CN105987879B - 近岸河口水色参数反演装置 - Google Patents

近岸河口水色参数反演装置 Download PDF

Info

Publication number
CN105987879B
CN105987879B CN201610223352.2A CN201610223352A CN105987879B CN 105987879 B CN105987879 B CN 105987879B CN 201610223352 A CN201610223352 A CN 201610223352A CN 105987879 B CN105987879 B CN 105987879B
Authority
CN
China
Prior art keywords
parameter
water colour
water
river mouth
inversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610223352.2A
Other languages
English (en)
Other versions
CN105987879A (zh
Inventor
高会贤
韩留生
贾致荣
范俊甫
逯跃锋
李鸿彬
王云峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201610223352.2A priority Critical patent/CN105987879B/zh
Publication of CN105987879A publication Critical patent/CN105987879A/zh
Application granted granted Critical
Publication of CN105987879B publication Critical patent/CN105987879B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明实施例提供了一种近岸河口水色参数反演装置。本发明实施例通过获取近岸河口的遥感反射率及水色参数,建立水体生物光学模型,并根据所述获取的遥感反射率及水色参数对该水体生物光学模型进行参数优化。然后基于上述水体生物光学模型的参数优化结果建立生物光学模型的近岸河口的水色参数反演模型,实现对所述近岸河口的水色参数反演,得到反演结果。本发明实施例可提高近岸河口水色参数的反演精度。

Description

近岸河口水色参数反演装置
技术领域
本发明涉及水色光学遥感反演领域,具体而言,涉及一种基于水体组分光谱非线性效应校正的近岸河口水色参数反演装置及方法。
背景技术
目前,基于生物光学的反演模型能够计算水色三要素(CDOM、悬浮物、叶绿素a)的浓度。生物光学模型具有较好的物理意义和一定的普适性,因而得到了越来越多的水色遥感学者的广泛关注和使用。然而,近岸河口水体固有光学特性参数难以直接测量,导致近岸河口难以应用生物光学模型。水体生物光学模型也都是假设水体各组分固有光学特性之间的组合为线性的,而事实上高度混浊的近岸河口水体各组分之间为复杂的非线性关系,直接采用这种假设可能导致水色参数反演的失败。
发明内容
鉴于以上内容,本发明实施例提供一种近岸河口水色参数反演装置,应用于水色参数反演设备。所述反演装置包括:
参数获取模块,用于获取近岸河口的遥感反射率及水色参数;
光学模型优化模块,用于建立水体生物光学模型,并根据所述获取的遥感反射率及水色参数对该水体生物光学模型进行参数优化;
反演模型建立模块,用于基于上述水体生物光学模型的参数优化结果建立生物光学模型的近岸河口的水色参数反演模型,实现对所述近岸河口的水色参数反演,得到反演结果;及
所述结果输出模块,用于通过所述水色参数反演设备的输出装置输出所述水色参数的反演结果。
本发明实施例还提供一种应用于所述水色参数反演设备的近岸河口水色参数反演方法,包括:
参数获取步骤,获取近岸河口的遥感反射率及水色参数;
光学模型优化步骤,建立水体生物光学模型,并根据所述获取的遥感反射率及水色参数对该水体生物光学模型进行参数优化;
反演模型建立步骤,基于上述水体生物光学模型的参数优化结果建立生物光学模型的近岸河口的水色参数反演模型,实现对所述近岸河口的水色参数反演,得到反演结果;及
所述结果输出步骤,通过所述水色参数反演设备的输出装置输出所述水色参数的反演结果。
与现有技术相比,本发明实施例提供的近岸河口水色参数反演装置及方法结合水体动态特性的固有光学特性模型和生物 光学正演模型,模拟不同组分组合的水体反射率特征,分析实测反射率与模拟反射率之间的响应规律,进而研究高混浊近岸河口不同水体组分复杂的非线性耦合效应,可有效提高水质参数的反演精度。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明较佳实施例提供的基于水体组分光谱非线性效应校正以用于对近岸河口水色参数进行反演的水色参数反演设备的方框示意图。
图2是本发明较佳实施例提供的应用于图1所示的水色参数反演设备的水色参数反演方法的流程图。
图3是图1所示的水色参数反演设备通过网络与多个走航式观测设备通信的示意图。
图4为正演模拟的遥感反射率光谱与实测的遥感反射率光谱对比图。
图5是由531nm外推到其他波段(412、443、490、555、667nm处)的反射率验证结果示意图。
图6为模拟的Rrs(531)的反射率与模拟的Rrs(412)、Rrs(443)、Rrs(490)、Rrs(555)反射率的拟合结果示意图。
图7为实测的悬浮物与模拟的悬浮物的对比散点的示意图。
图8为实测的CDOM与模拟的CDOM的对比散点的示意图。
图9为实测的叶绿素a与模拟的叶绿素a的对比散点的示意图。
主要元件符号说明
具体实施方式
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,是本发明较佳实施例提供的基于水体组分光谱非线性效应校正以用于对近岸河口水色参数进行反演的水色参数反演设备100的方框示意图。所述水色参数反演设备100。所述水色参数反演设备100可以是,但不限于,个人电脑(personal computer,PC)、平板电脑、服务器等具备数据分析及处理能力的计算设备。
所述水色参数反演设备100还包括一反演装置10、存储器12以及处理器13。本发明较佳实施例中,反演装置10包括至少 一个可以软件或固件(firmware)的形式存储于所述存储器12中或固化在所述水色参数反演设备100的操作系统(operating system,OS)中的软件功能模块。所述处理器13用于执行所述存储器12中存储的可执行软件模块,例如所述反演装置10所包括的软件功能模块及计算机程序等。本实施例中,所述反演装置10也可以集成于所述操作系统中,作为所述操作系统的一部分。具体地,所述反演装置10包括参数获取模块101、光学模型优化模块102、反演模型建立模块103及结果输出模块104。所应说明的是,在其他实施例中,所述反演装置10包括的上述功能模块中的其中一部分也可省略,或者其还可以包括其他更多的功能模块。
下面将结合图2对上述各功能模块做详细介绍。
请参阅图2,是本发明较佳实施例提供的应用于图1所示的水色参数反演设备100的水色参数反演方法的流程图。下面将对图2所示的具体流程和步骤进行详细阐述。
步骤S01,所述参数获取模块101获取近岸河口的遥感反射率及水色参数。所述水色参数包括CDOM(有色可溶性有机物,Colored dissolved organic matter)、悬浮物、叶绿素a的浓度。
具体地,所说的遥感反射率可通过对各探测样点的实地测量获得,所述水色参数可通过实验化验获得。可在设定的实验区的水域进行走航式观测,取各个样点的遥感反射率以及同步的水色参数,然后通过所述水色参数反演设备100的输入装置11参数(如鼠标、键盘等)手动录入的方式获得所述遥感反射率及水色参数。其中,可通过光谱采集方法在水面以上进行测量得到所述遥感反射率。在测量水体光谱时,为了避免阴影和 太阳直射光照的影响,采用下述的观测几何角度。观测方位角为135°左右(设太阳入射的方位角为0°),观测天顶角θ为40°左右。测量的数据包括:标准板反射辐亮度、遮挡直射阳光的标准板反射辐亮度、水面辐亮度、天空光辐亮度和标准板反射辐亮度。在测量波谱的同时,记录各测点的GPS坐标。在实验化验得到水色参数时,可将在各观测点采集的水体采样样本装在棕色瓶内密封冷冻保存,送到实验室测量。叶绿素a的测定采用分光光度法测量,悬浮物采用烘干称重法,CDOM的光谱吸收系数采用分光光度法测定。
另外,本实施例中,也可在设定的实验区,例如徐闻珊瑚礁自然保护区(25个点)、珠江口(18个点)、韩江河口(22个点)灯三个试验区分别设置走航式观测设备200,由走航式观测设备200测试所述遥感反射率以及采集水样化验获得所述水色参数。进一步地,如图3所示,所述水色参数反演设备100可通过网络与所述多个实验区分别设置的走航式观测设备200通信,进而自动通过所述走航式观测设备200获取所述遥感反射率以及水色参数。
步骤S02:所述光学模型优化模块102建立水体生物光学模型,并根据所述获取的遥感反射率及水色参数对该水体生物光学模型进行参数优化。
具体地,建立的水体生物光学模型如下:
其中:Rrs(λ)为遥感反射率,f/Q是一个与区域、光照、风速等有关的系数,aw(λ)是水体吸收系数,bbw(λ)为水体后向散射系数,ag(λ)为CDOM在波长λ处的吸收系数,ax(λ)为悬浮物在波长λ处的吸收系数,aph(λ)为叶绿素a在波长λ处的吸收系数,bbx(λ)为波长λ处的悬浮物的后向散射系数。
