CN105973584B - 一种小波包频域信号流形学习故障诊断方法 - Google Patents

一种小波包频域信号流形学习故障诊断方法 Download PDF

Info

Publication number
CN105973584B
CN105973584B CN201610436071.5A CN201610436071A CN105973584B CN 105973584 B CN105973584 B CN 105973584B CN 201610436071 A CN201610436071 A CN 201610436071A CN 105973584 B CN105973584 B CN 105973584B
Authority
CN
China
Prior art keywords
data
signal
frequency
component
wavelet packet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610436071.5A
Other languages
English (en)
Other versions
CN105973584A (zh
Inventor
谷玉海
马超
左云波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Kexin Electromechanical Technology Research Institute Co ltd
Original Assignee
Beijing Information Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Information Science and Technology University filed Critical Beijing Information Science and Technology University
Priority to CN201610436071.5A priority Critical patent/CN105973584B/zh
Publication of CN105973584A publication Critical patent/CN105973584A/zh
Application granted granted Critical
Publication of CN105973584B publication Critical patent/CN105973584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising
    • G06F2218/06Denoising by applying a scale-space analysis, e.g. using wavelet analysis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明涉及一种小波包频域信号流形学习故障诊断方法,其步骤:采集旋转机械设备上的振动数据,将采集的振动数据进行N层小波包分解,生成2N个分量时域信号;对分解产生的各分量时域信号进行希尔伯特包络解调处理后,提取调制信号;对解调信号进行FIR滤波处理;以低采样频率对各分量时域信号进行重采样降低数据长度;对各分层重采样数据进行自相关计算并归一化形成自相关系数;对各分量归一化后的自相关系数值计算功率谱,采用设定阈值对功率谱数据进行阈值处理,将经过阈值处理后的功率谱数据形成高维数据向量;对高维数据向量进行降维处理,将各分量功率谱数据组合形成L×2N维矩阵,最终形成2维或3维流形,通过流形结果判断旋转机械设备的故障状态。

Description

一种小波包频域信号流形学习故障诊断方法
技术领域
本发明涉及一种机械设备故障诊断方法,特别是关于一种旋转机械设备的小波包频域信号流形学习故障诊断方法。
背景技术
对旋转机械的关键部位采集振动信号,通从振动信号中提取与故障相关的敏感特征并进行分析是目前主要的旋转机械故障诊断方法。对振动信号进行消噪提纯预处理后,只提取单一特征信息往往难以有效判断设备的故障状态。采用多种特征提取方法获取多项特征并综合运用能够更准确的判断设备状态,但特征信息的增加致使信息维数大量增加,给工程应用带来困难。由多种特征参数构成的高维特征向量的结构不同,其的对应的故障状态不同,采用流形学习方法可以将高维数据的内部结构可视化的表达出来,直观的区分故障状态。流形学习算法(Manifold Learning)是一种非线性机器学习算法,能够根据高维数据的内在规律或空间几何结构将高维空间数据映射至低维空间表示,以二维或三维流形分布形式将高维空间中数据之间的相似度或距离可视化的表示出来。现在研究较多的流形学习算法主要有主成分分析(PCA)算法、局部线性嵌入(LLE)算法、等距映射(Isomap)算法、局部切空间排列算法(LTSA)等,这些流形学习算法在机械故障诊断领域已有很多应用,但这些算法在机械故障诊断应用中多数存在非线性数据拥挤,低维流形表达不够清晰等问题。
发明内容
针对上述问题,本发明的目的是提供一种小波包频域信号流形学习故障诊断方法,该方法能有效降低数据长度,使不同的故障状态形成2维或3为图形,处理后的结果更加规则和清晰。
为实现上述目的,本发明采取以下技术方案:一种小波包频域信号流形学习故障诊断方法,其特征在于,该方法包括以下步骤:1)采集旋转机械设备上的振动数据,将采集的振动数据进行N层小波包分解,生成2N个分量时域信号;2)对分解产生的各分量时域信号进行希尔伯特包络解调处理后,提取各分量时域信号中的调制信号;3)对解调信号进行FIR滤波处理以消除分量中的高频噪声;以低采样频率对各分量时域信号进行重采样降低数据长度;4)对各分层重采样数据进行自相关计算并归一化形成自相关系数;5)对各分量归一化后的自相关系数值计算功率谱,采用设定阈值对功率谱数据进行阈值处理,将经过阈值处理后的功率谱数据形成高维数据向量;6)采用t-SNE流形学习算法对高维数据向量进行降维处理,将各分量功率谱数据组合形成L×2N维矩阵,L为分量信号重采样后的数据长度;最终形成2维或3维流形,通过流形结果判断旋转机械设备的故障状态。
所述阈值处理为:保留大于设定阈值的功率谱数据,小于设定阈值的谱线设置为零。
所述高频噪声为0.5倍载波信号频率以上的频率成分。
所述低采样频率为0.5倍载波信号频率。
对各层重采样信号进行自相关计算并归一化,使最大值为1,归一化后的数据向量称为自相关系数向量。
本发明由于采取以上技术方案,其具有以下优点:本发明以t分布的随机近邻嵌入算法(t-SNE)为基础,采用小波包对采集的振动信号进行多层分解,然后对分解后的各层数据分别采用希尔伯特变换进行解调处理,进一步采用FIR滤波器消除高频噪声、通过低频重采样保留低频信号,降低数据长度,将处理后的各分层数据构造形成高维数据向量,采用流形学习算法对高维向量进行降维处理,最终形成2维或3为图形,不同的故障形式,其流形结果不同,藉此用于判断设备的故障状态。
附图说明
图1是本发明的整体流程示意图;
图2是采用PCA方法降维处理后不平衡故障对应的2维流形示意图;
图3是采用PCA方法降维处理后碰磨故障对应的2维流形示意图;
图4是采用PCA方法降维处理后基础松动对应的2维流形示意图;
图5是采用PCA方法降维处理后正常状态对应的2维流形示意图;
图6是本发明的t-SNE方法降维处理后不平衡故障对应的2维流形示意图;
图7是本发明的t-SNE方法降维处理后碰磨故障对应的2维流形示意图;
图8是本发明的t-SNE方法降维处理后基础松动对应的2维流形示意图;
图9是本发明的t-SNE方法降维处理后正常状态对应的2维流形示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
由于机器设备的振动信号是对设备运行状态进行诊断分析主要采用的信号,振动信号中所蕴含的很多特征信息与机器的运行状态相关,但是单独提取振动信号的一种特征信息很难有效的判断设备的运行状态。如图1所示,本发明提供一种小波包频域信号流形学习故障诊断方法,该方法是对由机器设备特定部位采集获得的振动数据通过小波包分解生成多层细节数据,由这些分层数据构成高维数据向量,不同层的数据中其蕴含的低频到高频的特征信息不同,不同的故障特征在不同分层中的频率成分分布不同,因此对不同的故障状态,所生成的高维数据之间的内部结构也会不同,最终通过流形学习降维处理后的二维可视化图形形状与故障状态形成映射关系。采用小波包分解后,从空间的角度观察,将原来1维数据分解为代表不同频率分量的高维数据,对与分解后的高维数据采用的特征提取方法,最终采用流形学习降维处理后的可视化图形也会不同。采用小波包将采集获得的振动信号分解为多层数据,采用希尔伯特变换进行包络解调获得低频的代表故障状态的调制信号成分,进一步采用FIR滤波器消除高频噪声、通过低频重采样保留低频信号,降低数据长度,将处理后的各分层数据进行自相关运算并归一化形成自相关系数,对各层自相关系数数据计算功率谱后按一定的阈值进行筛选处理,对大于阈值的数据保留,小于阈值的数据设置为零代替,对经过上述处理的分层数据构造形成高维数据向量,不同的故障状态,其在各分层数据中的频率成分包含的成分不同,通过流形学习算法对高维向量进行降维处理,最终形成2维或3维流形,不同的故障形式,其流形结果不同,藉此用于判断设备的故障状态。其具体步骤如下:
1)采集旋转机械设备上的振动数据,将采集的振动数据进行N层小波包分解,生成2N个分量时域信号;
2)对分解产生的各分量时域信号进行希尔伯特包络解调处理后,提取各分量时域信号中的调制信号;
3)对解调信号进行FIR滤波处理以消除分量中的高频噪声;以低采样频率对各分量时域信号进行数字重采样降低数据长度以提高计算速度;
其中,高频噪声是指0.5倍载波信号频率以上的频率成分;低采样频率是指0.5倍载波信号频率,载波信号频率是采样时,齿轮的拟合频率。
4)对各分层重采样数据进行自相关计算并归一化形成自相关系数向量,即向量中最大值为1;各分层重采样数据是指以低采样频率进行数字重采样后获得的信号;
其中,对各层重采样信号进行自相关计算并归一化,使最大值为1,归一化后的数据向量称为自相关系数向量。
5)对各分量归一化后的自相关系数值计算功率谱,采用设定阈值对功率谱数据进行阈值处理,保留大于设定阈值的功率谱数据,小于设定阈值的谱线设置为零,将经过阈值处理后的功率谱数据形成高维数据向量;通过阈值处理消除影响非常小的谱线数据以提高计算速度及减小干扰;
6)采用t-SNE流形学习算法对高维数据向量进行降维处理,将各分量功率谱数据组合形成L×2N维矩阵,L为分量信号重采样后的数据长度;最终形成2维或3维流形;不同的故障形式,其在各分层数据中的频率成分包含的成分不同,其流形结果不同,进而通过流形结果判断旋转机械设备的故障状态。
实施例:为了验证基于小波包分解频域特征生成高维数据方法的有效性,对在本特利RK4转子实验台上采集的正常状态、转子不平衡故障、碰磨故障以及基础松动故障数据,分别基于该方法生成高维数据矩阵并采用PCA及t-SNE流形学习算法进行验证,每种故障状态的数据长度为40960点。对4中状态的振动数据分别采用‘db1’小波进行4层小波包分解为16个分量数据,对各分量数据进行希尔伯特包络解调,对解调后数据按原采样频率的1/8频率进行FIR数字低通滤波,滤波后数据按原采样频率的1/4频率重采样,计算重采样数据的自相关函数并归一化形成自相关系数数据,对自相关系数数据计算其功率谱,将自相关系数功率谱数据采用阈值0.01进行筛选处理,最终组合生成640×16维频域特征数据。
首先采用PCA算法对构造形成的640×16维数据进行降维处理,生成2维可视化数据,4种不同的故障状态对应的降维处理结果分别如图2、图3、图4、图5所示。从4种状态降维处理后的流形图看出,PCA算法结果的数据出现了拥挤,形状特点不明显,用于故障诊断的效果要差一些。
采用t-SNE算法对640×16维数据进行降维处理,生成2维可视化数据,4中不同的故障状态对应的处理结果如图6、图7、图8、图9所示,从4种降维处理后的流形图看出,采用t-SNE降维处理生成的二维图形为椭圆形与弧线形的组合,不同的故障状态对应的椭圆形与弧线形也有很大区别,能够从二维流形图的形状判断设备故障状态,说明采用小波包分解频域特征构造高维数据及t-SNE算法能够较好的运用于设备的故障诊断。
综上所述,本发明通过采用小波包分解、希尔伯特变换包络解调、FIR滤波、低频重采样、计算自相关系数功率谱获得分层数据构造代表故障状态结构特征的高维数据向量,然后采用t-SNE流形学习算法将高维数据进行降维处理形成2维低维流形,通过不同的流形结构形式来判断机器设备的故障状态,形成机器设备的故障辨识。该方法进一步可以采用多个机器敏感特征部位的振动信号分别进行小波包分解,统一构造形成高维数据,采用该信号预处理及降维方法获得低维流形,用于辨识机器设备的故障状态。
上述各实施例仅用于说明本发明,各部件的结构、尺寸、设置位置及形状都是可以有所变化的,在本发明技术方案的基础上,凡根据本发明原理对个别部件进行的改进和等同变换,均不应排除在本发明的保护范围之外。

Claims (4)

1.一种小波包频域信号流形学习故障诊断方法,其特征在于,该方法包括以下步骤:
1)采集旋转机械设备上的振动数据,将采集的振动数据进行N层小波包分解,生成2N个分量时域信号;
2)对分解产生的各分量时域信号进行希尔伯特包络解调处理后,提取各分量时域信号中的调制信号;
3)对解调信号进行FIR滤波处理以消除分量中的高频噪声;以低采样频率对各分量时域信号进行重采样降低数据长度;
4)对各分层重采样数据进行自相关计算并归一化形成自相关系数;
5)对各分量归一化后的自相关系数值计算功率谱,采用设定阈值对功率谱数据进行阈值处理,将经过阈值处理后的功率谱数据形成高维数据向量,通过阈值处理消除影响非常小的谱线数据以提高计算速度及减小干扰;
所述阈值处理为:保留大于设定阈值的功率谱数据,小于设定阈值的谱线设置为零;
6)采用t-SNE流形学习算法对高维数据向量进行降维处理,将各分量功率谱数据组合形成L×2N维矩阵,L为分量信号重采样后的数据长度;最终形成2维或3维流形,通过流形结果判断旋转机械设备的故障状态。
2.如权利要求1所述的一种小波包频域信号流形学习故障诊断方法,其特征在于:所述高频噪声为0.5倍载波信号频率以上的频率成分。
3.如权利要求1所述的一种小波包频域信号流形学习故障诊断方法,其特征在于:所述低采样频率为0.5倍载波信号频率。
4.如权利要求1所述的一种小波包频域信号流形学习故障诊断方法,其特征在于:对各层重采样信号进行自相关计算并归一化,使最大值为1,归一化后的数据向量称为自相关系数向量。
CN201610436071.5A 2016-06-17 2016-06-17 一种小波包频域信号流形学习故障诊断方法 Active CN105973584B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610436071.5A CN105973584B (zh) 2016-06-17 2016-06-17 一种小波包频域信号流形学习故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610436071.5A CN105973584B (zh) 2016-06-17 2016-06-17 一种小波包频域信号流形学习故障诊断方法

Publications (2)

Publication Number Publication Date
CN105973584A CN105973584A (zh) 2016-09-28
CN105973584B true CN105973584B (zh) 2018-08-10

Family

ID=57022801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610436071.5A Active CN105973584B (zh) 2016-06-17 2016-06-17 一种小波包频域信号流形学习故障诊断方法

Country Status (1)

Country Link
CN (1) CN105973584B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108985188B (zh) * 2018-06-28 2021-07-23 哈尔滨工程大学 一种基于多次喷射条件下分析燃烧噪声的信号处理方法
CN111721835B (zh) * 2020-06-28 2023-03-31 上海理工大学 空心钻磨削砂轮状态智能监测方法
CN113484652A (zh) * 2021-08-20 2021-10-08 国网福建省电力有限公司电力科学研究院 一种基于改进k近邻算法的避雷器故障诊断方法及系统
CN117292706B (zh) * 2023-11-24 2024-01-26 天津声格智能科技有限公司 管道气体泄漏声音诊断方法、系统、设备和介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091096A (zh) * 2013-01-23 2013-05-08 北京信息科技大学 基于eemd和小波包变换的早期故障敏感特征提取方法
CN103234767A (zh) * 2013-04-21 2013-08-07 蒋全胜 基于半监督流形学习的非线性故障检测方法
CN105134619A (zh) * 2015-09-28 2015-12-09 北京航空航天大学 一种基于小波能量、流形降维和动态时间规整的故障诊断与健康评估方法
CN105547698A (zh) * 2015-12-31 2016-05-04 新疆金风科技股份有限公司 滚动轴承的故障诊断方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674876B1 (en) * 2000-09-14 2004-01-06 Digimarc Corporation Watermarking in the time-frequency domain
US7493220B2 (en) * 2007-03-22 2009-02-17 Commtest Instruments Limited Method and system for vibration signal processing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091096A (zh) * 2013-01-23 2013-05-08 北京信息科技大学 基于eemd和小波包变换的早期故障敏感特征提取方法
CN103234767A (zh) * 2013-04-21 2013-08-07 蒋全胜 基于半监督流形学习的非线性故障检测方法
CN105134619A (zh) * 2015-09-28 2015-12-09 北京航空航天大学 一种基于小波能量、流形降维和动态时间规整的故障诊断与健康评估方法
CN105547698A (zh) * 2015-12-31 2016-05-04 新疆金风科技股份有限公司 滚动轴承的故障诊断方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
随机近邻嵌入分析方法及其在水电机组故障诊断中的应用;邱虹;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20160315;第8页第10段 *

Also Published As

Publication number Publication date
CN105973584A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
CN105973584B (zh) 一种小波包频域信号流形学习故障诊断方法
Yan et al. Application of CSA-VMD and optimal scale morphological slice bispectrum in enhancing outer race fault detection of rolling element bearings
Zhao et al. Deep convolutional neural network based planet bearing fault classification
Zhang et al. Time-varying singular value decomposition for periodic transient identification in bearing fault diagnosis
Yan et al. Improved Hilbert–Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis
CN106096154A (zh) 一种小波包时域信号流形学习故障诊断方法
Dybała et al. Rolling bearing diagnosing method based on empirical mode decomposition of machine vibration signal
CN102607845A (zh) 基于自适应拟合冗余提升小波变换的轴承故障特征提取方法
CN111397896A (zh) 一种旋转机械故障诊断方法、系统及存储介质
CN101259016A (zh) 实时自动检测癫痫特征波的方法
Hu et al. A new multiscale noise tuning stochastic resonance for enhanced fault diagnosis in wind turbine drivetrains
CN110806315B (zh) 一种基于倒位编辑的齿轮箱复合故障诊断方法
CN107525671B (zh) 一种风电机组传动链复合故障特征分离与辨识方法
Faysal et al. Noise eliminated ensemble empirical mode decomposition for bearing fault diagnosis
Ding et al. Transient feature extraction based on time–frequency manifold image synthesis for machinery fault diagnosis
CN112485028B (zh) 振动信号的特征频谱提取方法及机械故障诊断分析方法
Chen et al. A visualized classification method via t-distributed stochastic neighbor embedding and various diagnostic parameters for planetary gearbox fault identification from raw mechanical data
Jiang et al. Study on nature of crossover phenomena with application to gearbox fault diagnosis
Bao et al. Anti-aliasing lifting scheme for mechanical vibration fault feature extraction
CN106383028A (zh) 一种齿轮箱故障的诊断方法
CN109635306A (zh) 基于小波分解和谱峭度的旋转机械故障诊断方法
Zheng et al. A dichotomy-based variational mode decomposition method for rotating machinery fault diagnosis
CN117571316A (zh) 一种复合故障诊断方法及系统
Ou et al. Compound fault diagnosis of gearboxes based on GFT component extraction
CN116698385A (zh) 一种抗强噪声干扰的机械设备健康状态监测方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221018

Address after: Room B51, Jiali Hotel, No. 21, Jiuxianqiao Road, Chaoyang District, Beijing 100016

Patentee after: Beijing Kexin Electromechanical Technology Research Institute Co.,Ltd.

Address before: 100192 Key Laboratory of Beijing city of Haidian District and small business Qinghe Road No. 12 electromechanical system

Patentee before: BEIJING INFORMATION SCIENCE AND TECHNOLOGY University

TR01 Transfer of patent right