CN105989163A - Data real-time processing method and system - Google Patents
Data real-time processing method and system Download PDFInfo
- Publication number
- CN105989163A CN105989163A CN201510095976.6A CN201510095976A CN105989163A CN 105989163 A CN105989163 A CN 105989163A CN 201510095976 A CN201510095976 A CN 201510095976A CN 105989163 A CN105989163 A CN 105989163A
- Authority
- CN
- China
- Prior art keywords
- data
- processing
- real
- time
- real time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003672 processing method Methods 0.000 title claims description 11
- 238000012545 processing Methods 0.000 claims abstract description 245
- 238000000034 method Methods 0.000 claims abstract description 84
- 230000015654 memory Effects 0.000 claims abstract description 52
- 230000008859 change Effects 0.000 claims abstract description 35
- 230000008569 process Effects 0.000 claims description 45
- 238000012544 monitoring process Methods 0.000 claims description 26
- 230000006978 adaptation Effects 0.000 claims description 16
- 230000002776 aggregation Effects 0.000 claims description 10
- 238000004220 aggregation Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims 3
- 238000011068 loading method Methods 0.000 abstract description 21
- 238000004140 cleaning Methods 0.000 description 24
- 230000010076 replication Effects 0.000 description 12
- 238000010223 real-time analysis Methods 0.000 description 11
- 238000007726 management method Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 230000005856 abnormality Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000007405 data analysis Methods 0.000 description 4
- 238000013500 data storage Methods 0.000 description 4
- 230000010365 information processing Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005111 flow chemistry technique Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明公开了一种数据实时处理方法及系统,所述方法应用于数据实时处理系统中,所述方法包括:获取源系统数据变化信息;按照第一预设处理策略实时对所述数据变化信息进行第一数据处理,形成处理后第一数据;将所述第一数据装载到内存数据库;基于数据处理需求,按照第二预设处理策略实时对所述内存数据库中的第一数据进行第二数据处理,获得数据处理结果。
The invention discloses a method and system for real-time data processing. The method is applied to a real-time data processing system. The method includes: acquiring source system data change information; and real-time processing the data change information according to a first preset processing strategy Performing the first data processing to form the processed first data; loading the first data into the memory database; based on the data processing requirements, performing the second processing on the first data in the memory database in real time according to the second preset processing strategy Data processing, to obtain data processing results.
Description
技术领域technical field
本发明涉及信息处理领域的信息处理技术,尤其涉及一种数据实时处理方法及系统。The invention relates to information processing technology in the field of information processing, in particular to a method and system for real-time data processing.
背景技术Background technique
随着社会信息化的发展,数据(具体如对业务经营数据)价值与日俱增,对运营信息分析的及时性要求也不断提升,要求能通过实时监控业务受理的数据,达到实时分析和实时决策的目的。With the development of social informatization, the value of data (specifically, business operation data) is increasing day by day, and the timeliness requirements for operational information analysis are also increasing. It is required to achieve real-time analysis and real-time decision-making through real-time monitoring of business acceptance data. .
现有的数据分析一般包括两种:Existing data analysis generally includes two types:
第一种:原有业务系统上直接进行统计分析,可能会占用业务系统大量的资源,进而导致对业务系统正常运营造成极大影响,分析及时性也难以保证。The first method: performing statistical analysis directly on the original business system may occupy a large amount of resources of the business system, which in turn will cause a great impact on the normal operation of the business system, and it is difficult to guarantee the timeliness of analysis.
第二种:建设数据仓库系统用于分析;往往在业务系统闲时从数据库表中按日、按月抽取数据,存放在数据库中,能进行复杂的分析,但是这种基于独立运行的数据库进行的数据处理,实时性不足,导致问题发现有不同程度的滞后性。The second type: build a data warehouse system for analysis; often when the business system is idle, data is extracted from the database table on a daily or monthly basis, stored in the database, and complex analysis can be performed, but this method is based on an independently running database. The lack of real-time performance of data processing leads to varying degrees of lag in problem discovery.
目前业界已有一些适用于数据同步方法,但现有业界的数据同步方法基本只能满足将业务系统上的数据同步到另一个系统,无法支持复杂的数据运算,导致无法做到对业务受理数据实时分析,发现问题进行相应决策时同样出现时延性。At present, there are some suitable data synchronization methods in the industry, but the existing data synchronization methods in the industry can basically only meet the needs of synchronizing data on the business system to another system, and cannot support complex data operations, resulting in the inability to accept business data. Real-time analysis, when finding problems and making corresponding decisions, there will also be time delays.
故综合上述,提供一种响应速度快且时延小的数据处理方法,是现有技术亟待解决的问题。Therefore, based on the above, it is an urgent problem to be solved in the prior art to provide a data processing method with fast response speed and low time delay.
发明内容Contents of the invention
有鉴于此,本发明实施例期望提供一种数据实时处理方法及系统,以至少部分解决现有技术中数据处理时延大的问题。In view of this, the embodiments of the present invention expect to provide a real-time data processing method and system, so as to at least partially solve the problem of large data processing time delay in the prior art.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, technical solution of the present invention is achieved in that way:
本发明实施例第一方面提供一种数据实时处理方法,所述方法应用于数据实时处理系统中,所述方法包括:The first aspect of the embodiments of the present invention provides a real-time data processing method, the method is applied to a real-time data processing system, and the method includes:
获取源系统数据变化信息;Obtain source system data change information;
按照第一预设处理策略实时对所述数据变化信息进行第一数据处理,形成处理后第一数据;performing first data processing on the data change information in real time according to a first preset processing strategy to form processed first data;
将所述第一数据装载到内存数据库;loading the first data into an in-memory database;
基于数据处理需求,按照第二预设处理策略实时对所述内存数据库中的第一数据进行第二数据处理,获得数据处理结果。Based on the data processing requirement, the second data processing is performed on the first data in the internal memory database in real time according to the second preset processing strategy to obtain a data processing result.
优选地,Preferably,
所述获取源系统数据变化信息,包括:The acquisition of source system data change information includes:
在所述源系统的数据库日志发生变化时,获取发生变化的所述数据库日志信息;When the database log of the source system changes, acquire the changed database log information;
实时解析发生变化的所述数据库日志信息且转换所述发生变化的所述数据库日志信息的数据格式,形成适宜于数据流处理的数据。Analyzing the changed database log information in real time and converting the data format of the changed database log information to form data suitable for data stream processing.
优选地,Preferably,
所述按照第一预设处理策略实时对所述数据变化信息进行第一数据处理,形成处理后第一数据,包括:The performing the first data processing on the data change information in real time according to the first preset processing strategy to form the processed first data includes:
实时对所述数据变化信息进行数据清洗和数据汇总处理,以规范化和轻量化装载到所述内存数据库中的第一数据。Perform data cleaning and data summary processing on the data change information in real time, so as to standardize and reduce the weight of the first data loaded into the memory database.
优选地,Preferably,
所述实时对所述数据变化信息进行数据汇总处理,包括:The real-time data summary processing of the data change information includes:
对所述数据清洗的数据,进行轻度汇总处理和/或高度汇总处理;Carry out light summary processing and/or high summary processing on the data of the data cleaning;
其中,所述轻度汇总处理包括以第一时间间隔进行数据汇总处理;Wherein, the light summary processing includes performing data summary processing at a first time interval;
所述高度汇总处理包以第二时间间隔进行数据汇总处理;The high-level summary processing package performs data summary processing at a second time interval;
所述第一时间间隔不大于所述第二时间间隔。The first time interval is not greater than the second time interval.
优选地,Preferably,
所述基于数据处理需求,按照第二预设处理策略实时对所述内存数据库中的第一数据进行第二数据处理,获得数据处理结果,包括:The second data processing is performed on the first data in the internal memory database in real time according to the second preset processing strategy based on the data processing requirements, and the data processing results are obtained, including:
基于数据的业务需求,对所述内存数据库中的第一数据进行实时统计、实时分析、实时监控以及实时决策,形成处理结果。Based on the business requirements of the data, real-time statistics, real-time analysis, real-time monitoring and real-time decision-making are performed on the first data in the memory database to form a processing result.
优选地,Preferably,
所述方法还包括以下至少其中之一:The method also includes at least one of the following:
对所述数据实时处理系统的数据实时处理进行异常监控;Perform abnormal monitoring on the real-time data processing of the data real-time processing system;
对所述数据实时处理系统的数据实时处理进行负载均衡处理;performing load balancing processing on the real-time data processing of the data real-time processing system;
对所述数据实时处理系统的数据实时处理进行路由适配处理。Perform route adaptation processing on the real-time data processing of the data real-time processing system.
优选地,Preferably,
所述对所述数据实时处理系统的数据实时处理进行负载均衡处理,包括以下至少其中之一:The load balancing processing of the real-time data processing of the data real-time processing system includes at least one of the following:
在进行所述第一数据处理的各服务主机之间进行负载均衡;performing load balancing among service hosts performing the first data processing;
在进行所述第二数据处理的各服务主机之间进行负载均衡。Perform load balancing among service hosts performing the second data processing.
优选地,Preferably,
所述对所述数据实时处理系统的数据实时处理进行路由适配处理,包括:The routing adaptation processing of the real-time data processing of the data real-time processing system includes:
建立进行所述第二数据处理的服务主机与指定的服务请求的路由适配关系。Establishing a routing adaptation relationship between the service host performing the second data processing and the specified service request.
本发明实施例第二方面提供一种数据实时处理系统,所述系统包括:The second aspect of the embodiment of the present invention provides a real-time data processing system, the system comprising:
数据获取模块,用于获取源系统数据变化信息;The data acquisition module is used to acquire the source system data change information;
第一数据处理模块,用于按照第一预设处理策略实时对所述数据变化信息进行第一数据处理,形成处理后第一数据;The first data processing module is configured to perform first data processing on the data change information in real time according to a first preset processing strategy to form processed first data;
数据存储模块,用于将所述第一数据装载到所述内存数据库;a data storage module, configured to load the first data into the memory database;
第二数据处理模块,用于基于数据处理需求,按照第二预设处理策略实时对所述内存数据库中的第一数据进行第二数据处理,获得数据处理结果。The second data processing module is configured to perform second data processing on the first data in the in-memory database in real time according to a second preset processing strategy based on data processing requirements, and obtain a data processing result.
优选地,Preferably,
所述数据获取模块,包括:The data acquisition module includes:
复制子模块,用于在所述源系统的数据库日志发生变化时,获取发生变化的所述数据库日志信息;The replication submodule is used to obtain the changed database log information when the database log of the source system changes;
解析子模块,用于实时解析发生变化的所述数据库日志信息且转换所述发生变化的所述数据库日志信息的数据格式,形成适宜于数据流处理的数据。The parsing sub-module is used for parsing the changed database log information in real time and converting the data format of the changed database log information to form data suitable for data flow processing.
优选地,Preferably,
所述第一数据处理模块,用于实时对所述数据变化信息进行数据清洗和数据汇总处理,以规范化和轻量化装载到所述内存数据库中的第一数据。The first data processing module is configured to perform data cleaning and data summary processing on the data change information in real time, so as to standardize and reduce the weight of the first data loaded into the memory database.
优选地,Preferably,
所述第二数据处理模块,用于基于数据的业务需求,对所述内存数据库中的第一数据进行实时统计、实时分析、实时监控以及实时决策,形成处理结果。The second data processing module is configured to perform real-time statistics, real-time analysis, real-time monitoring, and real-time decision-making on the first data in the memory database based on the business requirements of the data to form processing results.
优选地,Preferably,
所述系统还包括系统管理模块;The system also includes a system management module;
所述系统管理模块,用于对所述数据实时处理系统的数据实时处理进行异常监控;和/或,对所述数据实时处理系统的数据实时处理进行负载均衡处理;和/或对所述数据实时处理系统的数据实时处理进行路由适配处理。本发明实施例所述的数据实时处理方法,应用于独立于源系统的数据实时处理系统,且基于所述数据实时处理方法提供了所述数据实时处理系统。首先,该数据实时处理系统独立于源系统,从而不会占用源系统的资源,从而对源系统的正常运行影响小。其次,本发明实施例所述的数据实时处理方法及系统,采用内存数据库来进行数据的存储,相对于现有技术中采用磁盘方式存储数据,减少了数据写入磁盘和从磁盘中读取所占用的时间,且本实施例所述的方法可采用实时处理的流处理技术来进行上述数据处理,显然数据处理周期小,具有延时小及响应速度快的优点。The system management module is configured to monitor abnormalities in the real-time data processing of the data real-time processing system; and/or perform load balancing processing on the real-time data processing of the data real-time processing system; and/or perform load balancing processing on the data real-time processing system; The data of the real-time processing system is processed in real time for routing adaptation processing. The real-time data processing method described in the embodiment of the present invention is applied to a real-time data processing system independent of a source system, and the real-time data processing system is provided based on the real-time data processing method. First of all, the real-time data processing system is independent of the source system, so it will not occupy the resources of the source system, and thus has little impact on the normal operation of the source system. Secondly, the real-time data processing method and system described in the embodiments of the present invention use an in-memory database to store data. Compared with the prior art that uses a disk to store data, it reduces the number of times data is written to and read from a disk. time, and the method described in this embodiment can use real-time processing stream processing technology to perform the above data processing, obviously the data processing cycle is small, and has the advantages of small delay and fast response.
附图说明Description of drawings
图1为本发明实施例的数据实时处理方法的流程示意图;Fig. 1 is a schematic flow chart of a data real-time processing method according to an embodiment of the present invention;
图2为本发明实施例所述的数据实时处理系统的结构示意图;Fig. 2 is the structural representation of the data real-time processing system described in the embodiment of the present invention;
图3为本发明实施例所述的源系统数据变化信息的流程示意图;FIG. 3 is a schematic flowchart of source system data change information according to an embodiment of the present invention;
图4为本发明实施例所述的第一数据处理的流程示意图;4 is a schematic flow chart of the first data processing described in the embodiment of the present invention;
图5为本发明实施例所述的系统管理流程示意图。Fig. 5 is a schematic diagram of the system management process described in the embodiment of the present invention.
具体实施方式detailed description
以下结合说明书附图及具体实施例对本发明的技术方案做进一步的详细阐述。The technical solutions of the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
方法实施例:Method example:
如图1所示,本实施例提供一种数据实时处理方法,所述方法应用于数据实时处理系统中,所述方法包括:As shown in Figure 1, this embodiment provides a method for real-time data processing, the method is applied in a real-time data processing system, and the method includes:
步骤S110:获取源系统数据变化信息;Step S110: Acquiring source system data change information;
步骤S120:按照第一预设处理策略实时对所述数据变化信息进行第一数据处理,形成处理后第一数据;Step S120: Perform first data processing on the data change information in real time according to a first preset processing strategy to form processed first data;
步骤S130:将所述第一数据装载到内存数据库;Step S130: loading the first data into the memory database;
步骤S140:基于数据处理需求,按照第二预设处理策略实时对所述内存数据库中的第一数据进行第二数据处理,获得数据处理结果。Step S140: Based on data processing requirements, perform second data processing on the first data in the internal memory database in real time according to a second preset processing strategy to obtain a data processing result.
所述源系统可以为各种类型的业务系统,具体如用于业务受理系统、计费系统等。The source system may be various types of service systems, such as a service acceptance system, a billing system, and the like.
本实施例的数据实时处理方法,是应用于独立于所述源系统的专用进行数据处理的系统中,这样在进行数据处理过程中,显然不会占用源系统的资源,从而能够避免对源系统的运行造成干扰,从而导致源系统执行业务请求的响应速度慢等问题。The real-time data processing method of this embodiment is applied to a system dedicated to data processing independent of the source system, so that during the data processing process, it will obviously not occupy the resources of the source system, thereby avoiding the source system The operation of the system causes interference, which leads to problems such as slow response speed of the source system to execute business requests.
在步骤S110中获取的数据变化信息具体可为源系统的业务受理变化日志数据等数据。The data change information acquired in step S110 may specifically be data such as business acceptance change log data of the source system.
在步骤S130中,经过第一数据处理之后的第一数据直接装载到内存数据库中。所述内存数据库为由内存构成的数据库,后续在进行第二数据处理时,直接从内存数据库获取数据,相对于从磁盘上获取数据、读取数据的速度快很多。若通常数据处理也是在服务主机的内存中进行的,将数据从内存的一个部分迁移到另一个部分的速度是十分快的,或者在进行第一数据处理时,直接在内存数据库对应的内存中进行,这样连内存间的数据迁移都省略了,显然提高了减少系统处理步骤和响应速度。In step S130, the first data after the first data processing is directly loaded into the memory database. The in-memory database is a database composed of internal memory. When performing the second data processing, the data is directly obtained from the in-memory database, which is much faster than obtaining and reading data from a disk. If data processing is usually carried out in the memory of the service host, the speed of migrating data from one part of the memory to another is very fast, or when performing the first data processing, directly in the memory corresponding to the memory database In this way, even the data migration between memories is omitted, which obviously improves the reduction of system processing steps and response speed.
在具体实现时,当所述第一数据装载到所述内存数据库中之后,立马无时间间隔的进行所述第二数据处理,显然这样可以相对于现有技术中将数据存储在磁盘中,在进行第二数据处理时,还需不仅节省了将数据写到磁盘的过程、同时还包括将磁盘读取数据的过程;显然有利于提高数据处理实时性,减少延时性。In a specific implementation, after the first data is loaded into the memory database, the second data processing is performed immediately without time intervals. Obviously, this can be compared to the prior art in which data is stored in the disk. When performing the second data processing, it is necessary to not only save the process of writing data to the disk, but also include the process of reading data from the disk; obviously it is beneficial to improve the real-time performance of data processing and reduce the delay.
此外,在步骤S130中采用内存数据来存储所述第一数据,利用一些数据处理机制,在服务器宕机时,相对于回复磁盘数据,回复内存内的数据更为简单,显然相对于将第一数据写在磁盘上,能够提高数据可安全性和系统的可靠性。In addition, in step S130, memory data is used to store the first data, and some data processing mechanisms are used. When the server is down, it is easier to restore the data in the memory than to restore the disk data. Obviously, compared to the first Data is written on the disk, which can improve data security and system reliability.
进一步的,所述步骤S110可包括:在所述源系统的数据库日志发生变化时,获取发生变化的所述数据库日志信息;及实时解析发生变化的所述数据库日志信息且转换所述发生变化的所述数据库日志信息的数据格式,形成适宜于数据流处理的数据。Further, the step S110 may include: when the database log of the source system changes, acquiring the changed database log information; and analyzing the changed database log information in real time and converting the changed database log information The data format of the database log information forms data suitable for data stream processing.
具体如,在步骤S111中主要是实时捕获源系统的数据变化并转化成第一数据处理中可识别的数据格式如csv数据格式。所述步骤S110可包括:从源系统中复制数据,以及对复制的数据进行数据解析的步骤。Specifically, in step S111, data changes of the source system are mainly captured in real time and converted into a data format recognizable in the first data processing, such as csv data format. The step S110 may include: copying data from the source system, and performing data analysis on the copied data.
实时数据复制可通过数据复制产品GoldenGate读取外部数据库业务受理的日志变化数据,如资料数据、工单数据、历史数据等。所述GoldenGate为复制数据的一个信息处理产品的名称。Real-time data replication can read the log change data of external database business acceptance through the data replication product GoldenGate, such as data data, work order data, historical data, etc. The GoldenGate is the name of an information processing product that replicates data.
数据解析可包括:通过采用Java实现的Stream Application应用程序,接收数据复制产品如GoldenGate输出的数据后,对消息数据进行相应的转换和处理,输出流处理中能识别的文件格式如csv文件。所述Java为一种程序语言;所述Stream Application为一种应用程序的名称。所述csv文件为数据格式为csv的文件。Data parsing may include: after receiving the data output by data replication products such as GoldenGate through the Stream Application implemented in Java, converting and processing the message data accordingly, and outputting a file format that can be recognized in stream processing, such as csv files. The Java is a programming language; the Stream Application is the name of an application. The csv file is a file with a data format of csv.
所述步骤S120可包括:实时对所述数据变化信息进行数据清洗和数据汇总处理,以规范化和轻量化装载到所述内存数据库中的第一数据。The step S120 may include: performing data cleaning and data summary processing on the data change information in real time, so as to standardize and reduce the weight of the first data loaded into the memory database.
所述数据清洗包括数据过滤;所述数据过滤包括删除无关的数据,具体如删除数据中与业务请求无关的数据。具体如,删除日志信息中的文本说明等信息。The data cleaning includes data filtering; the data filtering includes deleting irrelevant data, specifically, deleting data irrelevant to service requests in the data. For example, delete information such as text descriptions in log information.
所述数据清晰还包括将数据转换成统一编码和同一度量衡的数据,减少后续进行第二次数据过程中数据转换和度量衡的转换,以提高后续处理速度。The data clarity also includes converting data into uniform codes and data of the same weight and measure, reducing data conversion and weight and measure conversion in the subsequent second data process, so as to improve subsequent processing speed.
所述实时对所述数据变化信息进行数据汇总处理,包括:The real-time data summary processing of the data change information includes:
对所述数据清洗的数据,进行轻度汇总处理和/或高度汇总处理;Carry out light summary processing and/or high summary processing on the data of the data cleaning;
其中,所述轻度汇总处理包括以第一时间间隔进行数据汇总处理;Wherein, the light summary processing includes performing data summary processing at a first time interval;
所述高度汇总处理包以第二时间间隔进行数据汇总处理;The high-level summary processing package performs data summary processing at a second time interval;
所述第一时间间隔不大于所述第二时间间隔。The first time interval is not greater than the second time interval.
数据汇总为主要负责在数据清洗的基础上,将数据进行相应的汇总工作,从而降低装载到内存数据库的数据量,提升系统性能,该模块提供轻度汇总和高度汇总两种功能,轻度汇总指汇总的时间粒度可为秒级,高度汇总指汇总的时间粒度可为分钟级;数据装载主要提供将高度汇总数据装载到内存数据库的功能,实现方式主要是通过调用内存数据库的数据装载应用程序编程接口API实现。通常高度汇总的处理逻辑相对于轻度汇总的处理逻辑更为复杂。Data summary is mainly responsible for summarizing data on the basis of data cleaning, thereby reducing the amount of data loaded into the memory database and improving system performance. This module provides two functions: light summary and high summary. Light summary The aggregated time granularity can be at the second level, and the highly aggregated aggregated time granularity can be at the minute level; data loading mainly provides the function of loading highly aggregated data into the memory database, and the implementation method is mainly by calling the data loading application program of the memory database Programming interface API implementation. Usually, highly aggregated processing logic is more complex than lightly aggregated processing logic.
所述步骤S140可包括:The step S140 may include:
基于数据的业务需求,对所述内存数据库中的第一数据进行实时统计、实时分析、实时监控以及实时决策,形成处理结果。Based on the business requirements of the data, real-time statistics, real-time analysis, real-time monitoring and real-time decision-making are performed on the first data in the memory database to form a processing result.
所述业务需求可包括业务受理需求,是上述数据处理需求的一种。The business requirements may include business acceptance requirements, which are one of the above-mentioned data processing requirements.
以下结合具体应用场景对实时统计、实时分析、实时监控以及实时决策进行解释。The following explains real-time statistics, real-time analysis, real-time monitoring, and real-time decision-making in combination with specific application scenarios.
实时统计包括对作为业务系统的源系统进行营业结账,缴费等实时的业务统计,且可根据全体营业员,营业厅等维度,进行全量的大批量实时计算,最大限度的满足运维的统计需要。Real-time statistics include real-time business statistics such as business checkout and payment of the source system as a business system, and can perform full-volume, large-scale real-time calculations based on dimensions such as all salespersons and business halls, to meet the statistical needs of operation and maintenance to the greatest extent.
实时分析可包括同一营销时间内各渠道、营业点的横向比较分析通报;实时监控可有效的管控风险,如收入风险监控,电子渠道交易监控,营业员交易监控,促销监控;通过监控波动率,敏感信息访问监控等。Real-time analysis can include horizontal comparative analysis and notification of various channels and business points within the same marketing period; real-time monitoring can effectively control risks, such as income risk monitoring, electronic channel transaction monitoring, salesperson transaction monitoring, promotion monitoring; through monitoring volatility, sensitive Information access monitoring, etc.
实时决策可包括可以根据实时分析的分析结果和分析指导决策和行动,如基于销售流黄金期有效分析的基础上,指导为营业厅资源如人员排班、其他支撑工作,如物流配送时间点合理安排提供依据,提升厅店效率,实现减员增效。Real-time decision-making can include guiding decision-making and actions based on the analysis results and analysis of real-time analysis. For example, based on the effective analysis of the golden period of sales flow, guidance can be given to business hall resources such as personnel scheduling and other supporting tasks, such as reasonable time points for logistics and distribution. The arrangement provides a basis to improve the efficiency of the store and realize the reduction of staff and efficiency.
本实施例所述方法在上述步骤的基础上,为了提高系统的可靠性和进一步提高数据实时处理系统的响应速率,所述方法还包括以下至少其中之一:The method described in this embodiment is based on the above steps, in order to improve the reliability of the system and further improve the response rate of the real-time data processing system, the method further includes at least one of the following:
对所述数据实时处理系统的数据实时处理进行异常监控;Perform abnormal monitoring on the real-time data processing of the data real-time processing system;
对所述数据实时处理系统的数据实时处理进行负载均衡处理;performing load balancing processing on the real-time data processing of the data real-time processing system;
对所述数据实时处理系统的数据实时处理进行路由适配处理。Perform route adaptation processing on the real-time data processing of the data real-time processing system.
所述异常监控可包括对步骤S110至步骤S140中的数据处理进行监控,一出现异常立即进行异常排除处理,以保证数据实时处理系统的及时性,以免哪一个数据处理环节中的异常导致数据处理及时性下降的现象。The abnormality monitoring may include monitoring the data processing in steps S110 to S140, and immediately perform abnormality elimination processing once an abnormality occurs, so as to ensure the timeliness of the data real-time processing system, so as to prevent any abnormality in the data processing link from causing data processing. Timeliness declines.
所述对所述数据实时处理系统的数据实时处理进行负载均衡处理,包括以下至少其中之一:The load balancing processing of the real-time data processing of the data real-time processing system includes at least one of the following:
在进行所述第一数据处理的各服务主机之间进行负载均衡;performing load balancing among service hosts performing the first data processing;
在进行所述第二数据处理的各服务主机之间进行负载均衡。Perform load balancing among service hosts performing the second data processing.
在本实施例中所述数据实时处理系统可分为内存数据库以及对数据进行处理的处理主机。所述处理主机可用于获取数据、进行第一数据处理和第二数据处理。在该系统中用于进行数据处理的服务主机可能形成有主机集群。每一个主机集群中可能包括一个或多个服务主机。每一个服务主机的负荷可能有轻有重。通过负载均衡,可以将符合重的主机上的数据处理转移到负荷轻的主机上进行处理,这样从整体上能够提高数据处理的及时性。In this embodiment, the real-time data processing system can be divided into an in-memory database and a processing host for processing data. The processing host can be used to acquire data, perform first data processing and second data processing. The service hosts used for data processing in this system may form host clusters. Each host cluster may include one or more service hosts. The load of each service host may be light or heavy. Through load balancing, data processing on a host with a heavy load can be transferred to a host with a light load for processing, which can improve the timeliness of data processing as a whole.
所述对所述数据实时处理系统的数据实时处理进行路由适配处理,包括:The routing adaptation processing of the real-time data processing of the data real-time processing system includes:
建立进行所述第二数据处理的服务主机与指定的服务请求的路由适配关系。Establishing a routing adaptation relationship between the service host performing the second data processing and the specified service request.
路由适配处理通常是针对第二数据处理而言的,是一种预先设定路由查找的过程,能够简化后续第二数据处理过程中从内存数据库中数据的查询操作,通过简化数据查询,能够再次提高数据实时处理系统的数据处理速率,降低数据处理的延时性。Routing adaptation processing is usually for the second data processing, which is a pre-set route search process, which can simplify the query operation of data from the memory database in the subsequent second data processing process. By simplifying the data query, it can Improve the data processing rate of the real-time data processing system again, and reduce the delay of data processing.
设备实施例:Device example:
如图2所示,本实施例提供一种数据实时处理系统,所述系统包括:As shown in Figure 2, the present embodiment provides a real-time data processing system, the system includes:
数据获取模块110,用于获取源系统数据变化信息;A data acquisition module 110, configured to acquire source system data change information;
第一数据处理模块120,用于按照第一预设处理策略实时对所述数据变化信息进行第一数据处理,形成处理后第一数据;The first data processing module 120 is configured to perform first data processing on the data change information in real time according to a first preset processing strategy to form processed first data;
数据存储模块130,用于将所述第一数据装载到所述内存数据库;a data storage module 130, configured to load the first data into the memory database;
第二数据处理模块140,用于基于数据处理需求,按照第二预设处理策略实时对所述内存数据库中的第一数据进行第二数据处理,获得数据处理结果。The second data processing module 140 is configured to perform second data processing on the first data in the internal memory database in real time according to a second preset processing strategy based on data processing requirements, and obtain a data processing result.
本实施例所述的获取模块,具体可为各种类型的通信接口,该通信接口与所述源系统之间建立有连接,能够从源系统接收数据。所述通信接口可包括有线或无线的通信接口,所述有线的通信接口可包括电缆接口或光缆接口;所述无线接口可包括接收天线等结构。The acquisition module described in this embodiment may specifically be various types of communication interfaces, which are connected to the source system and capable of receiving data from the source system. The communication interface may include a wired or wireless communication interface, and the wired communication interface may include a cable interface or an optical cable interface; the wireless interface may include structures such as receiving antennas.
第一数据处理模块120、数据存储模块130和第二数据处理模块140的具体结构可包括处理器和存储介质;所述存储介质上存储有可执行代码。所述存储介质与所述处理器通过总线等用户设备内部的通信接口连接。所述处理器通过执行所述可执行代码可以实现处理单元120和生成单元130的功能。所述处理器可以中央处理器CPU、微处理器MCU、数字信号处理器DSP或可编程阵列PLC等具有信息处理功能的处理器或处理芯片。The specific structures of the first data processing module 120, the data storage module 130 and the second data processing module 140 may include a processor and a storage medium; executable codes are stored on the storage medium. The storage medium is connected to the processor through a communication interface inside the user equipment such as a bus. The processor can implement the functions of the processing unit 120 and the generating unit 130 by executing the executable code. The processor may be a processor or a processing chip with information processing functions such as a central processing unit CPU, a microprocessor MCU, a digital signal processor DSP, or a programmable array PLC.
在本实施例中可以对应于系统中的服务主机。所述内存数据库可包括系统中各服务主机上集成的内存。In this embodiment, it may correspond to the service host in the system. The memory database may include memory integrated on each service host in the system.
本实施例所述的数据实时处理系统,是与所述源系统相对立的系统,这样在进行数据处理时,显然不会占用源系统的系统资源,从而能够避免对源系统的业务造成不良影响。在本实施例中第一数据装载在内存数据库中,可以减少对磁盘的读写次数,从而提高数据处理效率并减少延时性。The real-time data processing system described in this embodiment is a system opposite to the source system, so that when data processing is performed, the system resources of the source system will obviously not be occupied, thereby avoiding adverse effects on the business of the source system . In this embodiment, the first data is loaded in the memory database, which can reduce the number of reads and writes to the disk, thereby improving data processing efficiency and reducing delay.
进一步地所述数据获取模块110,包括:Further described data acquisition module 110 includes:
复制子模块,用于在所述源系统的数据库日志发生变化时,获取发生变化的所述数据库日志信息;The replication submodule is used to obtain the changed database log information when the database log of the source system changes;
解析子模块,用于实时解析发生变化的所述数据库日志信息且转换所述发生变化的所述数据库日志信息的数据格式,形成适宜于数据流处理的数据。The parsing sub-module is used for parsing the changed database log information in real time and converting the data format of the changed database log information to form data suitable for data stream processing.
复制子模块主要用于采用GoldenGate、DataGuard、SharePlex或PAC等复制技术从源数据库中复制所述数据变化信息,具体如从源系统的数据库的业务受理请求的变化数据,如资料数据、工单数据、历史数据等,并将获取的信息传输给解析子模块。在本实施例中,所述数据变化信息通常可为指定的变化信息,可以非任意的变化信息。The copy sub-module is mainly used to copy the data change information from the source database by using replication technologies such as GoldenGate, DataGuard, SharePlex or PAC, such as the change data of the business acceptance request from the database of the source system, such as data data and work order data , historical data, etc., and transmit the obtained information to the parsing submodule. In this embodiment, the data change information may generally be specified change information, and may not be arbitrary change information.
所述解析子模块主要用于采用由Java语言编写的Stream Application等应用程序来接收父子模块的传输的信息,并对这些信息进行相应的转换和处理,输出流处理中能识别的文件,具体如csv文件格式的文件。The parsing sub-module is mainly used to receive the information transmitted by the parent-child module by using applications such as Stream Application written in the Java language, and convert and process the information accordingly, and output the files that can be identified in the stream processing, specifically as file in csv file format.
可选地所述第一数据处理模块120,用于实时对所述数据变化信息进行数据清洗和数据汇总处理,以规范化和轻量化装载到所述内存数据库中的第一数据。Optionally, the first data processing module 120 is configured to perform data cleaning and data summary processing on the data change information in real time, so as to standardize and reduce the weight of the first data loaded into the memory database.
本实施例所述的第一数据处理模块120,又可称为实时数据处理模块,主要能实现的功能包括数据清洗、数据汇总以及数据装载等功能。The first data processing module 120 described in this embodiment can also be called a real-time data processing module, and its main functions include data cleaning, data summarization, and data loading.
所述数据清洗和数据汇总的相关描述可以参见方法实施例,具体如,所述第一数据处理模块120,用于对所述数据清洗的数据,进行轻度汇总处理和/或高度汇总处理;其中,所述轻度汇总处理包括以第一时间间隔进行数据汇总处理;所述高度汇总处理包以第二时间间隔进行数据汇总处理;所述第一时间间隔不大于所述第二时间间隔。For the relevant description of the data cleaning and data summarization, please refer to the method embodiments, specifically, the first data processing module 120 is configured to perform light summary processing and/or high-level summary processing on the data of the data cleaning; Wherein, the light summary processing includes data summary processing at a first time interval; the high summary processing package performs data summary processing at a second time interval; and the first time interval is not greater than the second time interval.
在具体实现时,所述数据存储模块,主要用于采用内存数据库作为存储介质,一方面能够避免数据在处理过程中的大数据量交易数据落地(写磁盘)对分析性能的影响,保障了处理过程的及时性;另一方面内存数据库存储技术的高可用机制又确保了在服务器宕机的时候迅速恢复并且数据不丢失,保障了系统的可靠性。In specific implementation, the data storage module is mainly used to use an in-memory database as a storage medium. On the one hand, it can avoid the impact of large data volume transaction data landing (writing to disk) on the analysis performance during data processing, and guarantees the processing The timeliness of the process; on the other hand, the high-availability mechanism of the memory database storage technology ensures rapid recovery and no data loss when the server is down, ensuring the reliability of the system.
可选地,所述第二数据处理模块140,用于基于数据的业务需求,对所述内存数据库中的第一数据进行实时统计、实时分析、实时监控以及实时决策,形成处理结果。Optionally, the second data processing module 140 is configured to perform real-time statistics, real-time analysis, real-time monitoring, and real-time decision-making on the first data in the memory database based on data business requirements to form processing results.
本实施例所述的第二数据处理模块140又可称为实时数据应用模块,主要用于内存数据库的基础上,基于业务需求构建业务场景,包括实时统计、实时分析、实时监控和实时决策等处理。所述实时统计、实时分析、实时监控和实时决策的相关定义可以参见方法实施例,在此就不重复了。The second data processing module 140 described in this embodiment can also be called a real-time data application module, which is mainly used on the basis of an in-memory database to construct business scenarios based on business requirements, including real-time statistics, real-time analysis, real-time monitoring and real-time decision-making, etc. deal with. Relevant definitions of the real-time statistics, real-time analysis, real-time monitoring and real-time decision-making can be found in the method embodiments, and will not be repeated here.
此外,如图2所示,本实施例所述的系统还包括系统管理模块;In addition, as shown in Figure 2, the system described in this embodiment also includes a system management module;
所述系统管理模块150,用于对所述数据实时处理系统的数据实时处理进行异常监控;和/或,对所述数据实时处理系统的数据实时处理进行负载均衡处理;和/或对所述数据实时处理系统的数据实时处理进行路由适配处理。The system management module 150 is configured to monitor abnormalities in the real-time data processing of the data real-time processing system; and/or perform load balancing processing on the real-time data processing of the data real-time processing system; and/or perform load balancing processing on the real-time data processing system; The real-time data processing of the data processing system performs routing adaptation processing.
此处的系统管理模块150的具体结构也可以对应于服务主机或服务主机内的处理器或处理芯片等。所述处理器或处理芯片的结构可以参见前述部分,在此就不重复了。The specific structure of the system management module 150 here may also correspond to the service host or a processor or processing chip in the service host. For the structure of the processor or the processing chip, reference may be made to the foregoing part, which will not be repeated here.
所述系统管理模块150,具体可用于在进行所述第一数据处理的各服务主机之间进行负载均衡;和/或,在进行所述第二数据处理的各服务主机之间进行负载均衡。The system management module 150 may specifically be configured to perform load balancing among service hosts performing the first data processing; and/or perform load balancing among service hosts performing the second data processing.
所述系统管理模块150,还可用于建立进行所述第二数据处理的服务主机与指定的服务请求的路由适配关系。The system management module 150 may also be configured to establish a routing adaptation relationship between the service host performing the second data processing and the specified service request.
综合上述,本实施例提供了一种数据实时处理系统,为上述数据实时处理方法提供了硬件支撑,显然用于对源系统的数据分析和决策,不占用源系统的资源、对源系统的正常运行影响小且数据分析决策延时小等优点。Based on the above, this embodiment provides a real-time data processing system, which provides hardware support for the above-mentioned real-time data processing method, and is obviously used for data analysis and decision-making of the source system, without occupying resources of the source system, and for the normal operation of the source system. It has the advantages of small impact on operation and small delay in data analysis and decision-making.
以下结合上述实施例提供几个具体应用示例:Several specific application examples are provided below in conjunction with the above-mentioned embodiments:
示例一:Example one:
如图3所示,本示例为提供一种获取所述数据变化信息的具体方法,具体如下:As shown in Figure 3, this example provides a specific method for obtaining the data change information, as follows:
步骤101:外部业务受理的数据库日志发生变化。这里即指上述源系统的数据库日志发生变化。Step 101: The database log of external business acceptance changes. This means that the database log of the above-mentioned source system has changed.
步骤102:数据复制模块捕获。此处的数据复制模块即为上述复制子模块。此处的所述捕获为获取数据变化信息,具体如使用数据复制产品GoldenGate捕获数据库的Redo Log,获取变化的业务受理数据,通过捕获源库变化数据、跟踪队列、数据泵分发、路由压缩加密和交付目标的过程,实现利用极少的系统开支,实时捕获业务受理数据库的变化的日志信息。Step 102: capture by the data replication module. The data replication module here is the above-mentioned replication sub-module. The capture here is to obtain data change information, specifically, use the data replication product GoldenGate to capture the Redo Log of the database, obtain the changed business acceptance data, and capture the change data of the source database, track queues, data pump distribution, route compression encryption and In the process of delivering the target, the log information of the change of the business acceptance database is captured in real time with minimal system expenditure.
步骤103:泵出队列文件(trail file),该步骤由数据复制产品自动实现。Step 103: Pump out the trail file, this step is automatically implemented by the data replication product.
步骤104:日志解析模块,通过Java实现的Stream Application应用程序,读取数据复制产品如GoldenGate泵出的队列文件(trail file),对队列文件进行相应的解析和处理。Step 104: The log parsing module reads the trail file (trail file) pumped by the data replication product such as GoldenGate through the Stream Application implemented by Java, and performs corresponding parsing and processing on the trail file.
步骤105:生成csv格式的数据文件,为实时处理模块提供数据输入。所述csv格式即为上述适宜于数据流处理的数据格式。所述数据流处理为对数据处理的一种技术,具体的如何实现数据流处理可以参见现有技术,在此就不再展开了,总之数据流处理具有数据处理延时性小及数据处理效率高的优点。Step 105: Generate a data file in csv format to provide data input for the real-time processing module. The csv format is the above-mentioned data format suitable for data flow processing. The data stream processing is a technology for data processing. For details on how to implement data stream processing, please refer to the prior art, which will not be expanded here. In short, data stream processing has the advantages of small data processing delay and high data processing efficiency. high merit.
步骤106:实时数据获取流程结束,交付实时处理模块。此处的实时处理模块相当于设备实施例中所述的第一数据处理模块。Step 106: The real-time data acquisition process ends, and the real-time processing module is delivered. The real-time processing module here is equivalent to the first data processing module described in the device embodiment.
示例二:Example two:
如图4所示,本示例为提供一种第一数据处理的具体方法,可包括:As shown in Figure 4, this example provides a specific method for the first data processing, which may include:
步骤1:实时数据获取模块中的日志解析模块,通过解析和源系统的处理数据库的变化日志,增量生成csv格式的数据文件。此处的日志解析模块即详单于上述解析子模块。Step 1: The log parsing module in the real-time data acquisition module incrementally generates data files in csv format by parsing and processing the change logs of the source system database. The log parsing module here is detailed in the parsing sub-module above.
步骤2:数据清洗模块查询数据清洗、汇总、装载规则库,以获取数据清洗规则。Step 2: The data cleaning module queries data cleaning, summarizing, and loading rule bases to obtain data cleaning rules.
步骤3:数据清洗、汇总、装载规则库,返回数据清洗模块中所需查询的清洗规则。此处的清洗规则为所述第一预设处理策略的一部分。Step 3: Data cleaning, summarizing, loading rule base, and returning the cleaning rules to be queried in the data cleaning module. The cleaning rule here is a part of the first preset processing strategy.
步骤4:根据数据清洗规则,对日志解析模块增量生成csv的业务受理数据进行一致性检查,处理无效值和缺失值,对数据进行清洗,可使用流处理技术如StreamBase来进行数据清洗。Step 4: According to the data cleaning rules, check the consistency of the csv business acceptance data incrementally generated by the log parsing module, process invalid and missing values, and clean the data. Stream processing technologies such as StreamBase can be used for data cleaning.
步骤5:数据汇总模块查询数据清洗、汇总、装载规则库,以获取数据汇总规则,所述数据汇总规则也为所述第一预设处理策略的组成部分之一。Step 5: The data aggregation module queries the data cleaning, aggregation, and loading rule base to obtain data aggregation rules, and the data aggregation rules are also one of the components of the first preset processing strategy.
步骤6:数据清洗、汇总、装载规则库,返回数据汇总模块中所需查询的汇总规则。Step 6: data cleaning, summarizing, loading rule base, and returning the summarizing rules to be queried in the data summarizing module.
步骤7:对已清洗后的数据,按数据汇总规则,生成汇总级数据,可分为轻度汇总级数据和高度汇总级数据。Step 7: For the cleaned data, generate summary-level data according to the data summary rules, which can be divided into light summary-level data and highly summary-level data.
步骤8:数据装载模块查询数据清洗、汇总、装载规则库,获取数据装载规则。所述数据装载规则也为所述第一预设处理策略的组成部分之一,用于向内存数据库装载数据。Step 8: The data loading module queries the data cleaning, summarizing, and loading rule base to obtain data loading rules. The data loading rule is also one of the components of the first preset processing strategy, and is used for loading data into the memory database.
步骤9:数据清洗、汇总、装载规则库,返回数据装载模块中所需查询的装载规则。Step 9: Data cleaning, summarization, and loading of the rule base, returning the loading rules to be queried in the data loading module.
步骤10:根据数据装载规则,将数据实时到装载内存数据库中Step 10: According to the data loading rules, load the data into the loading memory database in real time
示例三:Example three:
如图5所示,本示例为提供一种系统管理方法,可包括:As shown in Figure 5, this example provides a system management method, which may include:
步骤s1:从数据服务请求方接收数据服务请求。具体如通过实时监控界面,监控发起数据服务请求,可由多个数据服务请求方同时并发多个数据请求服务。Step s1: Receive a data service request from a data service requester. Specifically, if the real-time monitoring interface is used to monitor and initiate a data service request, multiple data service requesters can send multiple data request services concurrently.
步骤s2:采用负载均衡器集群,接收高并发的数据服务请求,对高并发的数据请求服务进行服务均衡,并且集群内主机均相互备份,实现高并发的数据服务请求处理,加快服务请求响应速度。集群内的主机的相互备份方式可以采用两两互备,也可以是1备多的方式。Step s2: Use a load balancer cluster to receive high-concurrency data service requests, perform service balancing on high-concurrency data request services, and hosts in the cluster all back up each other, realize high-concurrency data service request processing, and speed up service request response speed . The mutual backup mode of the hosts in the cluster can be two-by-two, or one backup for multiple.
步骤s3:路由适配求mod(所述求mod为求模)后分发服务请求。具体如,通过负载均衡器集群对高并发请求的服务进行均衡后,将均衡后的请求服务通过求mod方式。主负载均衡器以主数据路由Mod(如路由值0-3,通知规则配置实现,下同),备数据路由Mod(如路由值4-7,下同)。备负载均衡器以主数据路由Mod(4-7),备数据路由Mod(0-3),分发给服务与内存数据库集群模块中的对应服务主机,进行相应的服务请求与服务主机的适配。Step s3: Distributing the service request after the route adaptation calculates the mod (the said determination of the mod is the calculation of the modulus). Specifically, after balancing the services with high concurrent requests through the load balancer cluster, the balanced request services are obtained through the mod method. The primary load balancer uses the primary data routing Mod (such as routing value 0-3, the notification rule configuration is implemented, the same below), and the standby data routing Mod (such as routing value 4-7, the same below). The standby load balancer distributes the main data routing Mod (4-7) and the standby data routing Mod (0-3) to the corresponding service hosts in the service and memory database cluster module, and adapts the corresponding service requests and service hosts .
步骤s4:对每台服务主机均配置内存数据库,同时以集群方式将所有的服务主机进行集群,对路由适配模块分发的服务请求,经请求认证通过后,动态绑定相应的服务主机进行专门的服务请求处理,因每台主机均使用了内存数据库,大大提高了数据请求服务的访问效率,同时由于了多台集群方式,极大提高了数据访问请求服务的数量,实现了真正的高并发的数据实时监控。Step s4: Configure the memory database for each service host, and cluster all the service hosts in a cluster mode. After the service request distributed by the routing adaptation module is passed the request authentication, dynamically bind the corresponding service host for special Service request processing, because each host uses a memory database, which greatly improves the access efficiency of data request services. At the same time, due to the multiple cluster mode, the number of data access request services is greatly increased, and real high concurrency is achieved. data real-time monitoring.
步骤s5:向服务请求方返回请求处理结果。这里的请求代指上述服务请求。具体可包括:对数据服务请求的处理结果,返回到实时监控页面进行展现,将处理结果提供给各个对应的数据服务请求方。Step s5: Return the request processing result to the service requester. The request here refers to the above-mentioned service request. Specifically, it may include: returning the processing result of the data service request to the real-time monitoring page for display, and providing the processing result to each corresponding data service requester.
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。In the several embodiments provided in this application, it should be understood that the disclosed devices and methods may be implemented in other ways. The device embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods, such as: multiple units or components can be combined, or May be integrated into another system, or some features may be ignored, or not implemented. In addition, the mutual coupling, or direct coupling, or communication connection between the various components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms. of.
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。The units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed to multiple network units; Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention can be integrated into one processing module, or each unit can be used as a single unit, or two or more units can be integrated into one unit; the above-mentioned integration The unit can be realized in the form of hardware or in the form of hardware plus software functional unit.
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。Those of ordinary skill in the art can understand that all or part of the steps for realizing the above-mentioned method embodiments can be completed by hardware related to program instructions, and the aforementioned program can be stored in a computer-readable storage medium. When the program is executed, the Including the steps of the foregoing method embodiments; and the foregoing storage medium includes: a removable storage device, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc. A medium on which program code can be stored.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510095976.6A CN105989163A (en) | 2015-03-04 | 2015-03-04 | Data real-time processing method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510095976.6A CN105989163A (en) | 2015-03-04 | 2015-03-04 | Data real-time processing method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105989163A true CN105989163A (en) | 2016-10-05 |
Family
ID=57039107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510095976.6A Pending CN105989163A (en) | 2015-03-04 | 2015-03-04 | Data real-time processing method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105989163A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106681837A (en) * | 2016-12-29 | 2017-05-17 | 北京奇虎科技有限公司 | Data sheet based data eliminating method and device |
CN106993060A (en) * | 2017-05-25 | 2017-07-28 | 北京仿真中心 | A kind of master data integrated approach based on service architecture |
CN108446362A (en) * | 2018-03-13 | 2018-08-24 | 平安普惠企业管理有限公司 | Data cleansing processing method, device, computer equipment and storage medium |
CN108874964A (en) * | 2018-06-07 | 2018-11-23 | 火烈鸟网络(广州)股份有限公司 | A kind of method and system in monitoring data library |
CN109241033A (en) * | 2018-08-21 | 2019-01-18 | 北京京东尚科信息技术有限公司 | The method and apparatus for creating real-time data warehouse |
CN110019269A (en) * | 2017-12-04 | 2019-07-16 | 北京京东尚科信息技术有限公司 | Method, system and the terminal device of data check |
CN110147391A (en) * | 2019-04-08 | 2019-08-20 | 顺丰速运有限公司 | Data handover method, system, equipment and storage medium |
CN110162519A (en) * | 2019-04-17 | 2019-08-23 | 苏宁易购集团股份有限公司 | Data clearing method |
CN111626716A (en) * | 2020-07-30 | 2020-09-04 | 浙江大学 | Agricultural test station teaching and scientific research online service system |
CN113821556A (en) * | 2021-09-16 | 2021-12-21 | 江苏方天电力技术有限公司 | Data loading method and device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102033930A (en) * | 2010-12-17 | 2011-04-27 | 北京世纪互联工程技术服务有限公司 | Distributed memory database system |
CN102279885A (en) * | 2011-08-16 | 2011-12-14 | 中兴通讯股份有限公司 | Method and device for operating data by memory database |
CN102456076A (en) * | 2011-11-23 | 2012-05-16 | 北京安天电子设备有限公司 | System and method for mass fragment data aggregation |
CN102916844A (en) * | 2012-11-22 | 2013-02-06 | 南京恩瑞特实业有限公司 | Mass data fusion and real-time monitoring system |
-
2015
- 2015-03-04 CN CN201510095976.6A patent/CN105989163A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102033930A (en) * | 2010-12-17 | 2011-04-27 | 北京世纪互联工程技术服务有限公司 | Distributed memory database system |
CN102279885A (en) * | 2011-08-16 | 2011-12-14 | 中兴通讯股份有限公司 | Method and device for operating data by memory database |
CN102456076A (en) * | 2011-11-23 | 2012-05-16 | 北京安天电子设备有限公司 | System and method for mass fragment data aggregation |
CN102916844A (en) * | 2012-11-22 | 2013-02-06 | 南京恩瑞特实业有限公司 | Mass data fusion and real-time monitoring system |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106681837A (en) * | 2016-12-29 | 2017-05-17 | 北京奇虎科技有限公司 | Data sheet based data eliminating method and device |
CN106681837B (en) * | 2016-12-29 | 2020-10-16 | 北京奇虎科技有限公司 | Data elimination method and device based on data table |
CN106993060A (en) * | 2017-05-25 | 2017-07-28 | 北京仿真中心 | A kind of master data integrated approach based on service architecture |
CN110019269A (en) * | 2017-12-04 | 2019-07-16 | 北京京东尚科信息技术有限公司 | Method, system and the terminal device of data check |
CN108446362A (en) * | 2018-03-13 | 2018-08-24 | 平安普惠企业管理有限公司 | Data cleansing processing method, device, computer equipment and storage medium |
CN108874964A (en) * | 2018-06-07 | 2018-11-23 | 火烈鸟网络(广州)股份有限公司 | A kind of method and system in monitoring data library |
CN109241033A (en) * | 2018-08-21 | 2019-01-18 | 北京京东尚科信息技术有限公司 | The method and apparatus for creating real-time data warehouse |
CN110147391A (en) * | 2019-04-08 | 2019-08-20 | 顺丰速运有限公司 | Data handover method, system, equipment and storage medium |
CN110162519A (en) * | 2019-04-17 | 2019-08-23 | 苏宁易购集团股份有限公司 | Data clearing method |
WO2020211299A1 (en) * | 2019-04-17 | 2020-10-22 | 苏宁云计算有限公司 | Data cleansing method |
CN111626716A (en) * | 2020-07-30 | 2020-09-04 | 浙江大学 | Agricultural test station teaching and scientific research online service system |
CN113821556A (en) * | 2021-09-16 | 2021-12-21 | 江苏方天电力技术有限公司 | Data loading method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105989163A (en) | Data real-time processing method and system | |
JP6887544B2 (en) | Enriching events with dynamically typed big data for event processing | |
US11341131B2 (en) | Query scheduling based on a query-resource allocation and resource availability | |
US11321321B2 (en) | Record expansion and reduction based on a processing task in a data intake and query system | |
US10447772B2 (en) | Managed function execution for processing data streams in real time | |
US20200364223A1 (en) | Search time estimate in a data intake and query system | |
US10069916B2 (en) | System and method for transparent context aware filtering of data requests | |
US20190258635A1 (en) | Determining Records Generated by a Processing Task of a Query | |
US20190310977A1 (en) | Bucket data distribution for exporting data to worker nodes | |
CN111339071B (en) | Method and device for processing multi-source heterogeneous data | |
US9767149B2 (en) | Joining data across a parallel database and a distributed processing system | |
CN108776934B (en) | Distributed data calculation method and device, computer equipment and readable storage medium | |
CN105045607B (en) | A method of realizing a variety of big data Computational frame unified interfaces | |
US8635250B2 (en) | Methods and systems for deleting large amounts of data from a multitenant database | |
CN111339073A (en) | Real-time data processing method and device, electronic equipment and readable storage medium | |
CN111831420A (en) | Method, apparatus, electronic device, and computer-readable storage medium for task scheduling | |
JP7038740B2 (en) | Data aggregation methods for cache optimization and efficient processing | |
TW201820165A (en) | Server and cloud computing resource optimization method thereof for cloud big data computing architecture | |
US9992269B1 (en) | Distributed complex event processing | |
Lai et al. | Towards a framework for large-scale multimedia data storage and processing on Hadoop platform | |
CN107103064B (en) | Data statistical method and device | |
JP2014531092A (en) | Distributed data stream processing method and system | |
KR20150092586A (en) | Method and Apparatus for Processing Exploding Data Stream | |
CN108573029A (en) | Method, device and storage medium for acquiring network access relation data | |
CN112631754A (en) | Data processing method, data processing device, storage medium and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161005 |