的临界值;如果未发生煤与瓦斯突出现象,则进行第九步骤;
九、控制X向加载液压缸16,使其活塞杆将X向加载板21重新推动至突出口22的内侧,从而关闭突出口22;重复第三至第八步骤,并在第六步骤中,控制X向加载液压缸16、Y向加载液压缸15和两个Z向加载液压缸5对煤样42施加的压力,从而改变所模拟的垂直地应力和水平构造应力;并在第五步骤中调节减压阀33,从而调节所模拟的瓦斯气体孔隙压力;重复第三至第八步骤,直到第七或第八步骤中发生煤与瓦斯突出现象,相应得到存在瓦斯涌出现象下引发突出的临界值。
所述第五步骤中,判断煤样42达到吸附解吸平衡的方法包含如下三个子步骤:①在煤样42吸附瓦斯12小时后,关闭第二阀门35,再等待2小时之后,如果第二压力表40和第三压力表24的读数相等,则表明煤样42已经达到吸附解吸平衡;②若第二压力表40和第三压力表24的读数不相等,表明煤样42还没达到吸附解吸平衡,则需要再次打开第二阀门35,继续向煤样42中充入瓦斯,12小时后(不一定是12小时,这个时间间隔也可以根据实验经验来确定)再次关闭第二阀门35,等待2小时后若第二压力表40和第三压力表24的读数相等,则表明煤样42已经达到吸附解吸平衡;③如果煤样42已达到吸附解吸平衡,则进行第六步骤;若还未达到吸附解吸平衡,重复上述第②子步骤,直至煤样42达到吸附解吸平衡状态。
在所述第六步骤中,开启Y向轨道车12和X向轨道车13的刹车装置,进一步固定Y向轨道车12和X向轨道车13。
研发说明:
为了模拟煤层所处真实应力(垂直地应力及水平构造应力)环境,本发明能够对实验煤样42以静压加载的方式来实现垂直方向及水平方向上应力的加载,并且可以控制垂直方向冲击应力加载装置(即气动锤3)对煤体施加动力载荷,来模拟井下放炮、地震波以及顶板垮落等因素造成的冲击地压诱发突出的过程。瓦斯加载系统可以对受载煤样42充入一定压力的瓦斯气体,并通过在X向筒体20设置一个用于放气的第四管路23来模拟现场发生突出之前的瓦斯在煤体中的正常流动及涌出。水平方向的液压缸(X向加载液压缸16和Y向加载液压缸15)固定在轨道车上,垂直方向上的液压缸(Z向加载液压缸5)固定在液压缸安装架4上。实验时液压缸安装架4为Z向加载液压缸5提供支撑反力,Z向加载液压缸5通过Z向加载板6向下对煤样42施加垂直静压载荷,在垂直方向的静压载荷作用下,承载突出缸体14的Y向轨道车12被紧压定位在Y向导轨10上。开启Y向轨道车12和X向轨道车13的刹车装置,从而固定Y向轨道车12和X向轨道车13。通过Y向加载液压缸15控制Y向加载板19,使Y向加载板19位于突出口22的内侧(此时突出口22与煤样42分隔,突出口22被关闭)或外侧(此时突出口22与煤样42相通,突出口22打开),能够实现“装一次煤样做多次突出实验”的重复实验功能。
本发明中在Y向上可施加最大静压载荷5000kN,在X向上施加的最大静压载荷为1000kN,但X向的加载、卸载的速度要快,其位移速度70mm/s可通过电液伺服控制实现。
Z向静压载荷最大为20MN;Z向动压载荷的加载通过气动锤3来实现。通过调节液压缸内液压油放排速度来控制动力加载速率及能量输出大小。
为了模拟煤层所处的瓦斯应力环境,本发明装置设有瓦斯加载系统和抽真空系统,并在X向筒体20的突出口22附近位置设有用于放气的第四管路23,使实验在瓦斯流动过程中进行,存在瓦斯流场,而不是密闭空间,这与真实煤层采掘过程发生突出情况更加符合,提高实验的仿真程度,提高实验成功率和准确程度。
在X向筒体20设有一个突出口22,具体的说就是通过控制X向加载液压缸16活塞的前进和后退距离来间接控制突出口22的关闭和开启状态。当实验准备完毕,控制X向加载液压缸16使X向加载板21慢慢抽出直至突出口22打开。如果发生突出,实验成功;如果没有突出,推进X向加载液压缸16的活塞直至突出口22关闭,改变外载应力及瓦斯压力条件,充分吸附后继续实验,从而实现装一次煤样进行多次突出实验,极大提高了实验效率。
抽掉各加载板后可以方便地装卸煤样,突出口22处也可以装卸煤样,因此本发明装卸煤样十分方便。
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

1.仿真环境下煤矿瓦斯动力灾害模拟实验装置,其特征在于:以水平方向上相互垂直的两个方向分别为X向和Y向,以竖直方向为Z向;
本发明包括加载框架,加载框架包括四根立柱,四根立柱的水平截面围成正方形;四根立柱顶部之间固定连接有气动锤安装架,气动锤安装架上安装有气动锤;气动锤安装架下方的所述四根立柱之间固定连接有液压缸安装架,液压缸安装架上间隔设有两个Z向加载液压缸,两个Z向加载液压缸的活塞杆向下伸出液压缸安装架,两个Z向加载液压缸的活塞杆的底端之间固定连接有水平设置的Z向加载板;
两个Z向加载液压缸之间的液压缸安装架的中心位置设有上下贯通的竖向通孔,气动锤的伸出杆向下滑动穿过所述竖向通孔并正对所述Z向加载板;
所述加载框架底部固定连接有承载台,承载台固定连接有沿Y向设置的Y向底架和沿X向设置的X向底架;
承载台和Y向底架上设有Y向导轨,X向底架上设有X向导轨;Y向导轨上设有Y向轨道车,X向导轨上设有X向轨道车,Y向轨道车上设有突出缸体和Y向加载液压缸,X向轨道车上设有X向加载液压缸;
突出缸体顶部向上设有Z向加载口,Z向加载板与Z向加载口处的突出缸体内壁滑动密封连接; 突出缸体侧壁连接有沿Y向设置的Y向筒体,Y向加载液压缸的活塞杆伸入Y向筒体并连接有Y向加载板,Y向加载板与Y向筒体滑动密封连接;突出缸体的侧壁可拆卸连接有X向筒体,X向筒体固定连接在X向轨道车上,X向加载液压缸的活塞杆伸入X向筒体并连接有X向加载板,X向加载板与X向筒体滑动密封连接;X向筒体临近X向加载液压缸的端部上表面开设有突出口;所述突出口与突出缸体之间的X向筒体连接有第四管路,第四管路上设有第三压力表、第四阀门和流量计;第四管路末端敞口;
沿Y向导轨,突出缸体具有实验位置和装煤位置,突出缸体在实验位置时位于Z向加载板的正下方,突出缸体在装煤位置时位于加载框架外部;突出缸体连接有抽真空系统和瓦斯加载系统。
2.根据权利要求1所述的仿真环境下煤矿瓦斯动力灾害模拟实验装置,其特征在于:所述突出缸体与X向筒体之间通过法兰结构可拆卸连接在一起。
3.根据权利要求2所述的仿真环境下煤矿瓦斯动力灾害模拟实验装置,其特征在于:所述Y向轨道车和X向轨道车均设有刹车装置。
4.根据权利要求1-3中任一项所述的仿真环境下煤矿瓦斯动力灾害模拟实验装置,其特征在于:
所述瓦斯加载系统包括高压瓦斯罐,高压瓦斯罐通过第一阀门连接有第一管路,沿瓦斯在第一管路内的流向,第一管路上依次设有减压阀、第一压力表和第二阀门;
所述抽真空系统包括真空泵,真空泵连接有第二管路,第二管路上设有第三阀门;
突出缸体连接有第三管路,第三管路上设有第二压力表;第三管路连接有三通阀,所述三通阀的三个接口分别连接第一管路、第二管路和第三管路。
5.使用权利要求4所述仿真环境下煤矿瓦斯动力灾害模拟实验装置的实验方法,其特征在于依次按以下步骤进行:
一、本步骤是进行气密性检查,包括如下子步骤:①使第一阀门、第二阀门、第三阀门和第四阀门处于关闭状态;
②再使Y向轨道车带动突出缸体至突出缸体的实验位置,然后启动Y向加载液压缸、X向加载液压缸和Z向加载液压缸,从而使Y向加载板伸入Y向筒体并与Y向筒体滑动密封连接、使X向加载板伸入X向筒体并与X向筒体滑动密封连接并使Z向加载板与Z向加载口处的突出缸体内壁滑动密封连接;
③然后打开第二阀门和第一阀门,使突出缸体内充入瓦斯气体;
④最后关闭第二阀门和第一阀门,观察第二压力表的读数来确定突出缸体及其所连接的管路的气密性;如存在漏气现象,则检查漏气点并进行堵漏处理,然后返回执行本步骤的第③子步骤;
如果突出缸体及其所连接的管路具有气密性,则执行第二步骤;
二、本步骤是装煤粉,将颗粒煤粉通过三个入口装入突出缸体之内,包括如下三个子步骤:
①Z向加载口装煤粉,将X向筒体从突出缸体上拆卸开来,通过Y向轨道车将突出缸体沿Y向导轨拉出,并控制两个Z向加载液压缸的活塞杆向上运动,将Z向加载板从Z向加载口抽出,将实验用煤粉通过Z向加载口装入;
②Y向筒体装煤粉,控制Y向加载液压缸将Y向加载板抽出Y向筒体,然后向Y向筒体装入煤粉;
③突出口装煤粉,通过Y向轨道车将突出缸体沿Y向导轨送入加载框架至实验位置;将X向筒体与突出缸体通过法兰结构连接在一起,然后控制X向加载液压缸使X向加载板伸入X向筒体并位于突出口外侧,通过突出口向X向筒体装煤粉;X向筒体内装填的煤粉用于模拟现场突出前方的煤体厚度;
本步骤中第①和第②子步骤不分先后顺序,第③子步骤在第①和第②子步骤之后进行;
三、本步骤是将煤粉压成型煤煤样,具体是控制X向加载液压缸,使其活塞杆推动X向加载板对X向筒体内的煤粉施加X向水平压力;控制Y向加载液压缸,使其活塞杆推动Y向加载板对Y向筒体内的煤粉施加Y向水平压力;控制两个所述Z向加载液压缸,使其活塞杆推动Z向加载板对Z向加载口处突出缸体内的煤粉施加Z向压力;X向加载液压缸、Y向加载液压缸和Z向加载液压缸共同对煤粉施加静压载荷将煤粉压成型煤煤样;
四、本步骤是抽真空;打开第三阀门,利用真空泵对煤样进行抽真空处理;抽真空后,关闭真空泵和第三阀门。
6.五、本步骤是使煤样吸附瓦斯;
打开第一阀门和第二阀门,高压瓦斯罐向煤样中充入瓦斯气体,同时通过减压阀控制向煤样中充入的瓦斯气体的压力;使煤样在预定的瓦斯压力条件下充分吸附,并使煤样达到吸附解吸平衡的状态;本步骤中向煤样中充入的瓦斯形成的压力模拟瓦斯气体孔隙压力;
六、本步骤是对煤样施加静压载荷,依次进行如下操作:
保持第一阀门和第二阀门处于开启状态,打开第四阀门模拟现场瓦斯自然涌出过程,根据流量计的读数调节第四阀门的开启度,将瓦斯涌出速度调节至预定速度;然后保持X向加载液压缸和Y向加载液压缸不动,控制所述两个Z向加载液压缸通过Z向加载板对煤样施加Z向载荷到指定载荷后停止;
再控制Y向加载液压缸通过Y向加载板对煤样施加Y向载荷到指定载荷后停止,同时控制X向加载液压缸通过X向加载板对煤样施加X向载荷到指定载荷后停止;
此时,X向加载液压缸和Y向加载液压缸对煤样施加的水平压力模拟水平构造应力,Z向加载液压缸对煤样施加的Z向力压模拟垂直地应力;
七、控制X向加载液压缸,使其活塞杆带动X向加载板向外运动至突出口外侧,此时煤样与突出口连通从而打开突出口;如果连通后突出口处发生煤与瓦斯突出现象,则实验成功,本次实验中所模拟的垂直地应力、水平构造应力、瓦斯气体孔隙压力就是存在瓦斯涌出现象下引发突出的临界值;如果未发生煤与瓦斯突出现象,则进行第八步骤;
八、没有发生煤与瓦斯突出现象,表明在当前瓦斯涌出过程条件下,目前所施加的静压载荷及瓦斯压力未达到突出临界值;此时操作气动锤使其落下并冲击Z向加载板,从而向实验煤样施加冲击载荷,观察突出口处是否有煤与瓦斯突出现象发生;如果发生突出现象,则实验成功,本次实验中所模拟的垂直地应力、水平构造应力、瓦斯气体孔隙压力以及冲击载荷就是存在瓦斯涌出现象下引发突出的临界值;如果未发生煤与瓦斯突出现象,则进行第九步骤;
九、控制X向加载液压缸,使其活塞杆将X向加载板重新推动至突出口的内侧,从而关闭突出口;重复第三至第八步骤,并在第六步骤中,控制X向加载液压缸、Y向加载液压缸和两个Z向加载液压缸对煤样施加的压力,从而改变所模拟的垂直地应力和水平构造应力;并在第五步骤中调节减压阀,从而调节所模拟的瓦斯气体孔隙压力;重复第三至第八步骤,直到第七或第八步骤中发生煤与瓦斯突出现象,相应得到存在瓦斯涌出现象下引发突出的临界值。
7.根据权利要求5所述的实验方法,其特征在于:所述第五步骤中,判断煤样达到吸附解吸平衡的方法包含如下三个子步骤:①在煤样吸附瓦斯12小时后,关闭第二阀门,再等待2小时之后,如果第二压力表和第三压力表的读数相等,则表明煤样已经达到吸附解吸平衡;②若第二压力表和第三压力表的读数不相等,表明煤样还没达到吸附解吸平衡,则需要再次打开第二阀门,继续向煤样中充入瓦斯,12小时后再次关闭第二阀门,等待2小时后若第二压力表和第三压力表的读数相等,则表明煤样已经达到吸附解吸平衡;③如果煤样已达到吸附解吸平衡,则进行第六步骤;若还未达到吸附解吸平衡,重复上述第②子步骤,直至煤样达到吸附解吸平衡状态。
8.根据权利要求5所述的实验方法,其特征在于:在所述第六步骤中,开启Y向轨道车和X向轨道车的刹车装置。
CN201610476952.XA 2016-06-27 2016-06-27 仿真环境下煤矿瓦斯动力灾害模拟实验装置及实验方法 Active CN106018733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610476952.XA CN106018733B (zh) 2016-06-27 2016-06-27 仿真环境下煤矿瓦斯动力灾害模拟实验装置及实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610476952.XA CN106018733B (zh) 2016-06-27 2016-06-27 仿真环境下煤矿瓦斯动力灾害模拟实验装置及实验方法

Publications (2)

Publication Number Publication Date
CN106018733A true CN106018733A (zh) 2016-10-12
CN106018733B CN106018733B (zh) 2017-12-15

Family

ID=57084475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610476952.XA Active CN106018733B (zh) 2016-06-27 2016-06-27 仿真环境下煤矿瓦斯动力灾害模拟实验装置及实验方法

Country Status (1)

Country Link
CN (1) CN106018733B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374425A (zh) * 2018-12-17 2019-02-22 郑州轻工业学院 含瓦斯煤体卸压后发生层裂破坏的模拟研究实验装置及实验方法
CN109523894A (zh) * 2018-12-26 2019-03-26 山东科技大学 一种生物技术防治瓦斯与火共生灾害模拟实验装置及方法
CN109900549A (zh) * 2019-04-24 2019-06-18 龙岩学院 一种煤矿堵漏风材料性能测试装置及其使用方法
CN109991391A (zh) * 2019-04-09 2019-07-09 重庆大学 含断层煤系岩层煤与瓦斯突出模拟试验方法
CN110850054A (zh) * 2019-12-04 2020-02-28 河南工程学院 一种煤与瓦斯突出模拟装置
CN112326919A (zh) * 2020-09-18 2021-02-05 安徽理工大学 一种煤与瓦斯突出模拟试验装置及试验方法
CN113847026A (zh) * 2020-10-22 2021-12-28 河南理工大学 煤层水力冲孔模拟实验方法
CN115306484A (zh) * 2022-08-29 2022-11-08 中国矿业大学(北京) 一种软硬复合煤层的煤与瓦斯突出实验系统及方法
CN116087458B (zh) * 2022-12-23 2023-08-29 重庆大学 深埋煤层瓦斯突出试验系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202101910U (zh) * 2011-06-10 2012-01-04 中国矿业大学 三轴冲击动静载组合试验机
CN102735549A (zh) * 2012-07-05 2012-10-17 重庆大学 多功能真三轴流固耦合压力室
KR20130059996A (ko) * 2011-11-29 2013-06-07 한국지질자원연구원 암석 변형 관찰용 시료 챔버
CN104458490A (zh) * 2014-12-09 2015-03-25 山东大学 真三轴煤与瓦斯吸附解吸和突出试验装置系统及试验方法
CN205720213U (zh) * 2016-06-27 2016-11-23 河南理工大学 仿真环境下煤矿瓦斯动力灾害模拟实验装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202101910U (zh) * 2011-06-10 2012-01-04 中国矿业大学 三轴冲击动静载组合试验机
KR20130059996A (ko) * 2011-11-29 2013-06-07 한국지질자원연구원 암석 변형 관찰용 시료 챔버
CN102735549A (zh) * 2012-07-05 2012-10-17 重庆大学 多功能真三轴流固耦合压力室
CN104458490A (zh) * 2014-12-09 2015-03-25 山东大学 真三轴煤与瓦斯吸附解吸和突出试验装置系统及试验方法
CN205720213U (zh) * 2016-06-27 2016-11-23 河南理工大学 仿真环境下煤矿瓦斯动力灾害模拟实验装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374425B (zh) * 2018-12-17 2024-04-05 郑州轻工业学院 含瓦斯煤体卸压后发生层裂破坏的模拟研究实验装置及实验方法
CN109374425A (zh) * 2018-12-17 2019-02-22 郑州轻工业学院 含瓦斯煤体卸压后发生层裂破坏的模拟研究实验装置及实验方法
CN109523894B (zh) * 2018-12-26 2021-03-09 山东科技大学 一种生物技术防治瓦斯与火共生灾害模拟实验装置及方法
CN109523894A (zh) * 2018-12-26 2019-03-26 山东科技大学 一种生物技术防治瓦斯与火共生灾害模拟实验装置及方法
CN109991391A (zh) * 2019-04-09 2019-07-09 重庆大学 含断层煤系岩层煤与瓦斯突出模拟试验方法
CN109900549B (zh) * 2019-04-24 2024-02-06 龙岩学院 一种煤矿堵漏风材料性能测试装置及其使用方法
CN109900549A (zh) * 2019-04-24 2019-06-18 龙岩学院 一种煤矿堵漏风材料性能测试装置及其使用方法
CN110850054A (zh) * 2019-12-04 2020-02-28 河南工程学院 一种煤与瓦斯突出模拟装置
CN112326919A (zh) * 2020-09-18 2021-02-05 安徽理工大学 一种煤与瓦斯突出模拟试验装置及试验方法
CN113847026A (zh) * 2020-10-22 2021-12-28 河南理工大学 煤层水力冲孔模拟实验方法
CN113847026B (zh) * 2020-10-22 2023-05-23 河南理工大学 煤层水力冲孔模拟实验方法
CN115306484A (zh) * 2022-08-29 2022-11-08 中国矿业大学(北京) 一种软硬复合煤层的煤与瓦斯突出实验系统及方法
CN116087458B (zh) * 2022-12-23 2023-08-29 重庆大学 深埋煤层瓦斯突出试验系统

Also Published As

Publication number Publication date
CN106018733B (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
CN106018733A (zh) 仿真环境下煤矿瓦斯动力灾害模拟实验装置及实验方法
CN108798630B (zh) 一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统
CN106918531B (zh) 可用于多相耦合的动静联合加载岩石试验机及试验方法
CN106018105B (zh) 煤岩工程多功能物理模拟试验系统及煤岩模型试验方法
CN102830213B (zh) 变温条件下受载含瓦斯煤吸附-解吸-渗流实验系统
CN205720213U (zh) 仿真环境下煤矿瓦斯动力灾害模拟实验装置
CN105891429B (zh) 可重复试验的煤与瓦斯突出模拟装置及试验方法
CN102031954B (zh) 煤岩钻孔水力致裂实验装置
CN111271060B (zh) 多场耦合矿井智能开采模型试验系统
CN109490085A (zh) 一种岩石冲击加载-卸围压力学试验系统及其使用方法
CN107063882A (zh) 一种模拟深地环境的岩石力学实验系统
CN106840892B (zh) 一种煤岩样真三轴竖向动静加载试验机
CN105863596A (zh) 煤矿井下超声波与水力压裂复合致裂煤体模拟装置及方法
CN105910913B (zh) 原煤煤样下冲击载荷诱发煤与瓦斯突出试验系统及方法
CN207051126U (zh) 一种用于模拟正断层形成的试验装置
CN105628811A (zh) 一种超临界co2与页岩中ch4竞争吸附测试装置及其测试方法
CN111929150B (zh) 多雨山区下穿铁路隧道围岩动力学测试系统及方法
CN102794577B (zh) 一种模拟中压液体或气体环境的焊接实验舱
CN106370576B (zh) 用于研究煤岩渗透率的模拟装置及方法
CN106226502A (zh) 深部高地应力煤岩体动力灾害与驱替模拟试验系统及方法
CN104564125B (zh) 软煤储层瓦斯强化抽采对比实验装置及实验方法
CN108444833A (zh) 一种模拟正逆断层形成的试验装置
CN206725361U (zh) 一种模拟深地环境的岩石力学实验系统
CN106018732A (zh) 瓦斯动力灾害模拟试验台快速释放装置与试验方法
CN109386270A (zh) 煤岩层瓦斯动力增透渗流与驱替模拟试验系统与试验方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant