CN105991167B - 低复杂度的毫米波mimo模拟波束赋形方法 - Google Patents

低复杂度的毫米波mimo模拟波束赋形方法 Download PDF

Info

Publication number
CN105991167B
CN105991167B CN201510050035.0A CN201510050035A CN105991167B CN 105991167 B CN105991167 B CN 105991167B CN 201510050035 A CN201510050035 A CN 201510050035A CN 105991167 B CN105991167 B CN 105991167B
Authority
CN
China
Prior art keywords
matrix
balanced
coding matrix
cost function
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510050035.0A
Other languages
English (en)
Other versions
CN105991167A (zh
Inventor
高昕宇
戴凌龙
王昭诚
陈晋辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201510050035.0A priority Critical patent/CN105991167B/zh
Publication of CN105991167A publication Critical patent/CN105991167A/zh
Application granted granted Critical
Publication of CN105991167B publication Critical patent/CN105991167B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radio Transmission System (AREA)

Abstract

本发明提供了一种低复杂度的毫米波MIMO模拟波束赋形方法,通过基站侧与用户侧的信令交互来搜索最优模拟预编码矩阵和均衡矩阵对,包括:S1.基站在预先设定的预编码码本中随机选取一初始预编码矩阵,并利用该预编码矩阵发送训练序列给用户;S2.用户利用接收到的训练序列搜索最优模拟均衡矩阵,并将最优模拟均衡矩阵发送给基站;S3.基站利用接收到的最优模拟均衡矩阵搜索最优模拟预编码矩阵,并利用该最优模拟预编码矩阵发送训练序列给用户;重复执行步骤S2至S3K次,所述K为预设的阈值。本发明解决了现有技术中毫米波MIMO模拟波束赋形方法复杂度高的问题。

Description

低复杂度的毫米波MIMO模拟波束赋形方法
技术领域
本发明涉及光电子技术和光纤通信技术领域,具体涉及一种低复杂度的毫米波MIMO模拟波束赋形方法。
背景技术
下一代无线通信标准5G的主要技术挑战就是如何大幅提高无线资源的频谱效率来满足日益增加的容量需求。解决这一技术难题的可行技术路线主要有三条:1)扩展频谱,即采用更宽的通信频带以提供更大的信道容量;2)缩小蜂窝,即减小蜂窝的面积以提高蜂窝内用户的数据率;3)提高频谱效率,比如采用更多天线,特别是在基站端使用大量天线,通过引入更多额外的空间自由度来提高系统的频谱效率。而毫米波与大规模多输入多输出(multi-input multi-output,MIMO)技术的结合,则可非常巧妙地将上述三条技术路线结合到一起。毫米波大规模MIMO技术因其宽频带,高谱效的特点,被认为是下一代无线通信标准5G的关键技术之一。一方面,毫米波短波长高频率的特点,使得大规模MIMO技术中的较大规模的天线阵列可以被装备到很小尺寸的设备上。另一方面,大规模MIMO技术可以利用波束赋形(包括预编码与均衡),将信号集中在某一特定的方向上,以此提供足够的天线增益来弥补毫米波频段严重的路损(比如雨衰或氧吸收)。
不同于传统MIMO系统中的数字域波束赋形技术,毫米波大规模MIMO系统通常采用模拟域的波束赋形技术,其发射信号或接受信号是由模拟域的相移网络所控制的。数字域波束赋形技术要求每一根发射或接收天线都有一个对应的射频链路来支持,而模拟域波束赋形则可以实现一个射频链路支持多根天线。因此,模拟域的波束赋形可以显著地降低用户端与基站端所需要的射频链路数量,相比于数字域波束赋形技术具有更低的功耗与硬件复杂度。然而,如何设计具有准最优性能且复杂度低的模拟域波束赋形方案仍然是一个极具挑战的问题。
文献(参考J.Brady,N.Behdad,and A.M.Sayeed,“Beamspace MIMO formillimeter-wave communications:System architecture,modeling,analysis,andmeasurements,”IEEE Trans.Ant.and Propag.,vol.61,no.7,pp.3814–3827,Jul.2013)中,提出了一种基于离散傅里叶变换的波束赋形方案,这种方案可以近似最大化接收到的信噪比(signal-to-noise ratio,SNR)。文献(参考O.El Ayach,R.Heath,S.Abu-Surra,S.Rajagopal,and Z.Pi,“The capacity optimality of beam steering in largemillimeter wave MIMO systems,”in Proc.Signal Processing Advances in WirelessCommunications(SPAWC’13)Workshops,2013,pp.100–104)中提出了一种利用基站端与用户端天线增益向量设计的波束赋形方案,这种方案在基站端与用户端天线数较大时,可以获得准最优的性能,且具有很低的复杂度。
然而上述的几种方案都假设基站端发射信号的发射角(angles of departure,AoDs)与用户端接收信号的到达角(angles of arrival,AoAs)是连续的。对于实际的系统来说,模拟域的相移网络往往是由数字信号控制的,因此这种假设是难以在现实中成立的。
对于更为实际的具有量化的AoA/AoDs的毫米波大规模MIMO系统,基于码本的波束赋形方案,比如波束牵引码本(参考T.Kim,J.Park,J.-Y.Seol,S.Jeong,J.Cho,and W.Roh,“Tens of Gbps support with mmwave beamforming systems for next generationcommunications,”in Proc.IEEE Global Communications Conference(GLOBECOM’13),Dec.2013,pp.3685–3690),则更具吸引力。
然而码本法所面临的一个问题就是如何从预定好的码本中搜索最优的预编码矩阵与均衡矩阵对。
针对这一问题,最直观的方法是对码本中所有可能的预编码矩阵与均衡矩阵对进行穷搜。这种方法可以确保获得最优的预编码矩阵与均衡矩阵,然而其复杂度却随着AoA/AoDs量化比特数与射频链路数量的增加,呈指数上升,因此,很难在实际系统中应用。
为了降低穷搜方法的复杂度,文献(参考S.Hur,T.Kim,D.Love,J.Krogmeier,T.Thomas,and A.Ghosh,“Millimeter wave beamforming for wireless backhaul andaccess in small cell networks,”IEEE Trans.Commun.,vol.61,no.10,pp.4391–4403,Oct.2013)中提出了一种乒乓式的搜索方法,这种方法可以从一定程度上降低穷搜的复杂度,同时还能保证搜索到最优的预编码矩阵与均衡矩阵对。然而当AoA/AoDs量化比特数较高时,其复杂度仍然较高。
发明内容
针对现有技术中的缺陷,本发明提供一种低复杂度的毫米波MIMO模拟波束赋形方法,解决了现有技术中毫米波MIMO模拟波束赋形方法复杂度高的问题。
本发明提供一种低复杂度的毫米波MIMO模拟波束赋形方法,通过基站侧与用户侧的信令交互来搜索最优模拟预编码矩阵和均衡矩阵对,包括:
S1.基站在预先设定的预编码码本中随机选取一初始预编码矩阵,并利用该预编码矩阵发送训练序列给用户;
S2.用户利用接收到的训练序列搜索最优模拟均衡矩阵,并将最优模拟均衡矩阵发送给基站;
S3.基站利用接收到的最优模拟均衡矩阵搜索最优模拟预编码矩阵,并利用该最优模拟预编码矩阵发送训练序列给用户;
重复执行步骤S2至S3K次,所述K为预设的阈值。
其中,所述S2中的搜索过程由基于禁忌搜索的模拟均衡方案实现,包括:
A1.在预先设定的均衡码本中随机选取一个均衡矩阵作为下一次迭代的起始点;
A2.确定该起始点的邻域;
A3.计算邻域中每一个均衡矩阵的代价函数,并对这些矩阵按照代价函数的降序排列;
A4.依次检查排序后的邻域中的均衡矩阵,根据其代价函数与禁忌列表,选择下一次迭代的起始点;
A5.重复A2至A4,直到满足预先设定的停止准则,输出具有最高代价函数值的均衡矩阵。
其中,所述A2中的邻域为起始点的所有相邻均衡矩阵所构成的集合,其中,所述相邻均衡矩阵为均衡码本中一个可能的矩阵,须满足:1)它仅有一列与起始点不同;2)两个矩阵不同的列序号仅相差一个预设常数。
其中,所述A3中的代价函数由下式计算:
其中PA与CA分别表示模拟预编码矩阵与模拟均衡矩阵,H表示信道矩阵,ρ表示平均接收能量,Ns表示待传输的并行数据流数,为Ns×Ns的单位矩阵,为均衡后的噪声协方差矩阵。
其中,所述A4中的禁忌列表为一个向量或矩阵T,T中的每一个元素对应均衡码本中一个可能的模拟均衡矩阵,其取值只有两种情况,一种表示该模拟均衡矩阵不是禁忌,另一种则表示该模拟均衡矩阵是禁忌,不能出现在后续的迭代过程中。
其中,所述A5中停止准则为总的迭代次数达到了预先设定的最大迭代次数max_iter,或经过max_len次迭代,全局最优的模拟均衡矩阵仍未被更新。
其中,所述S3中的搜索过程由基于禁忌搜索的模拟预编码方案实现,包括:
B1.在预先设定的预编码码本中随机选初始预编码矩阵作为下一次迭代的起始点;
B2.确定该起始点的邻域;
B3.计算邻域中每一个预编码矩阵的代价函数,并对这些矩阵按照代价函数的降序排列;
B4.依次检查排序后的邻域中的预编码矩阵,根据其代价函数与禁忌列表,选择下一次迭代的起始点;
B5.重复B2至B4,直到满足预先设定的停止准则,输出具有最高代价函数值的预编码矩阵。
其中,所述B2中的邻域为起始点的所有相邻预编码矩阵所构成的集合,其中,相邻预编码矩阵定义为预编码码本中一个可能的矩阵,满足:1)它仅有一列与起始点不同;2)两个矩阵不同的列序号仅相差一固定常数。
其中,所述B3中的代价函数由下式计算:
其中PA与CA分别表示模拟预编码矩阵与模拟均衡矩阵,H表示信道矩阵,ρ表示平均接收能量,Ns表示待传输的并行数据流数,为Ns×Ns的单位矩阵,为均衡后的噪声协方差矩阵。
其中,所述B4中的禁忌列表为一个向量或矩阵T,T中的每一个元素对应预编码码本中一个可能的模拟预编码矩阵,其取值只有两种情况,一种表示该预编码矩阵不是禁忌,另一种则表示该预编码矩阵是禁忌,不能出现在后续的迭代过程中。
其中,所述B4中根据其代价函数与禁忌列表,选择下一次迭代的起始点包括:
所述邻域中的预编码矩阵为在目前为止的整个迭代过程中具有最高的代价函数值;且该矩阵在禁忌列表中不是禁忌。
其中,所述B5中停止准则为总的迭代次数达到了预先设定的最大迭代次数max_iter,或经过max_len次迭代,全局最优的预编码矩阵仍未被更新。
上述技术方案可知,本发明的低复杂度的毫米波MIMO模拟波束赋形方法,采用了基于禁忌搜索的模拟预编码/均衡方案,通过利用邻域搜索的概念,能够将传统的穷搜方案的复杂度减低将近100倍,从而能在系统容量性能与复杂度之间获得更优的折中。本发明提供的低复杂度的基于禁忌搜索的模拟预编码和基于禁忌搜索的模拟均衡的联合搜索方案,通过基站端与用户端几次简单的信令交互,可以迅速快速地在码本中搜索到最优的预编码矩阵与均衡矩阵对,从而以低复杂度获得令人满意的性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例一提供的一种低复杂度的毫米波MIMO模拟波束赋形方法的流程图;
图2是基于禁忌搜索的预编码示意图;
图3a是传统移动禁忌的示意图;
图3b是本发明实施例提供的预编码矩阵禁忌的示意图;
图4是联合搜索方法的流程示意图;
图5是穷搜方案与本发明实施例所述方法可达容量的仿真结果示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有的毫米波大规模MIMO技术中的模拟域波束赋形方案,因其假设理想或复杂度较高等原因,往往难以适应当前的技术条件。因此,在实际的应用中,具有准最优性能且复杂度低的模拟域波束赋形方案仍然是实现毫米波大规模MIMO诸多优良特性所面临的重大挑战之一。为达到上述目的,本发明提供一种低复杂度的毫米波大规模MIMO的模拟波束赋形方案。该方案利用基站与用户间的信令交互联合搜索最优的模拟预编码矩阵与模拟均衡矩阵对。
图1示出了本发明实施例一提供的一种低复杂度的毫米波MIMO模拟波束赋形方法的流程图。参见图1,本发明实施例一提供了一种低复杂度的毫米波MIMO模拟波束赋形方法,通过基站侧与用户侧的信令交互来搜索最优模拟预编码矩阵和均衡矩阵对,包括:
步骤101:基站在预先设定的预编码码本中随机选取一初始预编码矩阵,并利用该预编码矩阵发送训练序列给用户。
步骤102:用户利用接收到的训练序列搜索最优模拟均衡矩阵,并将最优模拟均衡矩阵发送给基站。
步骤103:基站利用接收到的最优模拟均衡矩阵搜索最优模拟预编码矩阵,并利用该最优模拟预编码矩阵发送训练序列给用户。
重复执行步骤102至103K次,所述K为预设的阈值。一般地,所述K的取值为3~5。
其中,所述步骤102中的搜索过程由基于禁忌搜索的模拟均衡方案实现,包括:
A1.在预先设定的均衡码本中随机选取一个均衡矩阵作为下一次迭代的起始点;
A2.确定该起始点的邻域;
A3.计算邻域中每一个均衡矩阵的代价函数,并对这些矩阵按照代价函数的降序排列;
A4.依次检查排序后的邻域中的均衡矩阵,根据其代价函数与禁忌列表,选择下一次迭代的起始点;
A5.重复A2至A4,直到满足预先设定的停止准则,输出具有最高代价函数值的均衡矩阵。
图2示出了基于禁忌搜索的预编码示意图。所述步骤103中的搜索过程由基于禁忌搜索的模拟预编码方案实现,包括:
B1.在预先设定的预编码码本中随机选初始预编码矩阵作为下一次迭代的起始点;
B2.确定该起始点的邻域;
B3.计算邻域中每一个预编码矩阵的代价函数,并对这些矩阵按照代价函数的降序排列;
B4.依次检查排序后的邻域中的预编码矩阵,根据其代价函数与禁忌列表,选择下一次迭代的起始点;
B5.重复B2至B4,直到满足预先设定的停止准则,输出具有最高代价函数值的预编码矩阵。
这里,分别表示模拟预编码码本与模拟均衡码本,如果用分别表示发射角AoDs与到达角AoAs的量化比特数,则中所有可能的模拟预编码矩阵与中所有可能的模拟均衡矩阵可以分别表示为:
其中
分别表示量化的发射角AoDs与到 达角AoAs。通过联合搜索与,可以获得最大化系统容量的最优模拟预编码矩阵与模 拟均衡矩阵对,如下:
其中表示均衡后的噪声协方差矩阵,
上述为代价函数。
其中,所述步骤A2中的邻域为起始点的所有相邻均衡矩阵所构成的集合,其中,相邻均衡矩阵定义为均衡码本中一个可能的矩阵,满足:1)它仅有一列与起始点不同;2)两个矩阵不同的列序号仅相差一个预设常数。
注意模拟预编码矩阵PA的第m列可以用一个序号表示,对应着向 量定义PA的相邻矩阵满足以下两个条件:1)它仅有一列与起始点不同;2)两个 矩阵不同的列序号仅相差一固定常数,比如相差1。当时,给定一个可能 的模拟预编码矩阵则矩阵就是PA的一个相邻矩 阵,所有相邻矩阵构成PA的邻域。
表示第i次迭代的起始点,表示的邻域,其中|V|表示邻域大小,根据相邻矩阵的定义,可知定义中第u个相邻矩阵与在第列不同,且该列的序号为其中列的序号。为了避免序号溢出,令
1+(-1)mod(u,2)=max(1+(-1)mod(u,2),1);
比如,的邻域为
其中,所述A3中的代价函数由下式计算:
其中,PA与CA分别表示模拟预编码矩阵与模拟均衡矩阵,H表示信道矩阵,ρ表示平均接收能量,Ns表示待传输的并行数据流数,为Ns×Ns的单位矩阵,为均衡后的噪声协方差矩阵。
其中,所述步骤A4中的禁忌列表为一个向量或矩阵T,T中的每一个元素对应均衡码本中一个可能的模拟均衡矩阵,其取值只有两种情况,一种表示该模拟均衡矩阵不是禁忌,另一种则表示该模拟均衡矩阵是禁忌,不能出现在后续的迭代过程中。
在传统的禁忌搜索算法中,禁忌往往定义为移动,其可视为一个预编码矩阵向另一个预编码矩阵的移动方向。对于本发明所考虑的问题来说,移动可以用两个参数(a,b)表示,其中表示两个预编码矩阵的第a列是不同的,b={-1,1}表示从原始预编码矩阵到当前预编码矩阵该列序号的改变量。考虑上面的例子,从的移动可以表示为(1,-1)。将移动当作禁忌可以节省禁忌列表的存储量,因为它仅需要一个大小为的禁忌列表T。然而,这种方法可能导致一个预编码矩阵被搜索多次,如图3a所示。为了解决这一问题,本发明提出以具体的预编码矩阵作为禁忌。令表示中每一个预编码矩阵的序号。注意,p可由该预编码矩阵的列序号表示
可以看出,本发明实施例所述的方法可以有效避免一个预编码矩阵被重复搜索多次,如图3b所示。而本发明实施例所述的方法的代价是禁忌列表T存储量的上升,即从上升到
其中,所述步骤A5中停止准则为总的迭代次数达到了预先设定的最大迭代次数max_iter,或经过max_len次迭代,全局最优的模拟均衡矩阵仍未被更新。其中,max_len指算法所能允许的,全局最优解未被更新的迭代次数。
定义参数flag表示具有全局最优代价函数值的预编码矩阵有多少次迭代没有被更新。如果在本次迭代,所选取的起始点具有次优的代价函数值,则flag=flag+1。反之,若选取的起始点具有全局最优的代价函数值,则flag=0。定义停止准则为以下两个条件中的任意一个被满足:1)flag=max_len;2)总迭代次数达到预先设定的上限max_iter。注意,通常令max_len<max_iter,这也就意味着如果在迭代初始的时候已经搜索到最优的预编码矩阵,则之后的迭代过程中搜索到的就都是次优的预编码矩阵,于是就不用等待max_iter次迭代。通过这种方式,平均的迭代次数会降低。
其中,所述步骤B2中的邻域为起始点的所有相邻预编码矩阵所构成的集合,其中,相邻预编码矩阵定义为预编码码本中一个可能的矩阵,满足:1)它仅有一列与起始点不同;2)两个矩阵不同的列序号仅相差一固定常数。
其中,所述步骤B3中的代价函数由下式计算:
其中,PA与CA分别表示模拟预编码矩阵与模拟均衡矩阵,H表示信道矩阵,ρ表示平均接收能量,Ns表示待传输的并行数据流数,为Ns×Ns的单位矩阵,为均衡后的噪声协方差矩阵,表示模拟均衡矩阵CA的共轭转置矩阵。
对于上述步骤101~103的处理过程,具体而言,基站利用PA(PA表示模拟预编码矩阵)发射一个已知的训练序列s给用户,用户随机选取一均衡器CA(CA表示模拟均衡矩阵)接收,可以获得(H表示信道矩阵,表示模拟均衡矩阵CA的共轭转置矩阵),之后就可以计算该(PA,CA)对下的代价函数。在后续的搜索过程中,CA邻域所对应的代价函数可以由上述代价函数进行简单运算获得,使得算法一直进行下去。
其中,所述步骤B4中的禁忌列表为一个向量或矩阵T,T中的每一个元素对应预编码码本中一个可能的模拟预编码矩阵,其取值只有两种情况,一种表示该预编码矩阵不是禁忌,另一种则表示该预编码矩阵是禁忌,不能出现在后续的迭代过程中。
其中,所述步骤B4中根据其代价函数与禁忌列表,选择下一次迭代的起始点包括:
所述邻域中的预编码矩阵为在目前为止的整个迭代过程中具有最高的代价函数值;且该矩阵在禁忌列表中不是禁忌。
其中,所述步骤B5中停止准则为总的迭代次数达到了预先设定的最大迭代次数max_iter,或经过max_len次迭代,全局最优的预编码矩阵仍未被更新。
下面给出一个基于禁忌搜索的模拟预编码方案的搜索算实例。
令G(i)表示直到第i次迭代所发现的具有全局最优代价函数值的模拟预编码矩阵。随机在预编码码本中选取一预编码矩阵作为第一次迭代的起始点。令flag=0,禁忌列表T的所有元素设为0。考虑第i次迭代,算法按如下方式执行:
步骤201:计算的所有个相邻矩阵的代价函数(注意模拟均衡矩阵CA给定)。令
计算V1的序号p1。如果V1满足如下两个条件中的任意一个,则V1被选为下一次迭代的起始点:
t(p1)=0;
如果上述两个条件V1均不满足,则寻找下一个相邻矩阵
并考察V2是否满足上述两个条件。重复上述过程直到V1被选为下一次迭代的起始点。注意如果邻域中没有满足上述两个条件的矩阵,则将禁忌列表T的所有元素置为0,重新寻找。
步骤202:当某一个相邻矩阵被选为下一次迭代的起始点后,即
之后,如果满足停止准则,则算法停止,输出G(i+1)作为最优的预编码矩阵,否则,回到步骤201重复上述步骤,直至满足停止准则。
其中,基于禁忌搜索的均衡算法也可以用相同的步骤实现,只不过需要将模拟预编码矩阵PA与模拟均衡矩阵CA的位置互换,这里不再详述。
本发明实施例所述的搜索方法为一种联合搜索方案,图4给出了联合搜索方案的流程图。令分别表示第k次(k=1,2,…,K)搜索得到的最优模拟预编码矩阵与最优模拟均衡矩阵,其中K表示总搜索次数。首先,基站端从预编码码本中随机选择一个预编码矩阵之后基站利用向用户发射训练序列。用户端通过接收到的信息,利用上述基于禁忌搜索的均衡算法来获得最优的模拟均衡矩阵之后用户将该均衡矩阵序号反馈给基站,基站通过接收到的信息,利用上述基于禁忌搜索的预编码算法来获得最优的模拟预编码矩阵称上述过程为一次搜索,总共进行K次搜索,并将最终结果作为最优的模拟预编码矩阵与模拟均衡矩阵对输出。
对于本实施例所述的联合搜索方法给出如下性能仿真结果:
毫米波大规模MIMO系统参数描述如下:载波频率为28GHz,基站发射天线数Nt=64,射频链路数用户接收天线数Nr=16,射频链路数传输的并行数据流数Ns=2。考虑两种AoA/AoDs的量化比特数,即基站端与用户端均采用均匀直线分布天线阵列,相邻天线间隔为半波长。信道模型采用毫米波中广泛应用的Saleh-Valenzuela模型,其中AoA/AoDs均假设在[0,2π]内均匀分布,信道复增益假设为瑞利衰落,总的散射路径为10。
算法参数描述如下:对于的情况,令max_iter=1000,max_len=200;对于的情况,令max_=iter,max_len=600。此外,对于上述两种情况,均令联合搜索次数K=3。
基于上述参数,表1给出了两种情况时,本发明实施例所述的方法与穷搜方案的复杂度对比。从表1中可以看出本发明实施例所述的方法的复杂度远远小于穷搜方案的复杂度。比如时,本发明实施例所述的方法的复杂度仅为穷搜方案的0.43%。
表1复杂度对比
图5给出了两种情况时,本发明的可达容量。可以看出与穷搜方案相比,本发明几乎没有性能损失。比如当SNR=0dB时,本发明可以获得9.5bits/Hz的频谱效率,非常接近于穷搜方案所获得的9.8bits/Hz的频谱效率。当AoA/AoDs的量化比特数增大时,无论穷搜方案还是本发明,均有性能提升,而此时,本发明实施例所述的方法与穷搜方案的性能差距仍然很小。比如当SNR=0dB时,本发明实施例所述的方法所达到的频率效率是穷搜方案的93%。更重要的是,本发明实施例所述的方法具有极低的复杂度,如表1所示,因此本发明实施例所述的方法将因为能在性能与复杂度之间取得更优折中而更有利于在实际系统中实现。
从上面描述可知,本发明实施例提供了一种低复杂度的毫米波MIMO模拟波束赋形方法,其采用了基于禁忌搜索的模拟预编码/均衡方案,通过利用邻域搜索的概念,能够将传统的穷搜方案的复杂度减低将近100倍,从而能在系统容量性能与复杂度之间获得更优的折中。本发明实施例提供的低复杂度的联合搜索方案,通过基站端与用户端几次简单的信令交互,可以迅速快速地在码本中搜索到最优的预编码矩阵与均衡矩阵对,从而以低复杂度获得令人满意的性能。
以上实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种低复杂度的毫米波MIMO模拟波束赋形方法,其特征在于,通过基站侧与用户侧的信令交互来搜索最优模拟预编码矩阵和均衡矩阵对,包括:
S1.基站在预先设定的预编码码本中随机选取一初始预编码矩阵,并利用该预编码矩阵发送训练序列给用户;
S2.用户利用接收到的训练序列搜索最优模拟均衡矩阵,并将最优模拟均衡矩阵发送给基站;
S3.基站利用接收到的最优模拟均衡矩阵搜索最优模拟预编码矩阵,并利用该最优模拟预编码矩阵发送训练序列给用户;
重复执行步骤S2至S3 K次,所述K为预设的阈值;
其中,所述S2中的搜索过程由基于禁忌搜索的模拟均衡方案实现,包括:
A1.在预先设定的均衡码本中随机选取一个均衡矩阵作为下一次迭代的起始点;
A2.确定该起始点的邻域;
A3.计算邻域中每一个均衡矩阵的代价函数,并对这些矩阵按照代价函数的降序排列;
A4.依次检查排序后的邻域中的均衡矩阵,根据其代价函数与禁忌列表,选择下一次迭代的起始点;
A5.重复A2至A4,直到满足预先设定的停止准则,输出具有最高代价函数值的均衡矩阵;
其中,所述S3中的搜索过程由基于禁忌搜索的模拟预编码方案实现,包括:
B1.在预先设定的预编码码本中随机选初始预编码矩阵作为下一次迭代的起始点;
B2.确定该起始点的邻域;
B3.计算邻域中每一个预编码矩阵的代价函数,并对这些矩阵按照代价函数的降序排列;
B4.依次检查排序后的邻域中的预编码矩阵,根据其代价函数与禁忌列表,选择下一次迭代的起始点;
B5.重复B2至B4,直到满足预先设定的停止准则,输出具有最高代价函数值的预编码矩阵。
2.根据权利要求1所述的方法,其特征在于,所述A2中的邻域为起始点的所有相邻均衡矩阵所构成的集合,其中,所述相邻均衡矩阵为均衡码本中一个可能的矩阵,须满足:1)它仅有一列与起始点不同;2)两个矩阵不同的列序号仅相差一个预设常数。
3.根据权利要求1所述的方法,其特征在于,所述A3中的代价函数由下式计算:
其中PA与CA分别表示模拟预编码矩阵与模拟均衡矩阵,H表示信道矩阵,ρ表示平均接收能量,Ns表示待传输的并行数据流数,为Ns×Ns的单位矩阵,为均衡后的噪声协方差矩阵。
4.根据权利要求1所述的方法,其特征在于,所述A4中的禁忌列表为一个向量或矩阵T,T中的每一个元素对应均衡码本中一个可能的模拟均衡矩阵,其取值只有两种情况,一种表示该模拟均衡矩阵不是禁忌,另一种则表示该模拟均衡矩阵是禁忌,不能出现在后续的迭代过程中。
5.根据权利要求1所述的方法,其特征在于,所述A5中停止准则为总的迭代次数达到了预先设定的最大迭代次数max_iter,
或经过max_len次迭代,全局最优的模拟均衡矩阵仍未被更新。
6.根据权利要求1所述的方法,其特征在于,所述B2中的邻域为起始点的所有相邻预编码矩阵所构成的集合,其中,相邻预编码矩阵定义为预编码码本中一个可能的矩阵,满足:1)它仅有一列与起始点不同;2)两个矩阵不同的列序号仅相差一固定常数。
7.根据权利要求1所述的方法,其特征在于,所述B3中的代价函数由下式计算:
其中PA与CA分别表示模拟预编码矩阵与模拟均衡矩阵,H表示信道矩阵,ρ表示平均接收能量,Ns表示待传输的并行数据流数,为Ns×Ns的单位矩阵,为均衡后的噪声协方差矩阵。
8.根据权利要求1所述的方法,其特征在于,所述B4中的禁忌列表为一个向量或矩阵T,T中的每一个元素对应预编码码本中一个可能的模拟预编码矩阵,其取值只有两种情况,一种表示该预编码矩阵不是禁忌,另一种则表示该预编码矩阵是禁忌,不能出现在后续的迭代过程中。
9.根据权利要求1所述的方法,其特征在于,所述B4中根据其代价函数与禁忌列表,选择下一次迭代的起始点包括:
所述邻域中的预编码矩阵为在目前为止的整个迭代过程中具有最高的代价函数值;且该矩阵在禁忌列表中不是禁忌。
10.根据权利要求1所述的方法,其特征在于,所述B5中停止准则为总的迭代次数达到了预先设定的最大迭代次数max_iter,
或经过max_len次迭代,全局最优的预编码矩阵仍未被更新。
CN201510050035.0A 2015-01-30 2015-01-30 低复杂度的毫米波mimo模拟波束赋形方法 Expired - Fee Related CN105991167B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510050035.0A CN105991167B (zh) 2015-01-30 2015-01-30 低复杂度的毫米波mimo模拟波束赋形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510050035.0A CN105991167B (zh) 2015-01-30 2015-01-30 低复杂度的毫米波mimo模拟波束赋形方法

Publications (2)

Publication Number Publication Date
CN105991167A CN105991167A (zh) 2016-10-05
CN105991167B true CN105991167B (zh) 2019-04-05

Family

ID=57035457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510050035.0A Expired - Fee Related CN105991167B (zh) 2015-01-30 2015-01-30 低复杂度的毫米波mimo模拟波束赋形方法

Country Status (1)

Country Link
CN (1) CN105991167B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106792872B (zh) * 2016-11-15 2020-05-01 电子科技大学 一种用于超密集网络的低复杂度检测方法
CN106850025A (zh) * 2016-12-21 2017-06-13 中国科学院上海微系统与信息技术研究所 一种毫米波通信链路低复杂度混合波束赋形方法及装置
CN107566017B (zh) * 2017-10-24 2020-04-17 电子科技大学 用于毫米波mimo系统的预编码方法
CN109547071B (zh) * 2018-11-15 2020-09-29 北京大学 一种单小区mu-miso混合预编码系统及其模拟波束选择方法
CN110071747B (zh) * 2019-03-19 2021-11-23 江苏大学 一种大规模mimo系统上行链路低复杂度量化比特选择方法
CN110572194B (zh) * 2019-10-12 2021-08-24 东南大学 一种基于量子禁忌搜索算法的波束赋形码本搜索方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931110A (zh) * 2011-08-31 2014-07-16 三星电子株式会社 具有每个天线的功率约束的多天线发送
CN104303477A (zh) * 2012-05-10 2015-01-21 三星电子株式会社 使用模拟和数字混合波束成形的通信方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7916081B2 (en) * 2007-12-19 2011-03-29 Qualcomm Incorporated Beamforming in MIMO systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931110A (zh) * 2011-08-31 2014-07-16 三星电子株式会社 具有每个天线的功率约束的多天线发送
CN104303477A (zh) * 2012-05-10 2015-01-21 三星电子株式会社 使用模拟和数字混合波束成形的通信方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Millimeter Wave Beamforming for Wireless Backhaul and Access in Small Cell Networks";Sooyoung Hur,Taejoon Kim;《IEEE》;20130916;全文 *

Also Published As

Publication number Publication date
CN105991167A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
CN105991167B (zh) 低复杂度的毫米波mimo模拟波束赋形方法
CN101669298B (zh) 预处理多输入通信系统待传输的数据的方法和设备
CN105210306B (zh) 无线通信系统中用于选择发送和接收波束的设备和方法
KR102277466B1 (ko) 하이브리드 빔포밍을 이용하는 밀리미터파 통신 시스템에서의 선형 rf 빔 탐색을 위한 방법
KR101859821B1 (ko) 밀리미터파 하향링크 채널에서 디지털-아날로그 하이브리드 빔포밍 방법 및 시스템
CN105429686B (zh) 分离型非对称混合波束成型的传输装置及方法
CN109104225A (zh) 一种能效最优的大规模mimo波束域多播传输方法
CN104322025A (zh) 增强在分散式输入分散式输出的无线系统中的空间分集的系统及方法
EP3427400A2 (en) Beamforming device and method, communication device and communication system
CN107634787A (zh) 一种大规模mimo毫米波信道估计的方法
CN110011712B (zh) 一种面向毫米波大规模多输入多输出的混合预编码方法
CN106793108B (zh) Mimo系统下行链路中联合用户选择和功率分配优化方法
Gao et al. Antenna selection in massive MIMO systems: Full-array selection or subarray selection?
KR102159576B1 (ko) 핑거프린트 기반의 빔 간섭 제거 시스템 및 방법
CN108566236B (zh) 用户终端、基站以及混合波束成形传输方法和系统
Dong et al. Improved joint antenna selection and user scheduling for massive MIMO systems
CN109120316A (zh) 一种基于最大化最小相位差值的混合波束成形方法
CN106211338B (zh) 一种利用空域位置特性的用户调度方法
CN107171705B (zh) 数模混合通信中的联合模拟波束及用户调度方法
Zhang et al. A codebook based simultaneous beam training for mmwave multi-user MIMO systems with split structures
CN112398513A (zh) 一种massive MIMO系统的波束赋形方法
CN112312569A (zh) 一种基于透镜阵列的预编码和波束选择矩阵联合设计方法
CN108683441B (zh) 混合预编码中的多用户波束赋形方法
CN102104406B (zh) 波束赋形和多输入多输出波束赋形的切换方法和系统
Chen et al. Multi‐beam receive scheme for millimetre wave wireless communication system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190405

CF01 Termination of patent right due to non-payment of annual fee