CN105991172A - Virtualization model selection method of antenna array, device and communication system - Google Patents

Virtualization model selection method of antenna array, device and communication system Download PDF

Info

Publication number
CN105991172A
CN105991172A CN201510084007.0A CN201510084007A CN105991172A CN 105991172 A CN105991172 A CN 105991172A CN 201510084007 A CN201510084007 A CN 201510084007A CN 105991172 A CN105991172 A CN 105991172A
Authority
CN
China
Prior art keywords
transceiver unit
txru
virtualization model
antenna
virtualization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510084007.0A
Other languages
Chinese (zh)
Inventor
宋磊
王昕�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to CN201510084007.0A priority Critical patent/CN105991172A/en
Publication of CN105991172A publication Critical patent/CN105991172A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提供一种天线阵列的虚拟化模型选择方法、装置以及通信系统。所述选择方法包括:基站确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;以及根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择TXRU虚拟化模型。通过本发明实施例,能够自适应地对TXRU虚拟化模型进行选择,更好地应用于大规模MIMO系统中。

Embodiments of the present invention provide a method, device and communication system for selecting a virtualized model of an antenna array. The selection method includes: the base station determines user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same vertical direction; and according to the user scheduling type information and the same vertical direction in the vertical direction The number of antenna ports virtualized by multiple antenna particles, select the TXRU virtualization model. Through the embodiment of the present invention, the TXRU virtualization model can be adaptively selected, which is better applied to a massive MIMO system.

Description

天线阵列的虚拟化模型选择方法、装置以及通信系统Antenna array virtualization model selection method, device and communication system

技术领域technical field

本发明实施例涉及通信技术领域,尤其涉及一种大规模多输入多输出(MIMO,Multiple Input Multiple Output)系统中天线阵列的虚拟化模型选择方法、装置以及通信系统。Embodiments of the present invention relate to the field of communication technology, and in particular to a method, device and communication system for selecting a virtualization model of an antenna array in a massive multiple input multiple output (MIMO, Multiple Input Multiple Output) system.

背景技术Background technique

毫米波(mmWave)技术和大规模MIMO技术是未来第五代移动通信技术研究的两个候选技术,二者联用可以为系统提供更宽的传输带宽及更多的天线数,进而提升系统性能。Millimeter wave (mmWave) technology and massive MIMO technology are two candidate technologies for future fifth-generation mobile communication technology research. The combination of the two can provide the system with wider transmission bandwidth and more antennas, thereby improving system performance. .

然而,天线数目和子载波数目的增多将会使得基带预编码技术难以实现。一方面是处理复杂度较高,每个子载波上均需进行大维度的矩阵相乘计算,系统复杂度随着天线数和带宽增加而显著增大。另一方面,若实现灵活的基带预编码技术,每个物理天线均需配置一套射频链(RF chian),包括放大器、混频器、数模转换器和模数转换器等,系统造价较高。However, the increase in the number of antennas and the number of subcarriers will make the baseband precoding technology difficult to implement. On the one hand, the processing complexity is high, and a large-dimensional matrix multiplication calculation needs to be performed on each subcarrier, and the system complexity increases significantly as the number of antennas and bandwidth increase. On the other hand, if flexible baseband precoding technology is implemented, each physical antenna needs to be equipped with a radio frequency chain (RF chian), including amplifiers, mixers, digital-to-analog converters, and analog-to-digital converters. high.

若将预编码技术放到射频单元上去做,每个符号执行一次大维度矩阵运算,将大大降低系统复杂度,但是系统性能也会相应下降。混合基带和射频的预编码(波束成型)由于综合了基带预编码和射频预编码的优点,可以在基带和射频上共同执行预编码操作,更加适合于大规模MIMO系统的应用,达到系统性能(灵活性)和复杂度的有效折衷。If the precoding technology is placed on the radio frequency unit, each symbol performs a large-dimensional matrix operation, which will greatly reduce the system complexity, but the system performance will also decrease accordingly. Hybrid baseband and radio frequency precoding (beamforming) combines the advantages of baseband precoding and radio frequency precoding, and can perform precoding operations on both baseband and radio frequency, which is more suitable for the application of massive MIMO systems and achieves system performance ( flexibility) and complexity.

在当前3GPP RAN4的自适应天线系统(AAS,Adaptive Antenna System)研究中,定义了收发单元(TXRU,Transceiver Units)包括多个发送单元(TXU)和接收单元(RXU)。TXU将基站AAS的基带信号作为输入,提供射频发送信号的输出。射频发送的输出通过一个无线分配网络(RDN,Radio Distribution Network)分配到天线阵列上。In the current research on Adaptive Antenna System (AAS, Adaptive Antenna System) of 3GPP RAN4, it is defined that transceiver units (TXRU, Transceiver Units) include multiple transmitting units (TXU) and receiving units (RXU). The TXU takes the baseband signal of the base station AAS as input, and provides the output of the radio frequency transmission signal. The output of the radio frequency transmission is distributed to the antenna array through a radio distribution network (RDN, Radio Distribution Network).

图1是AAS无线结构的一示意图。如图1所示,RDN包括TXU(s)/RXU(s)与天线阵列之间的一对一映射,它可能仅是一个逻辑实体,而没有必要是一个物理实体。RXU执行与TXU相逆的操作。FIG. 1 is a schematic diagram of an AAS wireless structure. As shown in Figure 1, the RDN includes a one-to-one mapping between TXU(s)/RXU(s) and antenna arrays, which may only be a logical entity, not necessarily a physical entity. RXU performs the reverse operation of TXU.

由图1可知,若执行射频及基带混合预编码(波束成型),射频预编码/加权会在TXRU上执行,即TXRU相当于射频链的功能,由于数模转换器和模数转换器的限制,每个TXRU在同一时间仅能处理一个有效数据流。在3GPP RAN1的研究中,定义TXRU输入信号与天线粒子处信号之间的关系为TXRU虚拟化模型,定义逻辑天线端口与TXRU之间信号的关系为端口虚拟化模型。It can be seen from Figure 1 that if RF and baseband hybrid precoding (beamforming) is performed, RF precoding/weighting will be performed on the TXRU, that is, the TXRU is equivalent to the function of the RF chain, due to the limitations of the digital-to-analog converter and the analog-to-digital converter , each TXRU can only process one valid data stream at a time. In the research of 3GPP RAN1, the relationship between the TXRU input signal and the signal at the antenna particle is defined as the TXRU virtualization model, and the relationship between the logical antenna port and the TXRU signal is defined as the port virtualization model.

应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。It should be noted that the above introduction of the technical background is only for the convenience of a clear and complete description of the technical solution of the present invention, and for the convenience of understanding by those skilled in the art. It cannot be considered that the above technical solutions are known to those skilled in the art just because these solutions are described in the background of the present invention.

发明内容Contents of the invention

发明人发现:目前仅对虚拟化模型进行了定义,并不存在如何对虚拟化模型进行选择的方案,不能更好地应用于大规模MIMO系统中。The inventors found that currently only a virtualization model is defined, and there is no solution for how to select a virtualization model, which cannot be better applied to a massive MIMO system.

本发明实施例提供了一种天线阵列的虚拟化模型选择方法、装置以及通信系统。通过本发明实施例能够自适应地选择TXRU虚拟化模型。Embodiments of the present invention provide a method, device and communication system for selecting a virtualization model of an antenna array. Through the embodiment of the present invention, the TXRU virtualization model can be adaptively selected.

根据本发明实施例的第一个方面,提供一种天线阵列的虚拟化模型选择装置,所述选择装置包括:According to a first aspect of an embodiment of the present invention, a device for selecting a virtualized model of an antenna array is provided, and the device for selecting includes:

信息确定单元,确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;An information determination unit, which determines user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same polarization direction in the vertical direction;

模型选择单元,根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。The model selection unit selects a virtualization model of the transceiver unit according to the user scheduling type information and the number of virtual antenna ports of the plurality of antenna particles in the same polarization direction in the vertical direction.

根据本发明实施例的第二个方面,提供一种天线阵列的虚拟化模型选择方法,所述选择方法包括:According to a second aspect of the embodiments of the present invention, a method for selecting a virtualized model of an antenna array is provided, the selection method comprising:

基站确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;以及The base station determines user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same polarization direction in the vertical direction; and

根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。A virtualization model of the transceiver unit is selected according to the user scheduling type information and the number of virtual antenna ports of the plurality of antenna particles in the same polarization direction in the vertical direction.

根据本发明实施例的第三个方面,提供一种通信系统,所述通信系统包括:According to a third aspect of the embodiments of the present invention, a communication system is provided, and the communication system includes:

基站,确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;以及根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。The base station determines the user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same vertical direction; For the number of antenna ports, select the virtualization model of the transceiver unit.

本发明实施例的有益效果在于:根据用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,来选择TXRU虚拟化模型。由此,能够自适应地对TXRU虚拟化模型进行选择,更好地应用于大规模MIMO系统中。The beneficial effect of the embodiments of the present invention is that the TXRU virtualization model is selected according to the user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same vertical direction. Therefore, the TXRU virtualization model can be adaptively selected, and it can be better applied to a massive MIMO system.

参照后文的说明和附图,详细公开了本发明实施例的特定实施方式,指明了本发明实施例的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。With reference to the following description and accompanying drawings, the specific implementation manners of the embodiments of the present invention are disclosed in detail, indicating how the principles of the embodiments of the present invention can be adopted. It should be understood that embodiments of the invention are not limited thereby in scope. Embodiments of the invention encompass many changes, modifications and equivalents within the spirit and scope of the appended claims.

针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。Features described and/or illustrated with respect to one embodiment can be used in the same or similar manner in one or more other embodiments, in combination with, or instead of features in other embodiments .

应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。It should be emphasized that the term "comprising/comprising" when used herein refers to the presence of a feature, integer, step or component, but does not exclude the presence or addition of one or more other features, integers, steps or components.

附图说明Description of drawings

所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:The included drawings are used to provide further understanding of the embodiments of the present invention, and constitute a part of the specification, are used to illustrate the implementation mode of the present invention, and together with the text description, explain the principle of the present invention. Apparently, the drawings in the following description are only some embodiments of the present invention, and those skilled in the art can obtain other drawings according to these drawings without any creative effort. In the attached picture:

图1是AAS无线结构的一示意图;FIG. 1 is a schematic diagram of an AAS wireless structure;

图2是同极化天线配置的平面天线阵列的一结构示意图;Fig. 2 is a schematic structural diagram of a planar antenna array configured with co-polarized antennas;

图3是交叉极化天线配置的平面天线阵列的一结构示意图;3 is a schematic structural diagram of a planar antenna array configured with cross-polarized antennas;

图4是本发明实施例的虚拟化模型选择方法的一示意图;4 is a schematic diagram of a method for selecting a virtualization model according to an embodiment of the present invention;

图5是本发明实施例的虚拟化模型选择方法的另一示意图;FIG. 5 is another schematic diagram of a method for selecting a virtualization model according to an embodiment of the present invention;

图6是本发明实施例的第一TXRU虚拟化模型的示意图;6 is a schematic diagram of a first TXRU virtualization model according to an embodiment of the present invention;

图7是本发明实施例的第二TXRU虚拟化模型的示意图;7 is a schematic diagram of a second TXRU virtualization model according to an embodiment of the present invention;

图8是本发明实施例的虚拟化模型选择方法的另一示意图;FIG. 8 is another schematic diagram of a method for selecting a virtualization model according to an embodiment of the present invention;

图9是本发明实施例的第三TXRU虚拟化模型的示意图;FIG. 9 is a schematic diagram of a third TXRU virtualization model according to an embodiment of the present invention;

图10是本发明实施例的虚拟化模型选择方法的另一示意图;FIG. 10 is another schematic diagram of a method for selecting a virtualization model according to an embodiment of the present invention;

图11是本发明实施例的虚拟化模型选择装置的一示意图;FIG. 11 is a schematic diagram of a virtualization model selection device according to an embodiment of the present invention;

图12是本发明实施例的虚拟化模型选择装置的另一示意图;FIG. 12 is another schematic diagram of a virtualization model selection device according to an embodiment of the present invention;

图13是本发明实施例的通信系统的一示意图;FIG. 13 is a schematic diagram of a communication system according to an embodiment of the present invention;

图14是本发明实施例的基站的一构成示意图。Fig. 14 is a schematic structural diagram of a base station according to an embodiment of the present invention.

具体实施方式detailed description

参照附图,通过下面的说明书,本发明实施例的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明实施例的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明实施例包括落入所附权利要求的范围内的全部修改、变型以及等同物。The foregoing and other features of embodiments of the present invention will become apparent from the following description, with reference to the accompanying drawings. In the specification and drawings, specific embodiments of the present invention are disclosed, which show some embodiments in which the principles of the embodiments of the present invention can be employed. It should be understood that the present invention is not limited to the described embodiments, but rather , the embodiments of the present invention include all modifications, variations and equivalents falling within the scope of the appended claims.

图2和图3给出本发明实施例相关的两种平面天线阵列结构的示意图,图2是同极化天线配置的平面天线阵列的一结构示意图,图3是交叉极化天线配置的平面天线阵列的一结构示意图。Figure 2 and Figure 3 provide schematic diagrams of two planar antenna array structures related to the embodiment of the present invention, Figure 2 is a schematic structural diagram of a planar antenna array configured with co-polarized antennas, and Figure 3 is a planar antenna configured with cross-polarized antennas A schematic diagram of the structure of the array.

如图2所示,在垂直方向上每列放置M个同一个极化方向的天线粒子(也可称为物理天线粒子),在水平方向上共放置N列。如图3所示,在垂直方向上每列放置M个交叉极化天线对,水平方向上共放置N列交叉极化天线对。即,垂直一列上每个极化方向有M个物理天线粒子,水平一行上每个极化方向有N个物理天线粒子。As shown in FIG. 2 , M antenna particles (also referred to as physical antenna particles) with the same polarization direction are placed in each column in the vertical direction, and N columns are placed in the horizontal direction. As shown in FIG. 3 , M cross-polarized antenna pairs are placed in each column in the vertical direction, and N columns of cross-polarized antenna pairs are placed in the horizontal direction. That is, there are M physical antenna particles for each polarization direction in a vertical column, and N physical antenna particles for each polarization direction in a horizontal row.

这两种天线配置可以表示为(M,N,P),其中P表示极化维度的数量,P=1时为同极化配置,即如图2所示;P=2时为交叉极化配置,即如图3所示。其中每列同一极化方向的M个天线粒子连接MTXRU个TXRU,总的TXRU数量为MTXRU×N×P。These two antenna configurations can be expressed as (M,N,P), where P represents the number of polarization dimensions, and when P=1, it is the same-polarization configuration, as shown in Figure 2; when P=2, it is cross-polarization configuration, as shown in Figure 3. M antenna particles in the same polarization direction in each row are connected to M TXRU TXRUs, and the total number of TXRUs is M TXRU ×N×P.

在上述平面天线阵列系统中,随着天线数目的增加,参考信号的开销也随之增大。为发挥垂直方向的波束调节功能,同时控制天线端口数目,可将垂直方向的多根天线粒子虚拟成一个或者多个天线端口。在一个虚拟天线端口内,通过对多个物理天线粒子进行加权来调整垂直方向的波束方向。与物理天线粒子加权相对应,虚拟天线端口的加权即为传统意义上的预编码操作。In the above-mentioned planar antenna array system, as the number of antennas increases, the overhead of reference signals also increases. In order to exert the beam adjustment function in the vertical direction and control the number of antenna ports at the same time, multiple antenna particles in the vertical direction can be virtualized as one or more antenna ports. Within a virtual antenna port, the vertical beam direction is adjusted by weighting multiple physical antenna elements. Corresponding to the weighting of physical antenna particles, the weighting of virtual antenna ports is a precoding operation in the traditional sense.

以上对于本发明实施例涉及的平面天线阵列进行了说明,但本发明不限于此。以下对于本发明实施例进行详细说明。The planar antenna array related to the embodiment of the present invention has been described above, but the present invention is not limited thereto. The embodiments of the present invention will be described in detail below.

实施例1Example 1

本发明实施例提供一种天线阵列的虚拟化模型选择方法,该方法可以应用于具有天线阵列的基站端。图4是本发明实施例的虚拟化模型选择方法的一示意图,如图4所示,所述选择方法包括:An embodiment of the present invention provides a method for selecting a virtualized model of an antenna array, and the method can be applied to a base station with an antenna array. FIG. 4 is a schematic diagram of a method for selecting a virtualization model according to an embodiment of the present invention. As shown in FIG. 4, the selection method includes:

步骤401,基站确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;以及Step 401, the base station determines user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same polarization direction in the vertical direction; and

步骤402,根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。Step 402: Select a virtualization model of the transceiver unit according to the user scheduling type information and the number of virtual antenna ports of the plurality of antenna particles in the same polarization direction in the vertical direction.

在本实施例中,基站具有例如如图2或3所示的天线阵列。用户调度类型信息可以包括:单用户MIMO(SU-MIMO)和/或多用户MIMO(MU-MIMO);所述垂直方向的同一极化方向上M个天线粒子虚拟的天线端口数为Vport。由此,可以根据例如进行SU-MIMO还是进行MU-MIMO以及Vport来选择TXRU虚拟化模型。In this embodiment, the base station has, for example, an antenna array as shown in FIG. 2 or 3 . The user scheduling type information may include: single-user MIMO (SU-MIMO) and/or multi-user MIMO (MU-MIMO); the number of virtual antenna ports of M antenna particles in the same polarization direction in the vertical direction is V port . Thus, the TXRU virtualization model can be selected according to, for example, SU-MIMO or MU-MIMO and V port .

图5是本发明实施例的虚拟化模型选择方法的另一示意图,如图5所示,所述选择方法包括:FIG. 5 is another schematic diagram of a method for selecting a virtualization model according to an embodiment of the present invention. As shown in FIG. 5, the selection method includes:

步骤501,基站确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数VportIn step 501, the base station determines user scheduling type information and the number of virtual antenna ports V port of multiple antenna particles in the same polarization direction in the vertical direction.

步骤502,判断Vport是否为1;在Vport为1的情况下执行步骤503,在Vport不为1的情况下执行步骤505;Step 502, judge whether V port is 1; execute step 503 when V port is 1, execute step 505 when V port is not 1;

步骤503,判断是否进行SU-MIMO,在进行SU-MIMO的情况下执行步骤504,在不进行SU-MIMO(进行MU-MIMO)的情况下执行步骤506;Step 503, judge whether to perform SU-MIMO, perform step 504 in the case of performing SU-MIMO, and perform step 506 in the case of not performing SU-MIMO (performing MU-MIMO);

步骤504,选择采用第一TXRU虚拟化模型。Step 504, choose to adopt the first TXRU virtualization model.

步骤505,判断Vport是否等于MTXRU;在Vport等于MTXRU的情况下执行步骤506,在Vport不等于MTXRU的情况下执行步骤507;Step 505, judge whether V port is equal to M TXRU ; execute step 506 when V port is equal to M TXRU , and execute step 507 when V port is not equal to M TXRU ;

其中,所述MTXRU为垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目。Wherein, the M TXRU is the number of transceiver units connected to M antenna particles in the same polarization direction in each column in the vertical direction.

步骤506,选择采用第二TXRU虚拟化模型。Step 506, choose to adopt the second TXRU virtualization model.

步骤507,选择采用第一TXRU虚拟化模型。Step 507, choose to adopt the first TXRU virtualization model.

以下对于各TXRU虚拟化模型进行详细说明。Each TXRU virtualization model will be described in detail below.

在第一TXRU虚拟化模型中,每个TXRU连接K个天线粒子,K=M/MTXRU。图6是本发明实施例的第一TXRU虚拟化模型的示意图,如图6所示,第一TXRU虚拟化模型为子阵列划分模型。In the first TXRU virtualization model, each TXRU is connected with K antenna particles, K=M/M TXRU . FIG. 6 is a schematic diagram of a first TXRU virtualization model according to an embodiment of the present invention. As shown in FIG. 6 , the first TXRU virtualization model is a sub-array partition model.

如图6所示,对同一极化方向的一列M个天线粒子及MTXRU个TXRU,q为天线粒子处的信号向量,即天线的发送信号向量,x为TXRU处的信号向量。其中,每个TXRU连接K个天线粒子,K=M/MTXRU;w为每个TXRU对数据流的加权,且MTXRU个TXRU均使用相同加权,即虚拟化模型可以表示为其中为克罗内克(kronecker)积操作,w可以是离散傅里叶变换(DFT,Discrete FourierTransform)向量,例如As shown in Figure 6, for a column of M antenna particles and M TXRU TXRUs in the same polarization direction, q is the signal vector at the antenna particle, that is, the transmit signal vector of the antenna, and x is the signal vector at the TXRU. Wherein, each TXRU is connected with K antenna particles, K=M/M TXRU ; w is the weight of each TXRU to the data flow, and M TXRU TXRUs all use the same weighting, that is, the virtualization model can be expressed as in For the Kronecker (kronecker) product operation, w can be a discrete Fourier transform (DFT, Discrete FourierTransform) vector, for example

ww kk == 11 KK expexp (( -- jj 22 ππ λλ (( kk -- 11 )) dd VV coscos θθ etiltetilt )) for kfor k == 11 ,, .. .. .. ,, KK -- -- -- (( 11 ))

其中,θetilt为垂直方向的电子下倾角。Among them, θ etilt is the electron downtilt angle in the vertical direction.

在第二TXRU虚拟化模型中,每个TXRU均与M个天线粒子连接。图7是本发明实施例的第二TXRU虚拟化模型的示意图,如图7所示,第二TXRU虚拟化模型为全连接模型。In the second TXRU virtualization model, each TXRU is connected to M antenna particles. FIG. 7 is a schematic diagram of a second TXRU virtualization model according to an embodiment of the present invention. As shown in FIG. 7 , the second TXRU virtualization model is a fully connected model.

如图7所示,对同一极化方向的一列M个天线粒子及MTXRU个TXRU,q为天线粒子处的信号向量,即天线的发送信号向量,x为TXRU处的信号向量。其中,每个TXRU均与M个天线粒子相连,W为MTXRU个TXRU对信号x的加权,即虚拟化模型可以表示为q=Wx。W的每一列可以是一个DFT向量,例如As shown in Figure 7, for a column of M antenna particles and M TXRU TXRUs in the same polarization direction, q is the signal vector at the antenna particle, that is, the transmit signal vector of the antenna, and x is the signal vector at the TXRU. Wherein, each TXRU is connected to M antenna particles, and W is the weight of M TXRUs on the signal x, that is, the virtualization model can be expressed as q=Wx. Each column of W can be a DFT vector, e.g.

WW mm ,, mm ′′ == 11 Mm expexp (( -- jj 22 ππ λλ (( mm -- 11 )) dd VV coscos θθ etiltetilt ,, mm ′′ ))

m=1,…,M;m′=1,…,MTXRU m=1,...,M; m'=1,...,M TXRU

其中,θetilt为垂直方向的电子下倾角。或者,Among them, θ etilt is the electron downtilt angle in the vertical direction. or,

WW mm ,, mm ′′ == 11 Mm expexp (( -- jj 22 ππ (( mm -- 11 )) dd VV nno mm ′′ λλ NN Mm ))

m=1,…,M;m'=1,…,MTXRU m=1,...,M; m'=1,...,M TXRU

其中,NM表示长度为M的DFT向量的尺寸。nm'表示第m'个TXRU选取的DFT向量在该码书中的索引。where N M represents the size of the DFT vector of length M. n m' indicates the index of the DFT vector selected by the m'th TXRU in the codebook.

在本实施例中,第一TXRU虚拟化模型的表达式可以改写为,In this embodiment, the expression of the first TXRU virtualization model can be rewritten as,

在第一TXRU虚拟化模型和第二TXRU虚拟化模型中,信号向量x的加权矩阵均为M行MTXRU列。在第一TXRU虚拟化模型中,加权矩阵为块对角结构,每个子块为一个DFT向量,且所有子块相对,即相当于垂直方向加权时各个TXRUs使用相同的电子下倾角。因而第一TXRU虚拟化模型适合于单用户情况下,垂直方向同一极化方向的M个天线粒子虚拟成多个天线端口进行传输的情况。In the first TXRU virtualization model and the second TXRU virtualization model, the weighting matrix of the signal vector x is M rows and M TXRU columns. In the first TXRU virtualization model, the weighting matrix is a block-diagonal structure, each sub-block is a DFT vector, and all sub-blocks are opposite, that is, each TXRUs uses the same electronic downtilt when weighting in the vertical direction. Therefore, the first TXRU virtualization model is suitable for the case of a single user, in which M antenna particles with the same polarization direction in the vertical direction are virtualized into multiple antenna ports for transmission.

在第二TXRU虚拟化模型中,加权矩阵为普通矩阵,且每一列对应一个长度为M的DFT向量,即相当于垂直方向加权时各个TXRUs使用不相同的电子下倾角。因而第二TXRU虚拟化模型适合于多用户传输场景,每个用户可以选择一个TXRU进行射频预编码,也适合于单用户情况下垂直方向同一极化方向的M个天线粒子仅虚拟成一个天线端口情况下的传输,即该用户可以选择一个TXRU或者使用MTXRU个TXRUs的加权值的线性组合进行传输。In the second TXRU virtualization model, the weighting matrix is an ordinary matrix, and each column corresponds to a DFT vector of length M, which means that each TXRUs uses different electronic downtilt angles when weighting in the vertical direction. Therefore, the second TXRU virtualization model is suitable for multi-user transmission scenarios. Each user can select a TXRU for radio frequency precoding, and it is also suitable for single-user situations. M antenna particles in the same vertical polarization direction are only virtualized into one antenna port. In the case of transmission, that is, the user can select one TXRU or use a linear combination of weighted values of M TXRU TXRUs for transmission.

由于第一TXRU虚拟化模型可以通过改变第二TXRU虚拟化模型的连线方式实现,即可以通过将加权矩阵W的部分权值置零实现。因而,在实际通信时,可以根据实际传输条件自适应选择采用第一TXRU虚拟化模型还是第二TXRU虚拟化模型。Since the first TXRU virtualization model can be realized by changing the connection mode of the second TXRU virtualization model, that is, it can be realized by setting some weights of the weight matrix W to zero. Therefore, during actual communication, the first TXRU virtualization model or the second TXRU virtualization model can be adaptively selected according to actual transmission conditions.

在本实施例中,当垂直方向的同一极化方向上M个天线粒子虚拟成Vport个天线端口(1<Vport<MTXRU)时,为更好地提升性能,可以将两个以上的TXRU与相同的部分天线粒子连接。In this embodiment, when M antenna particles in the same polarization direction in the vertical direction are virtualized as V port antenna ports (1<V port <M TXRU ), in order to better improve performance, more than two The TXRU is connected to the same part of the antenna particles.

图8是本发明实施例的虚拟化模型选择方法的另一示意图,如图8所示,所述选择方法包括:FIG. 8 is another schematic diagram of a method for selecting a virtualization model according to an embodiment of the present invention. As shown in FIG. 8, the selection method includes:

步骤801,基站确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数VportIn step 801, the base station determines user scheduling type information and the number of virtual antenna ports V port of multiple antenna particles in the same polarization direction in the vertical direction.

步骤802,判断Vport是否为1;在Vport为1的情况下执行步骤803,在Vport不为1的情况下执行步骤805;Step 802, judging whether V port is 1; if V port is 1, execute step 803, and if V port is not 1, execute step 805;

步骤803,判断是否进行SU-MIMO,在进行SU-MIMO的情况下执行步骤804,在不进行SU-MIMO(进行MU-MIMO)的情况下执行步骤806;Step 803, judge whether to perform SU-MIMO, perform step 804 in the case of performing SU-MIMO, and perform step 806 in the case of not performing SU-MIMO (performing MU-MIMO);

步骤804,选择采用第一TXRU虚拟化模型。Step 804, choose to adopt the first TXRU virtualization model.

步骤805,判断Vport是否等于MTXRU;在Vport等于MTXRU的情况下执行步骤806,在Vport不等于MTXRU的情况下执行步骤807;Step 805, judge whether V port is equal to M TXRU ; execute step 806 when V port is equal to M TXRU , and execute step 807 when V port is not equal to M TXRU ;

步骤806,选择采用第二TXRU虚拟化模型。Step 806, choose to adopt the second TXRU virtualization model.

步骤807,选择采用第三TXRU虚拟化模型。Step 807, choose to adopt the third TXRU virtualization model.

在第三TXRU虚拟化模型中,MTXRU个收发单元和M个天线粒子均被分成L组,每一组内的天线粒子与收发单元进行全连接。In the third TXRU virtualization model, M TXRU transceiver units and M antenna particles are divided into L groups, and the antenna particles in each group are fully connected to the transceiver unit.

图9是本发明实施例的第三TXRU虚拟化模型的示意图。如图9所示,在第三TXRU虚拟化模型中,垂直方向的同一极化方向的MTXRU个TXRUs和M个天线粒子均被分成L(1<L<MTXRU)组,每一组内的天线粒子与TXRU进行全连接。此时,第三TXRU虚拟化模型的加权矩阵W可以表示为,Fig. 9 is a schematic diagram of a third TXRU virtualization model according to an embodiment of the present invention. As shown in Figure 9, in the third TXRU virtualization model, M TXRU TXRUs and M antenna particles in the same polarization direction in the vertical direction are all divided into L (1<L<M TXRU ) groups, each group The antenna particle is fully connected to the TXRU. At this time, the weight matrix W of the third TXRU virtualization model can be expressed as,

PP mm ,, mm &prime;&prime; == 11 Mm // LL expexp (( -- jj 22 &pi;&pi; &lambda;&lambda; (( mm -- 11 )) dd VV coscos &theta;&theta; etiltetilt ,, mm &prime;&prime; ))

mm == 11 ,, &CenterDot;&CenterDot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; ,, Mm LL ;; mm &prime;&prime; == 11 ,, &CenterDot;&Center Dot; &CenterDot;&Center Dot; &CenterDot;&Center Dot; ,, Mm TXRUTXRU LL

同样,第三TXRU虚拟化模型也可以通过将第二TXRU虚拟化模型中的部分抽头系数置零实现,因而三种虚拟化模型之间可以自适应切换。Similarly, the third TXRU virtualization model can also be implemented by setting some tap coefficients in the second TXRU virtualization model to zero, so that the three virtualization models can be adaptively switched.

以上对于TXRU虚拟化模型进行了示意性说明,但本发明不限于此,例如还可以采用其他TXRU虚拟化方法。例如W中可以同时包含不同长度的DFT向量;再例如为支持公用信道(例如物理下行控制信道PDCCH、物理广播信道PBCH等)和公用信号(例如公共参考信号CRS等)的发送,还可以在W中支持仅有一个元素为1而其它元素均为0的单位向量。The TXRU virtualization model has been schematically described above, but the present invention is not limited thereto, for example, other TXRU virtualization methods may also be used. For example, DFT vectors of different lengths can be included in W at the same time; for example, in order to support the transmission of common channels (such as physical downlink control channel PDCCH, physical broadcast channel PBCH, etc.) supports unit vectors with only one element being 1 and all other elements being 0.

图10是本发明实施例的虚拟化模型选择方法的另一示意图,如图10所示,所述选择方法包括:FIG. 10 is another schematic diagram of a virtualization model selection method according to an embodiment of the present invention. As shown in FIG. 10, the selection method includes:

步骤1001,基站确定信道和/或信号类型;Step 1001, the base station determines the channel and/or signal type;

在本实施例中,所述信道和/或信号类型例如可以包括公共信道和非公共信道。其中公共信道可以包括广播信道、控制信道以及小区相关(cell-specific)的信道等;非公共信道包括数据信道以及用户相关(UE-specific)的信道等。但本发明不限于此。In this embodiment, the channel and/or signal type may include, for example, a common channel and a non-common channel. The public channels may include broadcast channels, control channels, and cell-specific channels; the non-public channels include data channels and user-specific (UE-specific) channels. But the present invention is not limited thereto.

步骤1002,判断信道和/或信号类型是否为公共信道/信号;在为公共信道/信号的情况下执行步骤1003,在不为公共信道/信号的情况下执行步骤1004。Step 1002, determine whether the channel and/or signal type is a public channel/signal; if it is a public channel/signal, perform step 1003, and if it is not a public channel/signal, perform step 1004.

步骤1003,选择采用第四TXRU虚拟化模型;Step 1003, choose to adopt the fourth TXRU virtualization model;

其中,在第四TXRU虚拟化模型中,加权矩阵W为每列仅有一个元素为1而其他元素为0的单位向量。例如:Wherein, in the fourth TXRU virtualization model, the weight matrix W is a unit vector in which only one element in each column is 1 and other elements are 0. For example:

WW == ee TT 11 ee TT 22 &CenterDot;&Center Dot; &CenterDot;&Center Dot; &CenterDot;&Center Dot; ee TT Mm TXRUTXRU ,,

其中Ti(i=1,…,MTXRU)为[1,MTXRU]间的正整数,表示除第Ti个元素为1而其它元素均为0的单位向量。Where T i (i=1,...,M TXRU ) is a positive integer between [1,M TXRU ], Represents a unit vector whose elements are all 0 except for the T i -th element which is 1.

步骤1004,基站确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数VportIn step 1004, the base station determines user scheduling type information and the number of virtual antenna ports V port of multiple antenna particles in the same polarization direction in the vertical direction.

步骤1005,判断Vport是否为1;在Vport为1的情况下执行步骤1006,在Vport不为1的情况下执行步骤1008;Step 1005, judging whether V port is 1; if V port is 1, execute step 1006, and if V port is not 1, execute step 1008;

步骤1006,判断是否进行SU-MIMO,在进行SU-MIMO的情况下执行步骤1007,在不进行SU-MIMO(进行MU-MIMO)的情况下执行步骤1009;Step 1006, judge whether to perform SU-MIMO, perform step 1007 if SU-MIMO is performed, and perform step 1009 if not perform SU-MIMO (perform MU-MIMO);

步骤1007,选择采用第一TXRU虚拟化模型。Step 1007, choose to adopt the first TXRU virtualization model.

步骤1008,判断Vport是否等于MTXRU;在Vport等于MTXRU的情况下执行步骤1009,在Vport不等于MTXRU的情况下执行步骤1010;Step 1008, judge whether V port is equal to M TXRU ; execute step 1009 when V port is equal to M TXRU , and execute step 1010 when V port is not equal to M TXRU ;

步骤1009,选择采用第二TXRU虚拟化模型。Step 1009, choose to adopt the second TXRU virtualization model.

步骤1010,选择采用第一TXRU虚拟化模型或第三TXRU虚拟化模型。Step 1010, choose to adopt the first TXRU virtualization model or the third TXRU virtualization model.

值得注意的是,图5、8和10中均示意性示出了如何选择TXRU虚拟化模型的具体实施方式。但本发明不限于此,例如可以如图5、8、10所示,在Vport为1且进行MU-MIMO的情况下,选择采用第二TXRU虚拟化模型;或者还可以直接进行用户调度类型信息的判断,在进行MU-MIMO的情况下即选择采用第二TXRU虚拟化模型。关于具体的选择条件,可以根据实际情况而具体确定。It should be noted that Fig. 5, Fig. 8 and Fig. 10 all schematically show specific implementation manners of how to select a TXRU virtualization model. But the present invention is not limited thereto. For example, as shown in Figures 5, 8, and 10, when V port is 1 and MU-MIMO is performed, the second TXRU virtualization model can be selected; or the user scheduling type can be directly performed For judging the information, in the case of performing MU-MIMO, the second TXRU virtualization model is selected. The specific selection conditions can be specifically determined according to the actual situation.

以上对于如何选择TXRU虚拟化模型进行了说明,以下对于如何确定虚拟化加权矩阵进行说明。The above describes how to select a TXRU virtualization model, and the following describes how to determine a virtualization weighting matrix.

在本实施例中,基站可以接收用户设备发送的针对TXRU虚拟化模型的最优波束信息;以及针对TXRU虚拟化模型,基站根据所述最优波束信息选择一个或多个波束形成TXRU虚拟化加权矩阵WTXRUIn this embodiment, the base station may receive optimal beam information for the TXRU virtualization model sent by the user equipment; and for the TXRU virtualization model, the base station selects one or more beams according to the optimal beam information to form TXRU virtualization weights Matrix W TXRU .

具体地,用户设备估计出信道后,可以分别在长度为M×1和的码书(可以是DFT码书,也可以是式(1)所示码书)为TXRU虚拟化模型选择虚拟化时使用的波束。对于每个用户设备的每个子带,可以分别选出针对三种码书长度的最优的波束。Specifically, after estimating the channel, the user equipment can respectively perform M×1 and The codebook (which can be the DFT codebook or the codebook shown in formula (1)) selects the beam used for virtualization for the TXRU virtualization model. For each subband of each user equipment, optimal beams for three codebook lengths can be selected respectively.

其中,在各个TXRU虚拟化模型的波束向量个数不同的情况下,所述用户设备针对各TXRU虚拟化模型分别选择所述最优波束信息并反馈。即,若三种长度的波束向量个数(也可称为码书尺寸)各不相同,各个用户设备需要将三种长度的最优波束均反馈给基站端。Wherein, when the number of beam vectors of each TXRU virtualization model is different, the user equipment selects and feeds back the optimal beam information for each TXRU virtualization model respectively. That is, if the number of beam vectors (also referred to as codebook sizes) of the three lengths is different, each user equipment needs to feed back the optimal beams of the three lengths to the base station.

在各个TXRU虚拟化模型的波束向量个数相同的情况下,所述用户设备从长度为M×1的码书中选择所述最优波束信息并反馈。即,用户设备可以仅将长度为M×1的码书中选出的最优的波束编号反馈给基站端。因为长度为M×1的波束主瓣最窄,由其可以推测出主瓣宽度较宽的长度为的波束方向。In the case that the number of beam vectors of each TXRU virtualization model is the same, the user equipment selects the optimal beam information from a codebook with a length of M×1 and feeds it back. That is, the user equipment may only feed back the optimal beam number selected from the codebook with a length of M×1 to the base station. Because the main lobe of the beam with a length of M×1 is the narrowest, it can be deduced that the length of the wider main lobe is and beam direction.

以个数为N1的DFT向量为例,对于长度为M×1的码书,序号为n1的码字为Taking the DFT vector with the number of N 1 as an example, for a codebook with a length of M×1, the codeword with the sequence number n 1 is

11 ee jj 22 &pi;&lambda;&pi;&lambda; nno 11 NN 11 &CenterDot;&Center Dot; &CenterDot;&Center Dot; &CenterDot;&Center Dot; ee jj 22 &pi;&lambda;&pi;&lambda; (( Mm -- 11 )) nno 11 NN 11 TT

(其中归一化因子略去);对于同样尺寸的长度为的DFT向量码书,序号为n1的码字分别是由(the normalization factor is omitted); for the length of the same size is and The DFT vector codebook, the codewords with sequence number n 1 are respectively composed of

11 ee jj 22 &pi;&lambda;&pi;&lambda; nno 11 NN 11 &CenterDot;&Center Dot; &CenterDot;&Center Dot; &CenterDot;&Center Dot; ee jj 22 &pi;&lambda;&pi;&lambda; (( Mm -- 11 )) nno 11 NN 11 TT

的前个和前个元素构成。before one and the previous composed of elements.

在本实施例中,用户设备可以将各个子带的最优波束编号反馈给基站端,针对三种TXRU虚拟化模型(第一TXRU虚拟化模型,第二TXRU虚拟化模型和第三TXRU虚拟化模型),基站从反馈的波束编号中分别选出1个,MTXRU个或M/MTXRU个波束构成TXRU虚拟化加权矩阵WTXRU。其中,在波束选择时,可以选取反馈次数多的波束。In this embodiment, the user equipment can feed back the optimal beam number of each subband to the base station, for the three TXRU virtualization models (the first TXRU virtualization model, the second TXRU virtualization model and the third TXRU virtualization model model), the base station selects one beam number from the feedback, M TXRU or M/M TXRU beams to form a TXRU virtualization weighting matrix W TXRU . Wherein, during beam selection, a beam with more feedback times may be selected.

以上对于如何形成TXRU虚拟化加权矩阵WTXRU进行了示意性说明。当TXRU虚拟化模型确定以后,针对调度的所有用户设备的所有频带将使用相同的TXRU虚拟化加权矩阵The above schematically illustrates how to form the TXRU virtualization weighting matrix W TXRU . When the TXRU virtualization model is determined, the same TXRU virtualization weighting matrix will be used for all frequency bands of all user equipments scheduled

WW TXRUTXRU &Element;&Element; CC MNPMNP &times;&times; Mm TXRUTXRU NPNP ,,

WTXRU为块对角矩阵,每个子块是M×MTXRU维矩阵W,用于完成垂直方向同一极化方向的MTXRU个TXRUs与M个天线粒子的映射。W TXRU is a block diagonal matrix, and each sub-block is an M×M TXRU dimensional matrix W, which is used to complete the mapping between M TXRU TXRUs and M antenna particles in the same polarization direction in the vertical direction.

在传输中,垂直方向同一极化方向可以虚拟成的逻辑端口数为In transmission, the number of logical ports that can be virtualized in the same polarization direction in the vertical direction is

Vport(1<=Vport<=MTXRU),V port (1<=V port <=M TXRU ),

该天线端口虚拟化矩阵用MTXRU×Vport维矩阵WP表示,WP既可以是长期的宽带的加权,也可以是瞬时的窄带的加权。The antenna port virtualization matrix is expressed by M TXRU ×V port dimensional matrix W P , and W P can be either a long-term broadband weight or an instantaneous narrow-band weight.

可以简单的选择Vport个TXRUs作为Vport个逻辑天线端口。即You can simply select V port TXRUs as V port logical antenna ports. which is

WW PP == ee pp 11 &CenterDot;&Center Dot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; ee pp VV portport

其中pi(i=1,…,Vport)为[1,Vport]间的正整数,表示除第pi个元素为1而其它元素均为0的单位向量。Where p i (i=1,...,V port ) is a positive integer between [1,V port ], Represents a unit vector whose elements are all 0 except for the p i -th element which is 1.

也可以对MTXRU个TXRUs进一步加权,虚拟成Vport个逻辑天线端口。以下对于如何形成天线端口虚拟化矩阵WP进行进一步说明。It is also possible to further weight the M TXRU TXRUs to virtualize V port logical antenna ports. How to form the antenna port virtualization matrix W P will be further described below.

在本实施例中,基站可以至少根据所述垂直方向的同一极化方向上M个天线粒子虚拟的天线端口数Vport,以及所述TXRU虚拟化加权矩阵WTXRU,来确定天线端口虚拟化矩阵WPIn this embodiment, the base station may determine the antenna port virtualization matrix at least according to the virtual antenna port number V port of the M antenna particles in the same vertical direction and the TXRU virtualization weighting matrix W TXRU W P .

在本实施例中,对于第一收发单元虚拟化模型,可以采用如下方法获得WPIn this embodiment, for the virtualization model of the first transceiver unit, the following method can be used to obtain W P :

首先,通过Vport计算每个逻辑天线端口对应的TXRU数量MTXRU/Vport和天线粒子数M/Vport;然后,通过TXRU虚拟化过程中选定的子块加权w获得垂直方向电子下倾角的余弦值cos(θetilt)。TXRU虚拟化使用DFT预编码时,通过w获得相邻天线粒子的相位差θ。并且计算 First, the number of TXRUs M TXRU /V port and the number of antenna particles M/V port corresponding to each logical antenna port are calculated through V port ; then, the electronic downtilt angle in the vertical direction is obtained through the sub-block weighting w selected in the TXRU virtualization process The cosine of cos(θ etilt ). When TXRU virtualization uses DFT precoding, the phase difference θ of adjacent antenna particles is obtained through w. and calculate or

最后,得到 Finally, get

在本实施例中,对于第二收发单元虚拟化模型,可以采用如下方法获得WPIn this embodiment, for the virtualization model of the second transceiver unit, the following method can be used to obtain W P :

根据信道信息H获取垂直方向的信道信息HV;以及根据所述HV和WTXRU进行分解计算获得中间矩阵,根据所述中间矩阵的前Vport列得到WPObtain vertical channel information H V according to the channel information H; and obtain an intermediate matrix by decomposing and calculating according to the H V and W TXRU , and obtain W P according to the first V port column of the intermediate matrix.

具体地,在时分双工(TDD,Time Division Duplex)模式下,在基站端已知信道信息(其中NR为用户设备的接收天线数)与TXRU虚拟化模型加权WTXRU(或W)时,Specifically, in Time Division Duplex (TDD, Time Division Duplex) mode, the channel information is known at the base station (Where NR is the number of receiving antennas of the user equipment) and TXRU virtualization model weighted W TXRU (or W),

首先,要获取垂直方向信道信息。First, the channel information in the vertical direction must be obtained.

其中,可以将H进行克罗内克积分解,根据分解的矩阵维度不同可以有多种不同的近似分解方法,例如Among them, H can be decomposed by Kronecker integral, According to the different dimensions of the decomposed matrix, there are many different approximate decomposition methods, such as

Hh Hh &Element;&Element; CC 11 &times;&times; NPNP ,, Hh VV &Element;&Element; CC NN RR &times;&times; Mm ..

也可以将的每一行信道分别进行克罗内克积分解,分解成1×NP维的水平信道和1×M维的垂直信道进而can also be Each row channel of is subjected to Kronecker integral decomposition, decomposed into 1×NP-dimensional horizontal channels and vertical channels of 1×M dimension and then

Hh VV == [[ hh VV 11 ;; &CenterDot;&CenterDot; &CenterDot;&CenterDot; &CenterDot;&CenterDot; ;; hh VV NN RR ]] ..

也可以直接使用用户设备的接收天线与基站端任意一列同一极化方向的M个天线粒子之间的信道作为HVIt is also possible to directly use the channel between the receiving antenna of the user equipment and any column of M antenna particles with the same polarization direction at the base station as H V .

此外,HV也可以是垂直方向信道信息的一种统计值或平均值。In addition, H V may also be a statistical value or average value of channel information in the vertical direction.

然后,计算HVW,可以通过以下分解方式获得WP:例如,Then, to calculate H V W, W P can be obtained by the following decomposition: For example,

对HVW进行奇异值(SVD)分解,得到HVW=USVH,WP为V矩阵的前Vport列;或者Singular value (SVD) decomposition is performed on H V W to obtain H V W = USV H , and W P is the front V port column of the V matrix; or

对(HVW)H进行正交三角(QR)分解,得到(HVW)H=QR,WP为Q矩阵的前Vport列。Orthogonal triangular (QR) decomposition is performed on (H V W) H to obtain (H V W) H = QR, and W P is the first V port column of the Q matrix.

在本实施例中,对于第三TXRU虚拟化模型,可以采用如下方法获得WPIn this embodiment, for the third TXRU virtualization model, the following method can be used to obtain W P :

对于L组中的每一组,根据信道信息H获取垂直方向的信道信息HV,并根据所述HV和WTXRU进行分解计算获得中间矩阵,根据所述中间矩阵的前Vport列得到该组的加权矩阵W′PFor each group in the L group, obtain the channel information H V in the vertical direction according to the channel information H, and decompose and calculate according to the H V and W TXRU to obtain an intermediate matrix, and obtain the intermediate matrix according to the first V port column of the intermediate matrix Group weighting matrix W′ P ;

由此得到 From this we get

在本实施例中,对于第四TXRU虚拟化模型,可以采用如下方法获得WPIn this embodiment, for the fourth TXRU virtualization model, the following method can be used to obtain W P :

选择Vport个收发单元作为Vport个逻辑天线端口;即 Select V port transceiver units as V port logical antenna ports; that is

由上述实施例可知,根据用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,来选择TXRU虚拟化模型;由此能够自适应地对TXRU虚拟化模型进行选择。此外,可以获得TXRU虚拟化加权矩阵WTXRU以及天线端口虚拟化矩阵WP,由此可以更好地应用于大规模MIMO系统中。It can be seen from the above embodiments that the TXRU virtualization model is selected according to the user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same vertical direction; thus, the TXRU virtualization model can be adaptively selected . In addition, the TXRU virtualization weighting matrix W TXRU and the antenna port virtualization matrix W P can be obtained, which can be better applied to massive MIMO systems.

实施例2Example 2

本发明实施例提供一种天线阵列的虚拟化模型选择装置,配置于具有天线阵列的基站中。本发明实施例对应于实施例1中所述的天线阵列的虚拟化模型选择方法,相同的内容不再赘述。An embodiment of the present invention provides a device for selecting a virtualized model of an antenna array, which is configured in a base station with an antenna array. This embodiment of the present invention corresponds to the method for selecting a virtualization model of an antenna array described in Embodiment 1, and the same content will not be repeated here.

图11是本发明实施例的虚拟化模型选择装置的一示意图,如图11所示,所述虚拟化模型选择装置1100包括:Fig. 11 is a schematic diagram of a virtualization model selection device according to an embodiment of the present invention. As shown in Fig. 11, the virtualization model selection device 1100 includes:

信息确定单元1101,确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;The information determining unit 1101 is configured to determine user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same polarization direction in the vertical direction;

模型选择单元1102,根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。The model selection unit 1102 selects a virtualization model of the transceiver unit according to the user scheduling type information and the number of virtual antenna ports of the plurality of antenna particles in the same polarization direction in the vertical direction.

在本实施例中,所述用户调度类型信息可以包括:单用户MIMO和/或多用户MIMO;所述垂直方向的同一极化方向上M个天线粒子虚拟的天线端口数为VportIn this embodiment, the user scheduling type information may include: single-user MIMO and/or multi-user MIMO; the number of virtual antenna ports of the M antenna particles in the same polarization direction in the vertical direction is V port ;

所述模型选择单元1102具体可以用于:在Vport为1并且进行单用户MIMO的情况下,选择采用第一收发单元虚拟化模型;在进行多用户MIMO,或者Vport等于MTXRU的情况下,选择采用第二收发单元虚拟化模型;在Vport不为1并且不等于MTXRU的情况下,选择采用第三收发单元虚拟化模型或者第一收发单元虚拟化模型;The model selection unit 1102 can be specifically configured to: select and adopt the first transceiver unit virtualization model when V port is 1 and perform single-user MIMO; when performing multi-user MIMO, or V port is equal to M TXRU , select to adopt the second transceiver unit virtualization model; when V port is not 1 and not equal to M TXRU , select to adopt the third transceiver unit virtualization model or the first transceiver unit virtualization model;

其中,所述MTXRU为垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目;所述第一收发单元虚拟化模型中,每个收发单元连接K个天线粒子,K=M/MTXRU;所述第二收发单元虚拟化模型中,每个收发单元均与M个天线粒子连接;所述第三收发单元虚拟化模型中,MTXRU个收发单元和M个天线粒子均被分成L组,每一组内的天线粒子与收发单元进行全连接。Wherein, the M TXRU is the number of transceiver units connected to M antenna particles in the same polarization direction in each column in the vertical direction; in the first transceiver unit virtualization model, each transceiver unit is connected to K antenna particles, and K= M/M TXRU ; in the second transceiver unit virtualization model, each transceiver unit is connected to M antenna particles; in the third transceiver unit virtualization model, M TXRU transceiver units and M antenna particles are Divided into L groups, the antenna particles in each group are fully connected with the transceiver unit.

图12是本发明实施例的虚拟化模型选择装置的另一示意图,如图12所示,所述虚拟化模型选择装置1200包括:信息确定单元1101以及模型选择单元1102,如上所述。FIG. 12 is another schematic diagram of a virtualization model selection device according to an embodiment of the present invention. As shown in FIG. 12 , the virtualization model selection device 1200 includes: an information determination unit 1101 and a model selection unit 1102 , as described above.

如图12所示,虚拟化模型选择装置1200还可以包括:As shown in Figure 12, the virtualization model selection device 1200 may also include:

类型确定单元1201,确定信道和/或信号类型;以及所述模型选择单元1101还可以用于根据信道和/或信号类型选择所述收发单元虚拟化模型。The type determination unit 1201 is configured to determine a channel and/or signal type; and the model selection unit 1101 may also be configured to select the virtualization model of the transceiver unit according to the channel and/or signal type.

其中,所述信道和/或信号类型可以包括:公共信道/信号和/或非公共信道/信号;所述模型选择单元1101还用于:在所述信道和/或信号类型为公共信道/信号的情况下,选择采用第四收发单元虚拟化模型;其中,所述第四收发单元虚拟化模型中,加权矩阵支持每列仅有一个元素为1而其他元素为0的单位向量。Wherein, the channel and/or signal type may include: public channel/signal and/or non-public channel/signal; the model selection unit 1101 is also used for: when the channel and/or signal type is a public channel/signal In the case of , choose to adopt the fourth transceiver unit virtualization model; wherein, in the fourth transceiver unit virtualization model, the weighting matrix supports unit vectors in which only one element in each column is 1 and the other elements are 0.

如图12所示,虚拟化模型选择装置1200还可以包括:As shown in Figure 12, the virtualization model selection device 1200 may also include:

波束信息接收单元1202,接收用户设备发送的针对所述收发单元虚拟化模型的最优波束信息;其中,在各个收发单元虚拟化模型的波束向量个数不同的情况下,所述用户设备针对各收发单元虚拟化模型分别选择所述最优波束信息并反馈;在各个收发单元虚拟化模型的波束向量个数相同的情况下,所述用户设备从长度为M×1的码书中选择所述最优波束信息并反馈;The beam information receiving unit 1202 is configured to receive optimal beam information for the virtualization model of the transceiver unit sent by the user equipment; wherein, when the number of beam vectors of each virtualization model of the transceiver unit is different, the user equipment for each The virtualization model of the transceiver unit selects and feeds back the optimal beam information respectively; when the number of beam vectors of each virtualization model of the transceiver unit is the same, the user equipment selects the optimal beam information from the codebook with a length of M×1 Optimal beam information and feedback;

第一矩阵确定单元1203,针对所述收发单元虚拟化模型,根据所述最优波束信息选择一个或多个波束形成收发单元虚拟化加权矩阵WTXRUThe first matrix determining unit 1203 selects one or more beamforming transceiving unit virtualization weighting matrices W TXRU according to the optimal beam information for the transceiving unit virtualization model.

如图12所示,虚拟化模型选择装置1200还可以包括:As shown in Figure 12, the virtualization model selection device 1200 may also include:

第二矩阵确定单元1204,至少根据所述垂直方向的同一极化方向上M个天线粒子虚拟的天线端口数Vport以及所述收发单元虚拟化加权矩阵WTXRU,确定天线端口虚拟化矩阵WPThe second matrix determination unit 1204 determines the antenna port virtualization matrix W P at least according to the virtual antenna port number V port of the M antenna particles in the same polarization direction in the vertical direction and the virtualization weighting matrix W TXRU of the transceiver unit .

其中,所述第二矩阵确定单元1204具体可以用于:Wherein, the second matrix determining unit 1204 can specifically be used for:

对于第一收发单元虚拟化模型,For the virtualization model of the first transceiver unit,

通过Vport计算每个逻辑天线端口对应的收发单元数量和天线粒子数;Calculate the number of transceiver units and the number of antenna particles corresponding to each logical antenna port through V port ;

根据WTXRU获得垂直方向电子下倾角信息,获得相邻天线粒子的相位差θ;并计算 Obtain the electronic downtilt angle information in the vertical direction according to W TXRU , and obtain the phase difference θ of adjacent antenna particles; and calculate or

由此得到 From this we get

对于第二收发单元虚拟化模型,For the second transceiver unit virtualization model,

根据信道信息H获取垂直方向的信道信息HV;以及根据所述HV和WTXRU进行分解计算获得中间矩阵,根据所述中间矩阵的前Vport列得到WPObtain vertical channel information H V according to the channel information H; and obtain an intermediate matrix by decomposing and calculating according to the H V and W TXRU , and obtain W P according to the first V port column of the intermediate matrix.

对于第三收发单元虚拟化模型,For the virtualization model of the third transceiver unit,

对于L组中的每一组,根据信道信息H获取垂直方向的信道信息HV,并根据所述HV和WTXRU进行分解计算获得中间矩阵,根据所述中间矩阵的前Vport列得到该组的加权矩阵W′PFor each group in the L group, obtain the channel information H V in the vertical direction according to the channel information H, and decompose and calculate according to the H V and W TXRU to obtain an intermediate matrix, and obtain the intermediate matrix according to the first V port column of the intermediate matrix Group weighting matrix W′ P ;

由此得到 From this we get

对于第四收发单元虚拟化模型,For the virtualization model of the fourth transceiver unit,

选择Vport个收发单元作为Vport个逻辑天线端口;即 Select V port transceiver units as V port logical antenna ports; that is

由上述实施例可知,根据用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,来选择TXRU虚拟化模型;由此能够自适应地对TXRU虚拟化模型进行选择。此外,可以获得TXRU虚拟化加权矩阵WTXRU以及天线端口虚拟化矩阵WP,由此可以更好地应用于大规模MIMO系统中。It can be seen from the above embodiments that the TXRU virtualization model is selected according to the user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same vertical direction; thus, the TXRU virtualization model can be adaptively selected . In addition, the TXRU virtualization weighting matrix W TXRU and the antenna port virtualization matrix W P can be obtained, which can be better applied to massive MIMO systems.

实施例3Example 3

本发明实施例还提供一种通信系统,与实施例1和2相同的内容不再赘述。图13是本发明实施例的通信系统的一示意图,如图13所示,所述通信系统1300包括:基站1301和用户设备1302;An embodiment of the present invention also provides a communication system, and the same content as in Embodiments 1 and 2 will not be repeated here. FIG. 13 is a schematic diagram of a communication system according to an embodiment of the present invention. As shown in FIG. 13 , the communication system 1300 includes: a base station 1301 and a user equipment 1302;

其中,基站1301确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;以及根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。Wherein, the base station 1301 determines the user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same vertical direction; and the multiple antennas in the same vertical direction according to the user scheduling type information and the vertical direction The number of antenna ports virtualized by the particle, select the virtualization model of the transceiver unit.

本实施例还提供一种基站,配置有如上所述的虚拟化模型选择装置1100或1200。This embodiment also provides a base station configured with the virtualization model selection apparatus 1100 or 1200 described above.

图14是本发明实施例的基站的一构成示意图。如图14所示,基站1400可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。Fig. 14 is a schematic structural diagram of a base station according to an embodiment of the present invention. As shown in FIG. 14 , a base station 1400 may include: a central processing unit (CPU) 200 and a memory 210 ; the memory 210 is coupled to the central processing unit 200 . Among them, the memory 210 can store various data; in addition, it also stores information processing programs, and executes the programs under the control of the central processing unit 200 .

其中,基站1400可以实现如实施例1所述的虚拟化模型选择方法。中央处理器200可以被配置为实现虚拟化模型选择装置1100或1200的功能;即中央处理器200可以被配置为进行如下控制:确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;以及根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。Wherein, the base station 1400 may implement the method for selecting a virtualization model as described in Embodiment 1. The central processing unit 200 may be configured to implement the functions of the virtualization model selection apparatus 1100 or 1200; that is, the central processing unit 200 may be configured to perform the following control: determine user scheduling type information and multiple antennas in the same polarization direction in the vertical direction The number of antenna ports virtualized by the particle; and the virtualization model of the transceiver unit is selected according to the user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same vertical direction in the same polarization direction.

此外,如图14所示,基站1400还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站1400也并不是必须要包括图14中所示的所有部件;此外,基站1400还可以包括图14中没有示出的部件,可以参考现有技术。In addition, as shown in FIG. 14 , the base station 1400 may further include: a transceiver 220 and an antenna 230 , etc.; where the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the base station 1400 does not necessarily include all components shown in FIG. 14 ; in addition, the base station 1400 may also include components not shown in FIG. 14 , and reference may be made to the prior art.

本发明实施例还提供一种计算机可读程序,其中当在基站中执行所述程序时,所述程序使得计算机在所述基站中执行实施例1所述的虚拟化模型选择方法。An embodiment of the present invention further provides a computer-readable program, wherein when the program is executed in a base station, the program causes a computer to execute the virtualization model selection method described in Embodiment 1 in the base station.

本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在基站中执行实施例1所述的虚拟化模型选择方法。An embodiment of the present invention also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the virtualization model selection method described in Embodiment 1 in a base station.

本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。The above devices and methods of the present invention can be implemented by hardware, or by combining hardware and software. The present invention relates to such a computer-readable program that, when the program is executed by a logic component, enables the logic component to realize the above-mentioned device or constituent component, or enables the logic component to realize the above-mentioned various methods or steps. The present invention also relates to a storage medium for storing the above program, such as hard disk, magnetic disk, optical disk, DVD, flash memory and the like.

以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。The present invention has been described above in conjunction with specific embodiments, but those skilled in the art should be clear that these descriptions are exemplary and not limiting the protection scope of the present invention. Those skilled in the art can make various variations and modifications to the present invention according to the spirit and principle of the present invention, and these variations and modifications are also within the scope of the present invention.

关于包括以上实施例的实施方式,还公开下述的附记:Regarding the implementation manner comprising the above embodiments, the following additional notes are also disclosed:

(附记1)一种天线阵列的虚拟化模型选择装置,所述选择装置包括:(Supplementary Note 1) A virtualized model selection device of an antenna array, said selection device comprising:

信息确定单元,确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;An information determination unit, which determines user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same polarization direction in the vertical direction;

模型选择单元,根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。The model selection unit selects a virtualization model of the transceiver unit according to the user scheduling type information and the number of virtual antenna ports of the plurality of antenna particles in the same polarization direction in the vertical direction.

(附记2)根据附记1所述的选择装置,其中,所述用户调度类型信息包括:单用户MIMO和/或多用户MIMO;所述垂直方向的同一极化方向上M个天线粒子虚拟的天线端口数为Vport(Supplement 2) The selection device according to Supplement 1, wherein the user scheduling type information includes: single-user MIMO and/or multi-user MIMO; M antenna particle virtual The number of antenna ports is V port ;

所述模型选择单元用于:在Vport为1并且进行单用户MIMO的情况下,选择采用第一收发单元虚拟化模型;在进行多用户MIMO,或者Vport等于MTXRU的情况下,选择采用第二收发单元虚拟化模型;在Vport不为1并且不等于MTXRU的情况下,选择采用第三收发单元虚拟化模型或者第一收发单元虚拟化模型;The model selection unit is used to: select to adopt the first transceiver unit virtualization model when V port is 1 and perform single-user MIMO; select to adopt the first transceiver unit virtualization model when performing multi-user MIMO, or V port is equal to M TXRU The second transceiver unit virtualization model; when the V port is not 1 and is not equal to MTXRU , select the third transceiver unit virtualization model or the first transceiver unit virtualization model;

其中,MTXRU为垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目;所述第一收发单元虚拟化模型中,每个收发单元连接K个天线粒子,K=M/MTXRU;所述第二收发单元虚拟化模型中,每个收发单元均与M个天线粒子连接;所述第三收发单元虚拟化模型中,MTXRU个收发单元和M个天线粒子均被分成L组,每一组内的天线粒子与收发单元进行全连接。Wherein, M TXRU is the number of transceiver units connected to M antenna particles in the same polarization direction in each column in the vertical direction; in the first transceiver unit virtualization model, each transceiver unit is connected to K antenna particles, K=M/ M TXRU ; in the second transceiver unit virtualization model, each transceiver unit is connected to M antenna particles; in the third transceiver unit virtualization model, M TXRU transceiver units and M antenna particles are divided into In group L, the antenna particles in each group are fully connected to the transceiver unit.

(附记3)根据附记1所述的选择装置,其中,所述选择装置还包括:(Supplementary Note 3) The selection device according to Supplementary Note 1, wherein the selection device further includes:

类型确定单元,确定信道和/或信号类型;a type determining unit, which determines the channel and/or signal type;

所述模型选择单元还用于根据所述信道和/或信号类型选择所述收发单元虚拟化模型。The model selection unit is further configured to select the virtualization model of the transceiver unit according to the channel and/or signal type.

(附记4)根据附记3所述的选择装置,其中,所述信道和/或信号类型包括:公共信道/信号和/或非公共信道/信号;(Supplementary Note 4) The selection device according to Supplementary Note 3, wherein the channel and/or signal type includes: common channel/signal and/or non-common channel/signal;

所述模型选择单元还用于:在所述信道和/或信号类型为公共信道/信号的情况下,选择采用第四收发单元虚拟化模型;其中,所述第四收发单元虚拟化模型中,加权矩阵支持每列仅有一个元素为1而其他元素为0的单位向量。The model selection unit is also used to: select and adopt the fourth transceiver unit virtualization model when the channel and/or signal type is a common channel/signal; wherein, in the fourth transceiver unit virtualization model, Weighting matrices support unit vectors with only one element in each column being 1 and the others being 0.

(附记5)根据附记1所述的选择装置,其中,所述选择装置还包括:(Supplement 5) The selection device according to Supplement 1, wherein the selection device further includes:

波束信息接收单元,接收用户设备发送的针对所述收发单元虚拟化模型的最优波束信息;其中,在各个收发单元虚拟化模型的波束向量个数不同的情况下,所述用户设备针对各收发单元虚拟化模型分别选择所述最优波束信息并反馈;在各个收发单元虚拟化模型的波束向量个数相同的情况下,所述用户设备从长度为M×1的码书中选择所述最优波束信息并反馈;The beam information receiving unit receives the optimal beam information for the virtualization model of the transceiver unit sent by the user equipment; wherein, in the case that the number of beam vectors of each virtualization model of the transceiver unit is different, the user equipment for each transceiver unit The unit virtualization model respectively selects the optimal beam information and feeds it back; when the number of beam vectors of each transceiver unit virtualization model is the same, the user equipment selects the optimal beam information from the codebook with a length of M×1 Optimal beam information and feedback;

第一矩阵确定单元,针对所述收发单元虚拟化模型,根据所述最优波束信息选择一个或多个波束形成收发单元虚拟化加权矩阵WTXRUThe first matrix determination unit is configured to select one or more beamforming transceiving unit virtualization weighting matrices W TXRU according to the optimal beam information for the transceiving unit virtualization model.

(附记6)根据附记5所述的选择装置,其中,所述选择装置还包括:(Supplementary Note 6) The selection device according to Supplementary Note 5, wherein the selection device further includes:

第二矩阵确定单元,至少根据所述垂直方向的同一极化方向上M个天线粒子虚拟的天线端口数Vport以及所述收发单元虚拟化加权矩阵WTXRU,确定天线端口虚拟化矩阵WPThe second matrix determination unit determines the antenna port virtualization matrix W P at least according to the virtual antenna port number V port of the M antenna particles in the same vertical direction and the virtualization weighting matrix W TXRU of the transceiver unit.

(附记7)根据附记6所述的选择装置,其中,所述第二矩阵确定单元用于:(Supplement 7) The selection device according to Supplement 6, wherein the second matrix determination unit is used for:

对于第一收发单元虚拟化模型,For the virtualization model of the first transceiver unit,

通过Vport计算每个逻辑天线端口对应的收发单元数量和天线粒子数;Calculate the number of transceiver units and the number of antenna particles corresponding to each logical antenna port through V port ;

根据WTXRU获得垂直方向电子下倾角信息,获得相邻天线粒子的相位差θ;并计算 Obtain the electronic downtilt angle information in the vertical direction according to W TXRU , and obtain the phase difference θ of adjacent antenna particles; and calculate or

由此得到 From this we get

(附记8)根据附记6所述的选择装置,其中,所述第二矩阵确定单元用于:(Supplementary Note 8) The selection device according to Supplementary Note 6, wherein the second matrix determination unit is used for:

对于第二收发单元虚拟化模型,For the second transceiver unit virtualization model,

根据信道信息H获取垂直方向的信道信息HV;以及根据HV和WTXRU进行分解计算获得中间矩阵,根据所述中间矩阵的前Vport列得到WPAcquiring channel information H V in the vertical direction according to channel information H; and decomposing and calculating according to H V and W TXRU to obtain an intermediate matrix, and obtaining W P according to the first V port column of the intermediate matrix.

(附记9)根据附记6所述的选择装置,其中,所述第二矩阵确定单元用于:(Supplement 9) The selection device according to Supplement 6, wherein the second matrix determination unit is used for:

对于第三收发单元虚拟化模型,For the virtualization model of the third transceiver unit,

对于L组中的每一组,根据信道信息H获取垂直方向的信道信息HV,并根据HV和WTXRU进行分解计算获得中间矩阵,根据所述中间矩阵的前Vport列得到该组的加权矩阵W′PFor each group in the L group, obtain the channel information H V in the vertical direction according to the channel information H, and decompose and calculate according to H V and W TXRU to obtain an intermediate matrix, and obtain the group's V port according to the first V port column of the intermediate matrix weighting matrix W′ P ;

由此得到 From this we get

(附记10)根据附记6所述的选择装置,其中,所述第二矩阵确定单元用于:(Supplementary Note 10) The selection device according to Supplementary Note 6, wherein the second matrix determination unit is configured to:

对于第四收发单元虚拟化模型,For the virtualization model of the fourth transceiver unit,

选择Vport个收发单元作为Vport个逻辑天线端口;即 Select V port transceiver units as V port logical antenna ports; that is

(附记11)一种天线阵列的虚拟化模型选择方法,所述选择方法包括:(Supplementary Note 11) A method for selecting a virtualized model of an antenna array, the selection method comprising:

基站确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;以及The base station determines user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same polarization direction in the vertical direction; and

根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。A virtualization model of the transceiver unit is selected according to the user scheduling type information and the number of virtual antenna ports of the plurality of antenna particles in the same polarization direction in the vertical direction.

(附记12)根据附记11所述的选择方法,其中,所述用户调度类型信息包括:单用户MIMO和/或多用户MIMO;所述垂直方向的同一极化方向上M个天线粒子虚拟的天线端口数为Vport(Supplementary Note 12) The selection method according to Supplementary Note 11, wherein the user scheduling type information includes: single-user MIMO and/or multi-user MIMO; M antenna particle virtual The number of antenna ports is V port ;

在Vport为1并且进行单用户MIMO的情况下,选择采用第一收发单元虚拟化模型;In the case that V port is 1 and single-user MIMO is performed, choose to adopt the virtualization model of the first transceiver unit;

在进行多用户MIMO,或者Vport等于MTXRU的情况下,选择采用第二收发单元虚拟化模型;In the case of performing multi-user MIMO, or when V port is equal to M TXRU , choose to adopt the second transceiver unit virtualization model;

在Vport不为1并且不等于MTXRU的情况下,选择采用第三收发单元虚拟化模型或者第一收发单元虚拟化模型;In the case that V port is not 1 and not equal to M TXRU , choose to adopt the third transceiver unit virtualization model or the first transceiver unit virtualization model;

其中,MTXRU为垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目;所述第一收发单元虚拟化模型中,每个收发单元连接K个天线粒子,K=M/MTXRU;所述第二收发单元虚拟化模型中,每个收发单元均与M个天线粒子连接;所述第三收发单元虚拟化模型中,MTXRU个收发单元和M个天线粒子均被分成L组,每一组内的天线粒子与收发单元进行全连接。Wherein, M TXRU is the number of transceiver units connected to M antenna particles in the same polarization direction in each column in the vertical direction; in the first transceiver unit virtualization model, each transceiver unit is connected to K antenna particles, K=M/ M TXRU ; in the second transceiver unit virtualization model, each transceiver unit is connected to M antenna particles; in the third transceiver unit virtualization model, M TXRU transceiver units and M antenna particles are divided into In group L, the antenna particles in each group are fully connected to the transceiver unit.

(附记13)根据附记11所述的选择方法,其中,所述选择方法还包括:(Supplementary Note 13) The selection method according to Supplementary Note 11, wherein the selection method further includes:

确定信道和/或信号类型;以及determine the channel and/or signal type; and

根据所述信道和/或信号类型选择所述收发单元虚拟化模型。Selecting the virtualization model of the transceiver unit according to the channel and/or signal type.

(附记14)根据附记13所述的选择方法,其中,所述信道和/或信号类型包括:公共信道/信号和/或非公共信道/信号;(Supplementary Note 14) The selection method according to Supplementary Note 13, wherein the channel and/or signal type includes: common channel/signal and/or non-common channel/signal;

在所述信道和/或信号类型为公共信道/信号的情况下,选择采用第四收发单元虚拟化模型;其中,所述第四收发单元虚拟化模型中,加权矩阵支持每列仅有一个元素为1而其他元素为0的单位向量。In the case where the channel and/or signal type is a common channel/signal, choose to adopt the fourth transceiver unit virtualization model; wherein, in the fourth transceiver unit virtualization model, the weighting matrix supports only one element in each column A unit vector with 1s and 0s for the other elements.

(附记15)根据附记11所述的选择方法,其中,所述选择方法还包括:(Supplementary Note 15) The selection method according to Supplementary Note 11, wherein the selection method further includes:

接收用户设备发送的针对所述收发单元虚拟化模型的最优波束信息;以及receiving optimal beam information for the virtualization model of the transceiver unit sent by the user equipment; and

针对所述收发单元虚拟化模型,根据所述最优波束信息选择一个或多个波束形成收发单元虚拟化加权矩阵WTXRUFor the virtualization model of the transceiver unit, select one or more beamforming transceiver unit virtualization weighting matrices W TXRU according to the optimal beam information;

其中,在各个收发单元虚拟化模型的波束向量个数不同的情况下,所述用户设备针对各收发单元虚拟化模型分别选择所述最优波束信息并反馈;在各个收发单元虚拟化模型的波束向量个数相同的情况下,所述用户设备从长度为M×1的码书中选择所述最优波束信息并反馈。Wherein, when the number of beam vectors of each transceiver unit virtualization model is different, the user equipment respectively selects the optimal beam information for each transceiver unit virtualization model and feeds back; When the number of vectors is the same, the user equipment selects the optimal beam information from a codebook with a length of M×1 and feeds it back.

(附记16)根据附记15所述的选择方法,其中,所述选择方法还包括:(Supplementary Note 16) The selection method according to Supplementary Note 15, wherein the selection method further includes:

至少根据所述垂直方向的同一极化方向上M个天线粒子虚拟的天线端口数Vport以及所述收发单元虚拟化加权矩阵WTXRU,确定天线端口虚拟化矩阵WPAn antenna port virtualization matrix W P is determined at least according to the number of virtual antenna ports V port of the M antenna particles in the same polarization direction in the vertical direction and the virtualization weighting matrix W TXRU of the transceiver unit.

(附记17)根据附记16所述的选择方法,其中,对于第一收发单元虚拟化模型,(Supplementary Note 17) The selection method according to Supplementary Note 16, wherein, for the virtualization model of the first transceiver unit,

通过Vport计算每个逻辑天线端口对应的收发单元数量和天线粒子数;Calculate the number of transceiver units and the number of antenna particles corresponding to each logical antenna port through V port ;

根据WTXRU获得垂直方向电子下倾角信息,获得相邻天线粒子的相位差θ;并计算 Obtain the electronic downtilt angle information in the vertical direction according to W TXRU , and obtain the phase difference θ of adjacent antenna particles; and calculate or

由此得到 From this we get

(附记18)根据附记16所述的选择方法,其中,对于第二收发单元虚拟化模型,(Supplementary Note 18) The selection method according to Supplementary Note 16, wherein, for the second transceiver unit virtualization model,

根据信道信息H获取垂直方向的信道信息HV;以及根据HV和WTXRU进行分解计算获得中间矩阵,根据所述中间矩阵的前Vport列得到WPAcquiring channel information H V in the vertical direction according to channel information H; and decomposing and calculating according to H V and W TXRU to obtain an intermediate matrix, and obtaining W P according to the first V port column of the intermediate matrix.

(附记19)根据附记16所述的选择方法,其中,对于第三收发单元虚拟化模型,(Supplementary Note 19) The selection method according to Supplementary Note 16, wherein, for the third transceiver unit virtualization model,

对于L组中的每一组,根据信道信息H获取垂直方向的信道信息HV,并根据HV和WTXRU进行分解计算获得中间矩阵,根据所述中间矩阵的前Vport列得到该组的加权矩阵W′PFor each group in the L group, obtain the channel information H V in the vertical direction according to the channel information H, and decompose and calculate according to H V and W TXRU to obtain an intermediate matrix, and obtain the group's V port according to the first V port column of the intermediate matrix weighting matrix W′ P ;

由此得到 From this we get

(附记20)根据附记16所述的选择方法,其中,对于第四收发单元虚拟化模型,(Supplementary Note 20) The selection method according to Supplementary Note 16, wherein, for the fourth transceiver unit virtualization model,

选择Vport个收发单元作为Vport个逻辑天线端口;即 Select V port transceiver units as V port logical antenna ports; that is

(附记21)一种通信系统,所述通信系统包括:(Additional note 21) A communication system, the communication system comprising:

基站,确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;以及根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。The base station determines the user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same vertical direction; For the number of antenna ports, select the virtualization model of the transceiver unit.

Claims (10)

1.一种天线阵列的虚拟化模型选择装置,所述选择装置包括:1. A virtualized model selection device of antenna array, said selection device comprising: 信息确定单元,确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;An information determination unit, which determines user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same polarization direction in the vertical direction; 模型选择单元,根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。The model selection unit selects a virtualization model of the transceiver unit according to the user scheduling type information and the number of virtual antenna ports of the plurality of antenna particles in the same polarization direction in the vertical direction. 2.根据权利要求1所述的选择装置,其中,所述用户调度类型信息包括:单用户MIMO和/或多用户MIMO;所述垂直方向的同一极化方向上M个天线粒子虚拟的天线端口数为Vport2. The selection device according to claim 1, wherein the user scheduling type information includes: single-user MIMO and/or multi-user MIMO; virtual antenna ports of M antenna particles in the same polarization direction in the vertical direction The number is V port ; 所述模型选择单元用于:在Vport为1并且进行单用户MIMO的情况下,选择采用第一收发单元虚拟化模型;在进行多用户MIMO,或者Vport等于MTXRU的情况下,选择采用第二收发单元虚拟化模型;在Vport不为1并且不等于MTXRU的情况下,选择采用第三收发单元虚拟化模型或者第一收发单元虚拟化模型;The model selection unit is used to: select to adopt the first transceiver unit virtualization model when V port is 1 and perform single-user MIMO; select to adopt the first transceiver unit virtualization model when performing multi-user MIMO, or V port is equal to M TXRU The second transceiver unit virtualization model; when the V port is not 1 and is not equal to MTXRU , select the third transceiver unit virtualization model or the first transceiver unit virtualization model; 其中,MTXRU为垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目;所述第一收发单元虚拟化模型中,每个收发单元连接K个天线粒子,K=M/MTXRU;所述第二收发单元虚拟化模型中,每个收发单元均与M个天线粒子连接;所述第三收发单元虚拟化模型中,MTXRU个收发单元和M个天线粒子均被分成L组,每一组内的天线粒子与收发单元进行全连接。Wherein, M TXRU is the number of transceiver units connected to M antenna particles in the same polarization direction in each column in the vertical direction; in the first transceiver unit virtualization model, each transceiver unit is connected to K antenna particles, K=M/ M TXRU ; in the second transceiver unit virtualization model, each transceiver unit is connected to M antenna particles; in the third transceiver unit virtualization model, M TXRU transceiver units and M antenna particles are divided into In group L, the antenna particles in each group are fully connected to the transceiver unit. 3.根据权利要求1所述的选择装置,其中,所述选择装置还包括:3. The selection device according to claim 1, wherein the selection device further comprises: 类型确定单元,确定信道和/或信号类型;a type determining unit, which determines the channel and/or signal type; 所述模型选择单元还用于根据所述信道和/或信号类型选择所述收发单元虚拟化模型。The model selection unit is further configured to select the virtualization model of the transceiver unit according to the channel and/or signal type. 4.根据权利要求3所述的选择装置,其中,所述信道和/或信号类型包括:公共信道/信号和/或非公共信道/信号;4. The selection device according to claim 3, wherein the channel and/or signal type comprises: a common channel/signal and/or a non-common channel/signal; 所述模型选择单元还用于:在所述信道和/或信号类型为公共信道/信号的情况下,选择采用第四收发单元虚拟化模型;其中,所述第四收发单元虚拟化模型中,加权矩阵为每列仅有一个元素为1而其他元素为0的单位向量。The model selection unit is also used to: select and adopt the fourth transceiver unit virtualization model when the channel and/or signal type is a common channel/signal; wherein, in the fourth transceiver unit virtualization model, The weighting matrix is a unit vector with only one element in each column being 1 and the other elements being 0. 5.根据权利要求1所述的选择装置,其中,所述选择装置还包括:5. The selection device according to claim 1, wherein the selection device further comprises: 波束信息接收单元,接收用户设备发送的针对所述收发单元虚拟化模型的最优波束信息;其中,在各个收发单元虚拟化模型的波束向量个数不同的情况下,所述用户设备针对各收发单元虚拟化模型分别选择所述最优波束信息并反馈;在各个收发单元虚拟化模型的波束向量个数相同的情况下,所述用户设备从长度为M×1的码书中选择所述最优波束信息并反馈;The beam information receiving unit receives the optimal beam information for the virtualization model of the transceiver unit sent by the user equipment; wherein, in the case that the number of beam vectors of each virtualization model of the transceiver unit is different, the user equipment for each transceiver unit The unit virtualization model respectively selects the optimal beam information and feeds it back; when the number of beam vectors of each transceiver unit virtualization model is the same, the user equipment selects the optimal beam information from the codebook with a length of M×1 Optimal beam information and feedback; 第一矩阵确定单元,针对所述收发单元虚拟化模型,根据所述最优波束信息选择一个或多个波束确定收发单元虚拟化加权矩阵WTXRUThe first matrix determination unit selects one or more beams according to the optimal beam information and determines a virtualization weight matrix W TXRU of the transceiver unit for the virtualization model of the transceiver unit. 6.根据权利要求5所述的选择装置,其中,所述选择装置还包括:6. The selection device according to claim 5, wherein the selection device further comprises: 第二矩阵确定单元,至少根据所述垂直方向的同一极化方向上M个天线粒子虚拟的天线端口数Vport以及所述收发单元虚拟化加权矩阵WTXRU,确定天线端口虚拟化矩阵WPThe second matrix determination unit determines the antenna port virtualization matrix W P at least according to the virtual antenna port number V port of the M antenna particles in the same vertical direction and the virtualization weighting matrix W TXRU of the transceiver unit. 7.根据权利要求6所述的选择装置,其中,所述第二矩阵确定单元用于:7. The selection device according to claim 6, wherein the second matrix determination unit is configured to: 对于第一收发单元虚拟化模型,For the virtualization model of the first transceiver unit, 通过Vport计算每个逻辑天线端口对应的收发单元数量和天线粒子数;以及根据WTXRU获得垂直方向电子下倾角信息,并获得相邻天线粒子的相位差θ;并且计算 Calculate the number of transceiver units and the number of antenna particles corresponding to each logical antenna port through V port ; and obtain the electronic downtilt angle information in the vertical direction according to W TXRU , and obtain the phase difference θ of adjacent antenna particles; and calculate or 由此得到 From this we get 对于第二收发单元虚拟化模型,For the second transceiver unit virtualization model, 根据信道信息H获取垂直方向的信道信息HV;以及根据所述HV和WTXRU进行分解计算获得中间矩阵,根据所述中间矩阵的前Vport列得到WPAcquiring channel information H V in the vertical direction according to the channel information H; and performing decomposition and calculation according to the H V and W TXRU to obtain an intermediate matrix, and obtaining W P according to the front V port column of the intermediate matrix; 对于第三收发单元虚拟化模型,For the virtualization model of the third transceiver unit, 对于L组中的每一组,根据信道信息H获取垂直方向的信道信息HV,并根据所述HV和WTXRU进行分解计算获得中间矩阵,根据所述中间矩阵的前Vport列得到该组的加权矩阵WP’;For each group in the L group, obtain the channel information H V in the vertical direction according to the channel information H, and decompose and calculate according to the H V and W TXRU to obtain an intermediate matrix, and obtain the intermediate matrix according to the first V port column of the intermediate matrix Group weighting matrix W P '; 由此得到 From this we get 对于第四收发单元虚拟化模型,For the virtualization model of the fourth transceiver unit, 选择Vport个收发单元作为Vport个逻辑天线端口;即Select V port transceiver units as V port logical antenna ports; ie WW PP == (( ee pp 11 .. .. .. .. .. .. ee pp VportVport )) .. 8.一种天线阵列的虚拟化模型选择方法,所述选择方法包括:8. A virtualization model selection method of antenna array, said selection method comprising: 基站确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;以及The base station determines user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same polarization direction in the vertical direction; and 根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。A virtualization model of the transceiver unit is selected according to the user scheduling type information and the number of virtual antenna ports of the plurality of antenna particles in the same polarization direction in the vertical direction. 9.根据权利要求8所述的选择方法,其中,所述选择方法还包括:9. The selection method according to claim 8, wherein the selection method further comprises: 确定信道和/或信号类型;以及determine the channel and/or signal type; and 根据所述信道和/或信号类型选择所述收发单元虚拟化模型。Selecting the virtualization model of the transceiver unit according to the channel and/or signal type. 10.一种通信系统,所述通信系统包括:10. A communication system, the communication system comprising: 基站,确定用户调度类型信息以及垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数;以及根据所述用户调度类型信息以及所述垂直方向的同一极化方向上多个天线粒子虚拟的天线端口数,选择收发单元虚拟化模型。The base station determines the user scheduling type information and the number of virtual antenna ports of multiple antenna particles in the same vertical direction; For the number of antenna ports, select the virtualization model of the transceiver unit.
CN201510084007.0A 2015-02-16 2015-02-16 Virtualization model selection method of antenna array, device and communication system Pending CN105991172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510084007.0A CN105991172A (en) 2015-02-16 2015-02-16 Virtualization model selection method of antenna array, device and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510084007.0A CN105991172A (en) 2015-02-16 2015-02-16 Virtualization model selection method of antenna array, device and communication system

Publications (1)

Publication Number Publication Date
CN105991172A true CN105991172A (en) 2016-10-05

Family

ID=57038208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510084007.0A Pending CN105991172A (en) 2015-02-16 2015-02-16 Virtualization model selection method of antenna array, device and communication system

Country Status (1)

Country Link
CN (1) CN105991172A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018090342A1 (en) * 2016-11-18 2018-05-24 华为技术有限公司 Antenna system, virtual antenna port mapping method and apparatus
CN108445305A (en) * 2018-03-13 2018-08-24 南京信息工程大学 A kind of mobile base station antenna electrical tilt angle detecting system and method
WO2019127216A1 (en) * 2017-12-28 2019-07-04 Nokia Shanghai Bell Co., Ltd. Method and apparatus for signal detection in a mimo communication system
WO2019200570A1 (en) * 2018-04-18 2019-10-24 上海诺基亚贝尔股份有限公司 Method and device for virtual port mapping for massive mimo
CN111837344A (en) * 2019-02-15 2020-10-27 Oppo广东移动通信有限公司 Method for determining configuration parameters, terminal equipment and network equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377467A (en) * 2010-08-23 2012-03-14 中国移动通信集团公司 Eight-antenna downlink control channel sending method and device
US20120140838A1 (en) * 2005-08-22 2012-06-07 Qualcomm Incorporated Method and apparatus for antenna diversity in multi-input multi-output communication systems
CN104025629A (en) * 2011-11-04 2014-09-03 英特尔公司 Transmission Point Indication In Coordinated Multi-Point System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120140838A1 (en) * 2005-08-22 2012-06-07 Qualcomm Incorporated Method and apparatus for antenna diversity in multi-input multi-output communication systems
CN102377467A (en) * 2010-08-23 2012-03-14 中国移动通信集团公司 Eight-antenna downlink control channel sending method and device
CN104025629A (en) * 2011-11-04 2014-09-03 英特尔公司 Transmission Point Indication In Coordinated Multi-Point System

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018090342A1 (en) * 2016-11-18 2018-05-24 华为技术有限公司 Antenna system, virtual antenna port mapping method and apparatus
WO2019127216A1 (en) * 2017-12-28 2019-07-04 Nokia Shanghai Bell Co., Ltd. Method and apparatus for signal detection in a mimo communication system
US11290171B2 (en) 2017-12-28 2022-03-29 Nokia Solutions And Networks Oy Method and apparatus for signal detection in a MIMO communication system
CN108445305A (en) * 2018-03-13 2018-08-24 南京信息工程大学 A kind of mobile base station antenna electrical tilt angle detecting system and method
WO2019200570A1 (en) * 2018-04-18 2019-10-24 上海诺基亚贝尔股份有限公司 Method and device for virtual port mapping for massive mimo
CN111903071A (en) * 2018-04-18 2020-11-06 上海诺基亚贝尔股份有限公司 Method and device for mapping virtual ports of large-scale MIMO (multiple input multiple output)
US11528062B2 (en) 2018-04-18 2022-12-13 Nokia Shanghai Bell Co., Ltd Method and device for virtual port mapping for massive MIMO
CN111837344A (en) * 2019-02-15 2020-10-27 Oppo广东移动通信有限公司 Method for determining configuration parameters, terminal equipment and network equipment
CN111837344B (en) * 2019-02-15 2022-01-11 Oppo广东移动通信有限公司 Method for determining configuration parameters, terminal equipment and network equipment

Similar Documents

Publication Publication Date Title
EP2737640B1 (en) Apparatus and method for combining baseband processing and radio frequency beam steering in a wireless communication system
CN102119494B (en) Multiple antennas is used to send the method and apparatus of uplink signal
US8483306B2 (en) Method and system for precoding and method for constructing precoding codebook
KR102277466B1 (en) Methods for linear rf beam search in millimeter wave communication system with hybrid beam-forming
US9001802B2 (en) Method and apparatus for transmitting uplink signals using multi-antenna
US9882615B2 (en) Method, system, and device for transmitting coding instruction information and for determining pre-coding matrix
KR102122465B1 (en) Apparatus and method for multiple antenna transmission with per-antenna power constraints
US10763931B2 (en) Communication device and a method for hybrid beamforming
CN112311431B (en) Indication method and device for space-frequency merging coefficient
CN107508774A (en) Channel Estimation Method for Millimeter-Wave MIMO Using Joint Channel Representation and Beam Design
WO2016065557A1 (en) Codebook determination method and apparatus, and communication system
KR101547421B1 (en) Method for hybrid beamforming on statistical channel informaion, and apparatuses performing the same
CN105991172A (en) Virtualization model selection method of antenna array, device and communication system
CN113287265A (en) Method for enabling analog precoding and analog combining
CN108075811A (en) For mixing the method for precoding and communication equipment
CN111865376B (en) Communication method and device
WO2016154923A1 (en) Method, device and communication system for obtaining beam information
CN110324070A (en) Communication means, communication device and system
WO2016183803A1 (en) Channel information feedback method and apparatus for array antenna
CN108123741B (en) Overlapping sub-array (OSA) based beamforming method and apparatus
CN103780291A (en) Method, device and base station by using three-dimensional beam codebooks to perform communication
CN106160805A (en) beam selection method, device and communication system
CN103887593B (en) Single-sheet radio frequency double-flow transmission device, use method and antenna system
EP3226438B1 (en) Directional beam based open-loop multi-thread transmitting method and base station
Cheng et al. Progressive channel estimation for ultra-low latency millimeter-wave communications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161005

WD01 Invention patent application deemed withdrawn after publication