式(1)中,所述Rrs(λ)为实测的遥感反射率;aw(λ)、bbw(λ)可以直接从文献中获取;ag(λ)由440nm波长处的CDOM吸收系数获取;ax(λ)由悬浮物浓度获取;aph(λ)由叶绿素a浓度获取;因此,上述水体生物光学模型中只有bbx和f/Q为未知量,通过迭代优化求解方程组,然后采用模拟退火算法优化迭代求解bbx和f/Q,即可实现对所述水体生物光学模型的参数优化。
其中,CDOM的吸收系数ag(λ)可以很好地用指数函数描述,具体形式如下式:
式中,ag(λ)为CDOM在波长λ处的吸收系数,ag0)为CDOM在参考波长处的吸收系数,λ0是参考波长,一般取440nm。Sg为斜率,取值一般为0.015。
所述TSS的吸收系数模型可以表示为下式:
式中,ax(λ)为非色素颗粒物在波长λ处的吸收系数,Sx一般取值为0.0113,ax0)为悬浮物在参考波长处的吸收系数,λ0是 参考波长,一般取440nm,在本发明实施例中ax(440)=0.0216*[TSS]1.0247
浮游植物吸收系数与波长的关系,可以表示为下式:
aph(λ)=A(λ)aph0)B(λ) (8)
式中,aph(λ)为浮游植物在波长λ处的吸收系数,aph0)为浮游植物在参考波长处的吸收系数,两者之间的关系可以用幂函数描述:aph(443)=0.067*[Chla]0.607,A(λ)、B(λ)为随波长变化的常量。
在上述悬浮物的后向散射系数bbx(λ)和光场函数f/Q的优化步骤中,只有bbx(λ)和f/Q为未知量,需要迭代优化求解方程组。例如,可选择珠江口和徐闻珊瑚礁保护区(N=43)的数据进行模型参数优化,通过模拟退火算法迭代得到f/Q=0.1049,bbx(531)=0.268*[TSS]0.295
在上述式(1)的模型中,输入Chla浓度、TSS浓度,440nm处的CDOM的吸收系数即可模拟得到531nm处的遥感反射率。将Rrs(531)外推到其他波段(见图4,图5,外推的其他波长处的遥感反射率除了667nm处误差较大外(RMSE=0.0036,MRE=27.4%,N=22),其他波段都具有较好的精度(RMSE<0.0023,MRE<18.1%,N=22),结果表明,优化的bbx和f/Q能够适合本研究区生物光学模型参数的模拟。
在完成bbx和f/Q的优化之后,基于上述水体生物光学模型,如果已知CDOM、悬浮物、叶绿素a的浓度就可以模拟出对应 水体的遥感反射率,在此基础上即可开发出基于水体生物的光学正演模型。
步骤S03,所述反演模型建立模块103基于上述水体生物光学模型的参数优化结果建立生物光学模型的近岸河口的水色参数反演模型,实现对所述近岸河口的水色参数反演,得到反演结果。
具体地,该步骤S03包括以下子步骤:
步骤S031,对生物光学模型水体各组分之间进行非线性校正,具体为:基于所述光学正演模型模拟的遥感反射率及实测遥感反射率分析近岸河口水体各组分之间的响应机理,在响应规律分析的基础上构建水体各组分之间的非线性校正模型。
步骤S032,将优化的参数(bbx和f/Q等)作为已知参数,获取遥感反射率,建立水色参数的函数。具体地,在获取遥感反射率之后,使得所述水体生物光学模型中只存在三个水色参数为未知数,遥感反射率则可以看做是水色参数的函数,具体如下式:
其中,式(2)中,A(包括A11、A12、A13、A51、A52、A53等)是M*N的矩阵,M行代表波段数,N列代表水质量参数;X是三个未知水色参数(CDOM、悬浮物、叶绿素a)的列向量;Ysimulated为代表M波段数的行向量。
步骤S033,构建约束条件。本实施例中,为了避免无限制的迭代计算,根据模型的适用范围,以及实验区水质参数的最大值及最小值值域,设置的非线性方程的约束条件为:
式(3)中X1为叶绿素a的浓度(单位:μg/l);X2为CDOM的浓度(单位:m-1);X3为悬浮物的浓度(单位:mg/l),这样方程就变为约束条件的非线性方程组。
步骤S034,根据上述构建的约束条件求解水色参数,得到反演结果。具体地,在构建好所述约束条件之后,即可转换为计算式(2)的最小二乘解,如下:
在上述步骤S03中,基于水体生物光学理论的水质参数的正演与反演模型,分析近岸河口水体各组分之间的响应机理,进行水体各组分之间非线性校正。通过图6可知,模拟的Rrs(531)与实测的Rrs(531)具有较好的线性关系(模型优化数据:RMSE=0.0016,N=43;模型验证数据:RMSE=0.0008,N=22),其它波段模拟值与实测值相关性较差(图6),这说明在531nm处各组分之间的关系可以看做线性的,其它波段的水体各组分为 非线性的组合。而模拟的Rrs(531)与模拟Rrs(412)、Rrs(443)、Rrs(490)、Rrs(555)波段的反射率具有较好的相关性,采用模拟的Rrs(531)与模拟Rrs(412)、Rrs(443)、Rrs(490)、Rrs(555)波段的关系,利用实测的Rrs(531)对其它波段(Rrs(412)、Rrs(443)、Rrs(490)、Rrs(555))的反射率进行纠正,纠正后的各波段的水体组分之间即可看做线性的组合。
另外,从图7,图8,和图9中可以看出,TSS(RMSE=12.6mg/l,MRE=24.6%,N=61)与CDOM(RMSE=0.729mg/l,MRE=26.3%,N=60)的反演结果较好。叶绿素的反演结果为(RMSE=2.3μg/l,MRE=124.7%,N=56),相对上述两个参数稍差,但也达到了较高的反演精度。
步骤S04,所述结果输出模块104输出所述水色参数的反演结果。具体地,本实施例中,可通过所述水色参数反演设备的输出装置,如显示器,输出所述水色参数反演结果,进而方便相关人员观测。
综上所述,本发明实施例的近岸河口水色参数的反演方法主要包括以下几个方面:
a.悬浮物的后向散射系数bbx和光场函数f/Q的优化。以地面实测(如通过走航式观测设备观测的方式)的遥感反射率、水色三要素(Chla、TSS、CDOM在440nm处的吸收系数)为数 据源,用模拟退火算法迭代优化近岸二类水体生物光学模型中的bbx和f/Q。所述Chla、TSS分别代表叶绿素a和悬浮物。
b.生物光学模型水体各组分之间的非线性校正。基于水体生物光学理论的水质参数的正演与反演模型,分析近岸河口水体各组分之间的响应机理,进一步研究生物光学理论中水体各组分之间非线性的校正,使用实测的Rrs(531)对其它波段进行纠正,将纠正后的遥感反射率输入到构建的生物光学反演模型中。
本发明的算例结果表明,简化了近岸河口水体固有光学特性参数获取方法,使用实测的Rrs(531)对其它波段进行纠正能改进生物光学模型水体各组分之间非线性效应,极大的提高了水质参数的反演精度。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (3)

1.一种近岸河口水色参数反演装置,应用于水色参数反演设备,所述水色参数反演设备通过网络与多个实验区分别设置的走航式观测设备通信,其特征在于,所述反演装置包括:
参数获取模块,用于通过网络从所述走航式观测设备获取监测得到的近岸河口的遥感反射率及水色参数;
光学模型优化模块,用于建立水体生物光学模型,并根据所述获取的遥感反射率及水色参数对该水体生物光学模型进行参数优化;
反演模型建立模块,用于基于上述水体生物光学模型的参数优化结果建立生物光学模型的近岸河口的水色参数反演模型,实现对所述近岸河口的水色参数反演;得到反演结果;及结果输出模块,用于通过所述水色参数反演设备的输出装置输出所述水色参数的反演结果;
反演模型建立模块通过执行以下步骤实现对所述近岸河口的水色参数反演,得到反演结果:
对生物光学模型水体各组分之间进行非线性校正,具体为:基于所述光学正演模型模拟的遥感反射率及实测遥感反射率分析近岸河口水体各组分之间的响应机理,在响应规律分析的基础上构建水体各组分之间的非线性校正模型;
将优化的参数bbx和f/Q作为已知参数,获取遥感反射率,建立水色参数的函数,所述水色参数的函数如下:
其中,A11、A12、A13、A51、A52、A53是M*N的矩阵,M行代表波段数,N列代表水质量参数;X1、X2、X3分别是三个未知水色参数的列向量;Ysimulated为代表M波段数的行向量;
构建非线性方程的约束条件,如下式:
其中,X1为叶绿素a的浓度,X2为CDOM的浓度,X3为悬浮物的浓度;
根据上述构建的约束条件求解水色参数,得到反演结果。
2.如权利要求1所述的近岸河口水色参数反演装置,其特征在于,所述水色参数包括CDOM、悬浮物、叶绿素a的浓度。
3.如权利要求2所述的近岸河口水色参数反演装置,其特征在于,所述建立的水体生物光学模型如下:
其中:Rrs(λ)为遥感反射率,f/Q是一个与区域、光照、风速有关的系数,aw(λ)是水体吸收系数,bbx(λ)为水体后向散射系数,ag(λ)为CDOM在波长λ处的吸收系数,ax(λ)为悬浮物在波长λ处的吸收系数,aph(λ)为叶绿素a在波长λ处的吸收系数,bbx(λ)为波长λ处的悬浮物的后向散射系数:所述光学模型优化模块通过迭代优化求解方程组,然后采用模拟退火算法优化迭代求解bbx和f/Q,实现对所述水体生物光学模型的参数优化。
CN201610223352.2A 2016-04-12 2016-04-12 近岸河口水色参数反演装置 Expired - Fee Related CN105987879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610223352.2A CN105987879B (zh) 2016-04-12 2016-04-12 近岸河口水色参数反演装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610223352.2A CN105987879B (zh) 2016-04-12 2016-04-12 近岸河口水色参数反演装置

Publications (2)

Publication Number Publication Date
CN105987879A CN105987879A (zh) 2016-10-05
CN105987879B true CN105987879B (zh) 2019-04-16

Family

ID=57044155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610223352.2A Expired - Fee Related CN105987879B (zh) 2016-04-12 2016-04-12 近岸河口水色参数反演装置

Country Status (1)

Country Link
CN (1) CN105987879B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891124B (zh) * 2016-04-12 2019-04-16 山东理工大学 近岸河口水色参数反演装置及方法
CN107014763B (zh) * 2017-04-07 2019-11-26 山东理工大学 叶绿素遥感反演装置及方法
CN108956505B (zh) * 2018-09-18 2021-05-28 航天信德智图(北京)科技有限公司 基于Sentinel-2图像的小型水体中叶绿素a浓度的检测方法及装置
CN110196239B (zh) * 2019-06-12 2020-09-29 中国科学院南京地理与湖泊研究所 浑浊水体浮游植物吸收系数光谱遥感反演方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493409A (zh) * 2008-12-11 2009-07-29 中山大学 一种自动提取水体污染信息的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891124B (zh) * 2016-04-12 2019-04-16 山东理工大学 近岸河口水色参数反演装置及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493409A (zh) * 2008-12-11 2009-07-29 中山大学 一种自动提取水体污染信息的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"近岸二类水体生物光学模型参数优化";韩留生;《热带地理》;20140531;第34卷(第3期);第351-358页
八、高光谱遥感应用-水质参数反演;张兵;《豆丁文库》;20150125;ppt第1-30页

Also Published As

Publication number Publication date
CN105987879A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
CN107014763B (zh) 叶绿素遥感反演装置及方法
Liu et al. An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters
CN105987879B (zh) 近岸河口水色参数反演装置
CN105891124B (zh) 近岸河口水色参数反演装置及方法
CN107589075B (zh) 一种浅水湖泊固有光学参数的olci遥感监测方法
CN105303030B (zh) 一种富营养化湖泊藻类高斯垂向分布结构参数的modis遥感估算方法
CN102103203A (zh) 基于环境一号卫星的地表温度单窗反演方法
CN111538940B (zh) 悬浮物浓度反演模型确定方法及悬浮物浓度确定方法
CN202939121U (zh) 一种基于水体光学特性的综合采集处理系统
Chen et al. Deriving colored dissolved organic matter absorption coefficient from ocean color with a neural quasi‐analytical algorithm
Gernez et al. Vertical changes in the probability distribution of downward irradiance within the near‐surface ocean under sunny conditions
CN110196239A (zh) 浑浊水体浮游植物吸收系数光谱遥感反演方法
CN105784606A (zh) 一种基于光学特性的水质监控系统
Wang et al. Improved atmospheric correction algorithm for Landsat 8–OLI data in turbid waters: a case study for the Lake Taihu, China
Jiang et al. Remote determination of chromophoric dissolved organic matter in lakes, China
Chen et al. Scale correction of two-band ratio of red to near-infrared using imagery histogram approach: A case study on Indian remote sensing satellite in Yellow River estuary
Kobayashi et al. Optical properties of inorganic suspended solids and their influence on ocean colour remote sensing in highly turbid coastal waters
CN105092523A (zh) 一种基于近红外技术的水质中磷的检测
CN114674461A (zh) 海表温度的确定方法、装置及可读存储介质
Zhan et al. Estimation of Optical Properties using QAA-V6 model based on MODIS data
CN114494501A (zh) 一种水体叶绿素a的重构方法及装置
Qu et al. Adaptive iterative optimization method for spectral calibration based on deep learning
CN108896502A (zh) 层化水体生物光学模型的构建方法
Bagheri et al. Retrieval of marine water constituents from AVIRIS data in the Hudson/Raritan Estuary
Oyama et al. Simulation of water colors in a shallow acidified lake, Lake Onneto, Japan, using colorimetric analysis and bio-optical modeling

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190416

Termination date: 20200412

CF01 Termination of patent right due to non-payment of annual fee