CN106012778B - 用于高速公路路面应变测量的数字图像采集分析方法 - Google Patents

用于高速公路路面应变测量的数字图像采集分析方法 Download PDF

Info

Publication number
CN106012778B
CN106012778B CN201610331578.4A CN201610331578A CN106012778B CN 106012778 B CN106012778 B CN 106012778B CN 201610331578 A CN201610331578 A CN 201610331578A CN 106012778 B CN106012778 B CN 106012778B
Authority
CN
China
Prior art keywords
image
express highway
highway pavement
characteristic point
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610331578.4A
Other languages
English (en)
Other versions
CN106012778A (zh
Inventor
何小元
刘聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610331578.4A priority Critical patent/CN106012778B/zh
Publication of CN106012778A publication Critical patent/CN106012778A/zh
Application granted granted Critical
Publication of CN106012778B publication Critical patent/CN106012778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs

Abstract

本发明公开了一种用于高速公路路面应变测量的数字图像采集分析方法,通过分析变形前后高速公路路面图像进行应变测量,使用工业相机分别采集高速公路路面建成及待检测时刻两组序列图像,利用图像合成系统合成为两幅图像,对变形前后这两幅图像进行数字图像相关分析得到整个高速公路路面应变分布。本发明方法可在路面裂缝出现之前进行监测,从而为高速公路路面养护、决策提供非常及时、准确的数据。

Description

用于高速公路路面应变测量的数字图像采集分析方法
技术领域
本发明涉及用于高速公路路面应变测量的数字图像采集装置及分析方法,尤其是利用数字图像技术实现的非接触式高速公路路面应变测量的装置及分析方法。
背景技术
由于环境温度变化及荷载(行驶车辆)等作用,高速公路路面会出现不同的应变分布,在应变较大的地方容易出现裂缝等缺陷。目前对高速公路路面养护主要集中在裂缝出现以后,不能在裂缝出现之前对公路路面进行及时有效的养护。而传统的应变测量大多采用如电阻应变计等接触式测量方式,不能提供全场的应变数据,且在高速公路路面上很难实施。
发明内容
技术问题:本发明提供一种操作简单,易于实现,图像的视场范围包含整个高速公路路面,可以为高速公路路面养护提供及时有效的数据的用于高速公路路面应变测量的数字图像采集分析方法。
技术方案:本发明的用于高速公路路面应变测量的数字图像采集分析方法,包括以下步骤:
步骤1:测量车置于待测高速公路路面上,图像采集装置固定于测量车的正前面;
步骤2:用所述图像采集装置采集标定板图像,计算得到图像采集装置的参数,所述图像采集装置的参数包括镜头畸变参数矩阵及内部参数矩阵和外部参数矩阵;
步骤3:在路面建成时,测量车以速度v在路面行驶,v=f×w/2,其中f为图像采集装置的采集帧频,w为图像采集装置的视场大小,图像采集装置连续拍摄路面图像并进行保存,得到初始状态的一系列图像,作为状态0;
步骤4:在路面待检测时刻,测量车以同样速度在路面行驶,图像采集装置连续拍摄路面图像并进行保存,得到该状态的一系列图像,作为状态1;
步骤5:利用所述步骤2得到的镜头畸变参数矩阵,将步骤3及步骤4得到的状态0和状态1的序列图像分别进行畸变校正,对畸变校正后的状态0和状态1序列图像分别进行图像拼接,得到包含整个路面的图像0和图像1;
步骤6:用数字图像相关法对所述步骤5处理得到的图像0和图像1进行分析,得到路面的全场应变。
本发明方法通过分析高速公路路面刚刚建成及待检测时刻两个状态的变形前后图像,非接触测量整个高速公路路面应变。
进一步的,本发明方法中,步骤1)中的图像采集装置为单相机,多相机,或相机阵列。
进一步的,本发明方法中,步骤1)中的图像采集装置分辨率至少为2000*2000像素。
进一步的,本发明方法中,步骤5)中图像拼接的方法为:对于每组序列图像,利用SURF特征点检测,找到所有图像上的特征点,利用最近距离比次近距离的特征点匹配方法对相邻图像间进行特征点提纯,得到两幅图像特征点的粗匹配关系,使用随机抽样一致算法对粗匹配的特征点进行进一步提纯,得到两幅图像特征点的细匹配关系,对细匹配的特征点使用数字图像相关法找到两幅图像更为精确的匹配特征点对的图像坐标(xi,1,yi,1)和(xi,2,yi,2),采用如下公式计算图像的单应变换矩阵H:
其中i为匹配的特征点编号;
最后利用双三次样条插值方法进行图像插值及融合。
进一步的,本发明方法中,步骤2中镜头畸变参数矩阵包括6阶径向畸变参数K1、K2、K3、K4、K5、K6和2阶切向畸变参数P1、P2
有益效果:本发明与现有技术相比,具有以下优点:
(1)高速公路路面无损。与其他公路路面接触式测量技术相比,本发明采用光学测试技术,无需与高速公路路面接触,且对路面没有损伤,也不会阻止路面变形。
(2)高速公路路面全场应变测量。与传统的单点式测试技术相比,本发明在测试过程中对整个公路路面进行整体成像,利用路面颗粒形成的纹理作为散斑图像,通过数字图像相关方法即可测量路面全场应变。
(3)可以对高速公路路面进行及时有效养护。大多数路况检测方法只采集路面出现裂缝后图像,不能再裂缝出现之前对路面进行养护。而本发明采集路面建成时及路面待检测时刻两个状态图像,在裂缝出现之前即可检测出最大应变即将要出现裂缝位置。
(4)高精度高速公路路面应变测量。与传统的图像拼接方法相比,本发明在找到图像的对应点之后采用数字图像相关法提高对应特征点的精度,数字图像相关方法可以达到位移的测量精度为0.01像素,因而该方法可以进行高精度应变测量。
附图说明
图1为本发明测量装置示意图。
图2为编码点标定板示意图,是已知尺寸的标准件。
图3为发明方法的流程图。
具体实施方式
下面结合实施例和说明书附图对本发明作进一步的说明。
步骤1:图1中,1所示的为测量车,置于待测高速公路路面,2所示的为图像采集装置,通过刚性支座固定于测量车的正前面距离地面约1米处。其中图像采集装置2为并排布置的至少5台工业相机,工业相机分辨率至少为2000*2000像素,每台相机前装有低畸变定焦镜头,镜头光轴垂直于车底平面。每个相机的视场约为0.5m×0.5m,相邻相机间的距离略小于单个相机视场大小,这样可以保证最终图像的连续性且不损失有效分辨率。其中图像采集装置也可以用由多台相机组成的相机阵列代替;
步骤2:将图2所示编码点标定板在相机视场和景深范围内以任意姿态转动8次,通过同步触发装置控制工业相机同步采集不同姿态的编码点标定板图像。编码点标定板中每个特征点的世界坐标和图像坐标都可以唯一确定,基于现有的标定方法利用标定板图像标定计算工业相机之间的外部参数矩阵、每个工业相机的内部参数矩阵和镜头畸变参数矩阵Di;镜头畸变参数矩阵包括6阶径向畸变参数K1、K2、K3、K4、K5、K6和2阶切向畸变参数P1、P2;镜头畸变参数矩阵主要用来校正由于镜头畸变造成的图像失真。
步骤3:在高速公路路面建成时,测量车最高以速度v在路面行驶,v=f×w/2,其中f为工业相机的采集帧频,w为工业相机的视场大小,通过同步触发装置控制工业相机连续拍摄路面图像并进行图像保存,得到初始状态的一系列图像,作为状态0。序列相邻图像之间至少要有一半的重叠区域,若采用采集频率为70帧的工业相机,则测量车的最高运行速度为0.5×70/2=17.5m/s=63km/h。对于不同的工业相机和镜头可依据上述公式中的视场大小及图像采集频率计算测量车的最高运行速度。
步骤4:在高速公路路面待检测时刻,测量车以同样速度在路面行驶,通过同步触发装置控制工业相机连续拍摄该时刻路面图像并进行图像保存,得到该状态的一系列图像,作为状态1;
步骤5:利用所述步骤2得到的相机间的外部参数矩阵、相机的内部参数矩阵和镜头畸变参数矩阵,首先将步骤3及步骤4得到的状态0和状态1的多台相机采集的同一时刻的图像分别利用现有方法进行图像畸变校正,利用基于标定的图像拼接方法进行图像拼接,得到状态0和状态1的时间序列图像,文章《相机阵列测量二维应变场的高精度分析方法》公开了基于标定的图像拼接方法,然后对状态0和状态1的时间序列图像分别进行图像拼接,得到包含整个路面的图像0和图像1;
其中图像拼接的方法为:对于每组序列图像,利用SURF特征点检测,SURF特征点检测为现有技术,文章《SURF:Speeded Up Robust Features》公开了该算法。找到所有图像上的特征点,利用最近距离比次近距离的特征点匹配方法对相邻图像间进行特征点提纯,得到两幅图像特征点的粗匹配关系,使用随机抽样一致算法对粗匹配的特征点进行进一步提纯,得到两幅图像特征点的细匹配关系,对细匹配的特征点使用数字图像相关法找到两幅图像更为精确的匹配特征点对的图像坐标(xi,1,yi,1)和(xi,2,yi,2),由于数字图像相关方法的定位精度为0.01pixel,因此图像坐标(xi,1,yi,1)和(xi,2,yi,2)的匹配精度比SURF特征点算法的匹配精度更高,最终计算出来的图像单应变换矩阵重投影误差更小,采用如下公式计算图像的单应变换矩阵H:
其中i为匹配的特征点编号;
最后利用双三次样条插值方法进行图像插值及融合。
步骤6:用数字图像相关法对所述步骤5处理得到的图像0和图像1进行分析,得到高速公路路面的全场应变。其中数字图像相关法为现有技术,期刊名称为《Optics andLasers in Engineering》,2015年第71期,文章《Noise robustness and parallelcomputation of the inverse compositional Gauss-Newton algorithm in digitalimage correlation》公开了该算法,数字图像相关方法的位移测量精度可达0.01像素,因此可以高精度测量高速公路的路面应变,在裂缝出现之前即可检测出最大应变即将要出现裂缝的位置,为路面养护提供及时的数据。
上述实施例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。

Claims (5)

1.一种用于高速公路路面应变测量的数字图像采集分析方法,其特征在于,该方法包括以下步骤:
步骤1:测量车置于待测高速公路路面上,图像采集装置固定于测量车的正前面;
步骤2:用所述图像采集装置采集标定板图像,计算得到图像采集装置的参数,所述图像采集装置的参数包括镜头畸变参数矩阵及内部参数矩阵和外部参数矩阵;
步骤3:在路面建成时,测量车以速度v在路面行驶,v=f×w/2,其中f为图像采集装置的采集帧频,w为图像采集装置的视场大小,图像采集装置连续拍摄路面图像并进行保存,得到初始状态的一系列图像,作为状态0;
步骤4:在路面待检测时刻,测量车以同样速度在路面行驶,图像采集装置连续拍摄路面图像并进行保存,得到该状态的一系列图像,作为状态1;
步骤5:利用所述步骤2得到的镜头畸变参数矩阵,将步骤3及步骤4得到的状态0和状态1的序列图像分别进行畸变校正,对畸变校正后的状态0和状态1序列图像分别进行图像拼接,得到包含整个路面的图像0和图像1;
步骤6:用数字图像相关法对所述步骤5处理得到的图像0和图像1进行分析,得到路面的全场应变。
2.根据权利要求1所述的用于高速公路路面应变测量的数字图像采集分析方法,其特征在于,所述步骤1)中的图像采集装置为单相机,多相机,或相机阵列。
3.根据权利要求1所述的用于高速公路路面应变测量的数字图像采集分析方法,其特征在于,所述步骤1)中的图像采集装置分辨率至少为2000*2000像素。
4.根据权利要求1、2或3所述的用于高速公路路面应变测量的数字图像采集分析方法,其特征在于,所述的步骤5)中图像拼接的方法为:对于每组序列图像,利用SURF特征点检测,找到所有图像上的特征点,利用最近距离比次近距离的特征点匹配方法对相邻图像间进行特征点提纯,得到两幅图像特征点的粗匹配关系,使用随机抽样一致算法对粗匹配的特征点进行进一步提纯,得到两幅图像特征点的细匹配关系,对细匹配的特征点使用数字图像相关法找到两幅图像更为精确的匹配特征点对的图像坐标(xi,1,yi,1)和(xi,2,yi,2),采用如下公式计算图像的单应变换矩阵H:
其中i为匹配的特征点编号;
最后利用双三次样条插值方法进行图像插值及融合。
5.根据权利要求1、2或3所述的用于高速公路路面应变测量的数字图像采集分析方法,其特征在于,所述步骤2中镜头畸变参数矩阵包括6阶径向畸变参数K1、K2、K3、K4、K5、K6和2阶切向畸变参数P1、P2
CN201610331578.4A 2016-05-18 2016-05-18 用于高速公路路面应变测量的数字图像采集分析方法 Active CN106012778B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610331578.4A CN106012778B (zh) 2016-05-18 2016-05-18 用于高速公路路面应变测量的数字图像采集分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610331578.4A CN106012778B (zh) 2016-05-18 2016-05-18 用于高速公路路面应变测量的数字图像采集分析方法

Publications (2)

Publication Number Publication Date
CN106012778A CN106012778A (zh) 2016-10-12
CN106012778B true CN106012778B (zh) 2018-07-20

Family

ID=57098746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610331578.4A Active CN106012778B (zh) 2016-05-18 2016-05-18 用于高速公路路面应变测量的数字图像采集分析方法

Country Status (1)

Country Link
CN (1) CN106012778B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080151A1 (en) * 2020-10-14 2022-04-21 Mitsubishi Electric Corporation Fusion-based digital image correlation framework for strain measurement

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106355550B (zh) * 2016-10-31 2024-04-09 河北鼎联科技有限公司 图像拼接系统和图像拼接方法
CN106529497A (zh) * 2016-11-25 2017-03-22 浙江大华技术股份有限公司 一种图像采集设备的定位方法及装置
CN108979217B (zh) * 2018-08-15 2020-08-07 浙江大丰实业股份有限公司 舞台设备现场自校验机构
CN109754429A (zh) * 2018-12-14 2019-05-14 东南大学 一种基于图像的桥梁结构挠度测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012215A (zh) * 2010-11-05 2011-04-13 东南大学 基于数字图像的非接触式光学应变测量方法及应变计
AU2009245853A1 (en) * 2009-12-08 2011-06-23 Radar Portal Systems Pty Ltd High speed photometric stereo pavement scanner
CN102305795A (zh) * 2011-07-29 2012-01-04 河海大学 一种混凝土表面微小裂缝的定位方法
CN104330023A (zh) * 2014-10-15 2015-02-04 浙江大学 混凝土表面初始开裂信息的采集系统与识别方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009245853A1 (en) * 2009-12-08 2011-06-23 Radar Portal Systems Pty Ltd High speed photometric stereo pavement scanner
CN102012215A (zh) * 2010-11-05 2011-04-13 东南大学 基于数字图像的非接触式光学应变测量方法及应变计
CN102305795A (zh) * 2011-07-29 2012-01-04 河海大学 一种混凝土表面微小裂缝的定位方法
CN104330023A (zh) * 2014-10-15 2015-02-04 浙江大学 混凝土表面初始开裂信息的采集系统与识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
相机阵列测量二维应变场的高精度分析方法;邵新星等;《中国科学:技术科学》;20150520;第45卷(第5期);第484页左栏第3段-第487页左栏最后一段 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080151A1 (en) * 2020-10-14 2022-04-21 Mitsubishi Electric Corporation Fusion-based digital image correlation framework for strain measurement

Also Published As

Publication number Publication date
CN106012778A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106012778B (zh) 用于高速公路路面应变测量的数字图像采集分析方法
US10348985B2 (en) Turbulence-free camera system and related method of image enhancement
CN106846340B (zh) 一种基于非固定特征点的光条边界提取方法
CN101952855B (zh) 从三维场景实时获取视觉信息的方法和照相机
CN109559355B (zh) 一种基于相机组的无公共视场的多相机全局标定装置及方法
CN105043350A (zh) 一种双目视觉测量方法
Staniek Stereo vision method application to road inspection
CN110146030A (zh) 基于棋盘格标志法的边坡表面变形监测系统和方法
CN110246124A (zh) 基于深度学习的目标尺寸测量方法及系统
CN111435081B (zh) 海面测量系统、海面测量方法以及存储介质
CN108550160B (zh) 基于光强模板的非均匀光条特征区域提取方法
CN102387374A (zh) 用于获得高精度深度图的设备和方法
CN107966137A (zh) 一种基于tdiccd拼接区图像的卫星平台颤振探测方法
CN109029618A (zh) 单目视觉包装箱体积测量方法
CN111696044B (zh) 一种大场景动态视觉观测方法及装置
CN105335988B (zh) 一种基于分层处理的亚像素中心提取方法
JP2011058875A (ja) 変位計測方法、変位計測装置及び変位計測プログラム
CN116519257A (zh) 基于单光场相机双视角背景纹影的三维流场测试方法及系统
Yao et al. Calculation and restoration of lost spatial information in division-of-focal-plane polarization remote sensing using polarization super-resolution technology
CN113432611B (zh) 一种基于全天域大气偏振模式成像的定向装置和方法
Savelyev et al. Stereo thermal marking velocimetry
CN115248187A (zh) 一种偏振分束同时成像的线结构光视觉传感器标定方法
CN112788314A (zh) 基于边缘变化感应的偏振去马赛克方法
CN113884017B (zh) 一种基于三目视觉的绝缘子的非接触形变检测方法及系统
O'Byrne et al. Evaluation of camera calibration techniques for quantifying deterioration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant