CN106011529B - 一种提高润滑油抗氧化性能的合金材料 - Google Patents
一种提高润滑油抗氧化性能的合金材料 Download PDFInfo
- Publication number
- CN106011529B CN106011529B CN201610377751.4A CN201610377751A CN106011529B CN 106011529 B CN106011529 B CN 106011529B CN 201610377751 A CN201610377751 A CN 201610377751A CN 106011529 B CN106011529 B CN 106011529B
- Authority
- CN
- China
- Prior art keywords
- alloy material
- lubricating oil
- oil
- alloy
- analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M125/00—Lubricating compositions characterised by the additive being an inorganic material
- C10M125/04—Metals; Alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/04—Alloys containing less than 50% by weight of each constituent containing tin or lead
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/06—Alloys containing less than 50% by weight of each constituent containing zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/04—Elements
- C10M2201/05—Metals; Alloys
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/12—Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
- Compressor (AREA)
Abstract
本发明公开了一种提高润滑油抗氧化性能的合金材料,按重量百分比该合金材料主要的组成成分为:镍10%~20%、锌15%~25%、锡2%~5%、铅7%~12%、铜40%~60%。本发明的合金材料能有效提高和改善润滑油的氧化安定性。
Description
技术领域
本发明属于合成材料技术领域,具体地指一种提高润滑油抗氧化性能的合金材料。
背景技术
无论是压缩机还是内燃机,在运动系统中添加润滑油对运动部件进行润滑是必不可少的。润滑油的作用主要表现在以下几个方面:
(1)润滑作用:在润滑油泵不断将清洁润滑油输送到压缩机、发动机各运动零件工作表面,形成一层薄的润滑油膜,用液体摩擦代替各零件干摩擦,减少零部件磨损和功率消耗。
(2)清洗作用:在压缩机、发动机高速工作中,会有因为机械磨损产生的金属微粒,吸入空气的尘土颗粒以及气缸燃烧出现的积碳等,经过润滑油的流动可将这些有害物质从各工作表面冲洗下来,沉寂在油底壳内,从而达到减少零件磨损的目的。
(3)冷却作用:由于气缸内高速燃烧和各零部件互相摩擦,会产生较高的温度,润滑油在工作表面流动时会带走部分热量,保证发动机正常运转。在空气压缩机工作时(如螺杆式空压机),空气压缩产生的热量也需要润滑油将其带走。
(4)密封作用:主要是针对活塞和气缸,活塞环和活塞环槽,包括环与环之间,由于各机械配合都有一定的配合间隙以及几何偏差,会影响到活塞与气缸运动的密封,而润滑油能填充到各配合间隙和空隙,能够保证气缸的正常工作压力。
(5)防锈作用:运动零件工作表面由于有润滑油的存在,就可防止空气、水蒸气、腐蚀性气体及氧化性物的锈蚀。
衡量润滑油质量及油品是否需要更换的技术指标之一就是:氧化安定性。
氧化安定性是指油品在抵抗大气(或氧气)的作用而保持其性质不发生永久变化的能力。内燃机、压缩机润滑油长期在高温下工作,润滑油容易发生变质,比如在内燃机燃烧室内第一道气环附近的温度在200~300℃,润滑油油膜容易变成氧化聚合物,再加上积碳的沉积,对油膜的危害很大,故而会加剧气缸壁的磨损,严重时会出现粘环、拉缸等现象,螺杆式空气压缩机油气混合体工作温度约100℃,再加上因空气压缩后氧的“富集”使得润滑油极易氧化和积碳。
总之,润滑油的氧化安定性对压缩机、内燃机的正常运转和设备安全是至关重要的技术指标。研究提高或改善润滑油的氧化安定性及防腐性能,具有十分重要的现实意义。
发明内容
本发明的目的是提供一种提高润滑油抗氧化性能的合金材料,该合金材料能有效提高或改善润滑油的氧化安定性。
为实现上述目的,本发明的一种提高润滑油抗氧化性能的合金材料,按重量百分比该合金材料主要的组成成分为:镍10%~20%、锌15%~25%、锡2%~5%、铅7%~12%、铜40%~60%。
优选的,按重量百分比该合金材料主要的组成成分为:镍13%~17%、锌20%~23%、锡3%~4%、铅8%~10%、铜50%~55%。
上述组分中,所述合金材料还包括铁、锰、铝中的一种或多种。
上述组分中,按重量百分比计,所述铁的含量为0.01~0.5%。
上述组分中,按重量百分比计,所述锰的含量为0.01~0.5%。
上述组分中,按重量百分比计,所述铝的含量为0.01~0.5%。
本发明的有益效果:本发明采用的是由多种金属经高温熔炼并经过热处理后得到的特殊合金材料。由于各金属元素电极电位不同,在合适比例的情形下,合金之间会形成数目庞大的微小原电池,对流体中弱电解质的物理化学特性及微观行为会产生影响,这种原电池效应可以产生一种电化学催化作用,本发明的合金材料作为一种具有电催化作用的特殊合金触媒,在润滑油进入机械操作系统使用前,将润滑油与本发明的合金材料接触摩擦,其电化学催化作用产生效应,润滑油中较大的碳氢化合物聚集物会被分散成微胶体颗粒,分散后的胶体颗粒粒度可以达到10微米乃至更小,且电化学催化作用还可以有效防止润滑油中碳氢化合物的共价聚结,始终让颗粒处于悬浮分散状态,因此,在高温和富氧条件下能够避免被氧化成氧化聚合物,提高了润滑油的抗氧化性能;通过实际检测,本发明的合金材料还能提高润滑油的防腐蚀性能,与本发明合金材料接触后的润滑油,在使用后的换油周期时长增加了至少50%,被氧化的程度和腐蚀性均降低了53%以上,残炭率降低达30%以上。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
本发明的一种提高润滑油抗氧化性能的合金材料,先称取各金属原料,再将上述金属原料采用高温铸造的方式制作成坯料,机械加工、下料,再经过热处理加工成合金产品,可以根据实际需要做成不同厚度与几何形态的片状产品。当产品做成片状时,需要在片状产品上开孔,便于润滑油流动通过。在润滑油使用前,先与本发明的片状产品进行充分接触、摩擦,在接触的过程中,其电化学催化作用发生,从而使得润滑油抗氧化性能得到提高。为了让润滑油和本产品能够得到充分的接触,保证其抗氧化的效果稳定可靠,一般采用3~8片产品组合起来使用。
以下按照上述制作合金产品的方法,制作八组用不同成分和不同重量含量的金属原料制成的片状合金产品,作为八组实施例进一步说明,八组实施例的成分组成和含量配比如表1;并分别将润滑油与八组实施例合金产品进行充分接触后再进入机械系统中使用,对使用一个换油周期后的油品性能做检测分析。
性能检测分析:
空白对照组:将润滑油新油用在双螺杆空压机润滑油系统上,连续使用一个换油周期后,对润滑油的各项性能指标进行检测;
八组实验组:将制作成的片状合金产品开数个小孔,并以5片产品为一组加装在双螺杆空压机润滑油系统上,将润滑油新油先流动通过该合金产品与之充分接触摩擦后再流动进入双螺杆空压机润滑油操作系统中,连续使用一个换油周期后,对润滑油的各项性能指标进行检测;
通过检测结果分析,见表2,可以看出,与本实施例的八组合金产品接触后的润滑油的换油周期比未接触合金产品的润滑油的换油周期时长均增加了50%以上、残炭率均降低了30%以上、被氧化的程度和腐蚀性均降低了53%以上,通过观察油品的浑浊程度,润滑油使用后均有不同程度的浑浊,但八组实施例的油品的浑浊度均比未接触本合金产品的润滑油低。
表1
表2
Claims (1)
1.一种合金材料在提高润滑油抗氧化性能的应用,其特征在于:按重量百分比该合金材料组成成分为:镍10%、锌19.99%、锡2%、铅7%、铜60%、铁0.01%、锰0.5%、铝0.5%,所述合金材料作为提高润滑油抗氧化性能的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610377751.4A CN106011529B (zh) | 2016-05-31 | 2016-05-31 | 一种提高润滑油抗氧化性能的合金材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610377751.4A CN106011529B (zh) | 2016-05-31 | 2016-05-31 | 一种提高润滑油抗氧化性能的合金材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106011529A CN106011529A (zh) | 2016-10-12 |
CN106011529B true CN106011529B (zh) | 2018-07-27 |
Family
ID=57092729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610377751.4A Active CN106011529B (zh) | 2016-05-31 | 2016-05-31 | 一种提高润滑油抗氧化性能的合金材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106011529B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1641237A (zh) * | 2004-01-12 | 2005-07-20 | 合肥波林新材料有限公司 | 铜基高温自润滑复合材料 |
CN104498768A (zh) * | 2014-12-16 | 2015-04-08 | 江苏创兰太阳能空调有限公司 | 一种盘管拉伸模材料 |
CN105593390A (zh) * | 2013-09-26 | 2016-05-18 | 三菱伸铜株式会社 | 铜合金 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3891394A (en) * | 1974-04-10 | 1975-06-24 | Love Oil Company Inc | Crystal generator to inhibit scale formation and corrosion in fluid handling systems |
CN104894430B (zh) * | 2015-06-29 | 2017-05-10 | 宁波金田铜业(集团)股份有限公司 | 一种耐磨易切削黄铜管材及其制造黄铜管的方法 |
-
2016
- 2016-05-31 CN CN201610377751.4A patent/CN106011529B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1641237A (zh) * | 2004-01-12 | 2005-07-20 | 合肥波林新材料有限公司 | 铜基高温自润滑复合材料 |
CN105593390A (zh) * | 2013-09-26 | 2016-05-18 | 三菱伸铜株式会社 | 铜合金 |
CN104498768A (zh) * | 2014-12-16 | 2015-04-08 | 江苏创兰太阳能空调有限公司 | 一种盘管拉伸模材料 |
Also Published As
Publication number | Publication date |
---|---|
CN106011529A (zh) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Asnida et al. | Copper (II) oxide nanoparticles as additve in engine oil to increase the durability of piston-liner contact | |
Kapsiz et al. | Friction and wear studies between cylinder liner and piston ring pair using Taguchi design method | |
Wu et al. | Enhanced tribological properties of diesel engine oil with Nano-Lanthanum hydroxide/reduced graphene oxide composites | |
Srinivas et al. | Antiwear, antifriction, and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulfide nanoparticles | |
CN104630659B (zh) | 一种替代燃料发动机的气门座圈 | |
Menezes et al. | Self-lubricating behavior of graphite reinforced metal matrix composites | |
CN106867604B (zh) | 一种石墨烯-类水滑石复合物及其制备方法与应用 | |
CN104342236A (zh) | 一种含有石墨烯的摩擦调整剂及其制备方法 | |
Menezes et al. | Self-lubricating behavior of graphite-reinforced composites | |
CN103087805A (zh) | 一种能修复发动机缸体的纳米材料修复剂 | |
CN108515178A (zh) | 一种铁铜基含油轴承材料及其制备方法 | |
Xu et al. | Effects of electroosmotic additives on capillary penetration of lubricants at steel/steel and steel/ceramic friction interfaces | |
CN106011529B (zh) | 一种提高润滑油抗氧化性能的合金材料 | |
CN110205186A (zh) | 一种柴油机油配方 | |
CN104450068A (zh) | 一种立磨磨辊专用润滑油及其制造方法 | |
Nedić et al. | Monitoring physical and chemical characteristics oil for lubrication | |
Akl et al. | Tribological Properties of Engine Lubricant With Nano-Copper Oxide as an Additive | |
Li et al. | The tribological performance of W-DLC in solid–liquid lubrication system addivated with Cu nanoparticles | |
Singh et al. | Optimization of tribological behavior of AISI 4140 under nano fly ash particulates in engine lubricating oil | |
Singh et al. | Friction reduction capabilities of silicate compounds used in an engine lubricant on worn surfaces | |
Wang et al. | Failure analysis and regeneration performances evaluation on engine lubricating oil | |
CN201771968U (zh) | 双硬锡镀层轴瓦 | |
Kumbár et al. | Oil additive and its effect | |
Yang et al. | Physicochemical properties of soot in diesel engine lubricating oil: characterizations and impact on frictional characteristics | |
Zhou et al. | Synergistic effects of graphene additives and piston ring surface treatment on friction properties of engine oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |