CN105958092A - 一种带温度补偿的甲醇重整制氢装置 - Google Patents

一种带温度补偿的甲醇重整制氢装置 Download PDF

Info

Publication number
CN105958092A
CN105958092A CN201610532580.8A CN201610532580A CN105958092A CN 105958092 A CN105958092 A CN 105958092A CN 201610532580 A CN201610532580 A CN 201610532580A CN 105958092 A CN105958092 A CN 105958092A
Authority
CN
China
Prior art keywords
temperature compensation
cracking reaction
sheet metal
cracking
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610532580.8A
Other languages
English (en)
Other versions
CN105958092B (zh
Inventor
沈建跃
陈刚
孙亚秀
杨卫华
黄锘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU QINGJIE POWER SUPPLY TECHNOLOGY Co Ltd
Original Assignee
SUZHOU QINGJIE POWER SUPPLY TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU QINGJIE POWER SUPPLY TECHNOLOGY Co Ltd filed Critical SUZHOU QINGJIE POWER SUPPLY TECHNOLOGY Co Ltd
Priority to CN201610532580.8A priority Critical patent/CN105958092B/zh
Publication of CN105958092A publication Critical patent/CN105958092A/zh
Application granted granted Critical
Publication of CN105958092B publication Critical patent/CN105958092B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种带温度补偿的甲醇重整制氢装置。本发明的技术方案是:一种带温度补偿的甲醇重整制氢装置,包括裂解催化剂、裂解反应腔、甲醇水进液管、合成催化剂负载、进水管以及设置在裂解反应腔和合成催化剂负载之间的温度补偿装置,所述温度补偿装置为双金属片,所述双金属片包括上下设置的第一金属片和第二金属片,所述第一金属片的膨胀系数小于第二金属片的膨胀系数。本发明提供的方案其热损耗低且系统的效率得到提高。

Description

一种带温度补偿的甲醇重整制氢装置
技术领域
本发明涉及燃料电池技术领域,特别涉及一种带温度补偿的甲醇重整制氢装置。
背景技术
甲醇重整制氢器是甲醇燃料电池系统中的核心部件。甲醇重整制氢器的本质是一个将储存在CH4O中的H2取出来,让氢气通过电堆,在电堆中H2分解成质子和电子,质子透过质子膜,电子形成回路发电。其中制取H2的过程是一个两部反应,可以理解为甲醇分解为CO和H2,此反应为裂解反应,以及CO+H2O生成CO2和H2的制氢的合成反应。
这两个反应的温度不一样,催化剂亦不相同,反应的温度也不一样。而为了降低CO的浓度,往往还有配套的CO移除装置,这种温度的不同,促成了对形变材料的研究,因为压力的变化会导致反应的速度变化,其中裂解反应为放热反应,合成反应为吸热反应,两个反应会发生热交换,如果裂解反应产生的热量很多而有得不到充分利用,这样就会造成热损耗,系统的效率就会降低。如何能有效降低热损耗,提高系统效率正是本发明人所要解决的问题。
发明内容
针对现有技术存在的不足,本发明的主要目的在于提供一种能够降低热损耗提高系统效率的带温度补偿的甲醇重整制氢装置。
为实现上述目的,本发明提供了如下技术方案:一种带温度补偿的甲醇重整制氢装置,包括裂解催化剂、裂解反应腔、甲醇水进液管、合成催化剂负载、进水管以及设置在裂解反应腔和合成催化剂负载之间的温度补偿装置,所述温度补偿装置为双金属片,所述双金属片包括上下设置的第一金属片和第二金属片,所述第一金属片的膨胀系数小于第二金属片的膨胀系数。
优选的,所述第一金属片为钢片,所述第二金属片为铜片。
优选的,所述裂解催化剂为柱状。
优选的,所述合成催化剂负载上涂覆有催化剂涂层。
优选的,所述裂解反应腔、合成催化剂负载上均设置有多个温度及压力传感器。
本发明相对于现有技术具有如下优点,因为两个反应的温度不一样,催化剂亦不相同,反应的温度也不一样。因为压力的变化会导致反应的速度变化。其中裂解反应为放热反应,合成反应为吸热反应,两个反应会发生热交换,如果裂解反应产生的热量很多而合成反应速率又很慢,这样就会造成热损耗,系统的效率就会降低。系统运行时,首先对裂解反应腔进行加热,裂解反应开始进行,裂解反应腔发生膨胀,这样裂解反应腔的体积变大,压力先变小然后变大,裂解反应产生的热量很多,系统的热效率降低。通过加入温度补偿装置,即双金属片受热膨胀,直至与裂解反应腔发生刚性接触,这样就会限制裂解反应腔的膨胀,所以裂解反应腔的体积会被限制,分解反应速率被限制,从而达到一种平衡,即裂解反应区产生的热量能够最大化的被利用,系统的热效率得到提高。
附图说明
图1为本发明的重整制氢装置在未工作时的结构示意图;
图2为本发明的重整制氢装置在进行温度补偿时的结构示意图。
图中:1、裂解催化剂;2、裂解反应腔;3、甲醇水进液管;4、合成催化剂负载;5、进水管;6、温度补偿装置;7、第一金属片;8、第二金属片。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1所示,一种带温度补偿的甲醇重整制氢装置,包括裂解催化剂1、裂解反应腔2、甲醇水进液管3、合成催化剂负载4、进水管5以及设置在裂解反应腔2和合成催化剂负载4之间的温度补偿装置6,所述温度补偿装置6为双金属片,所述双金属片包括上下设置的第一金属片7和第二金属片8,所述第一金属片7的膨胀系数小于第二金属片8的膨胀系数。
本发明的带温度补偿的甲醇重整制氢装置的工作原理是,因为两个反应的温度不一样,催化剂亦不相同,反应的温度也不一样。因为压力的变化会导致反应的速度变化。其中裂解反应为放热反应,合成反应为吸热反应,两个反应会发生热交换,如果裂解反应产生的热量很多而合成反应速率又很慢,这样就会造成热损耗,系统的效率就会降低。现有技术中,系统运行时,首先对裂解反应腔2进行加热,裂解反应开始进行,裂解反应腔2发生膨胀,这样裂解反应腔2的体积变大,压力先变小然后变大直至与裂解反应腔2的体积变大之前相同或相近,这样裂解反应产生的热量很多,系统的热效率降低。通过加入温度补偿装置6,即裂解反应开始后,双金属片受热膨胀,直至与裂解反应腔2发生刚性接触,这样就会限制裂解反应腔2的膨胀,所以裂解反应腔2的体积会被限制,分解反应速率被限制,从而达到一种平衡,即裂解反应产生的热量能够最大化的被利用,系统的热效率得到提高。
改进的,第一金属片7为钢片,第二金属片8为铜片。钢片的热膨胀系数小于铜片的热膨胀系数,所以双金属片受热膨胀后会向裂解反应腔2发生运动,从而能够限制裂解反应腔2的体积不断变大。
优选的,裂解催化剂1为柱状。
优选的,合成催化剂负载4上涂覆有催化剂涂层。
优选的,裂解反应腔2、合成催化剂负载4上均设置有多个温度及压力传感器。多个温度及压力传感器用于实时测温度和压力。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种带温度补偿的甲醇重整制氢装置,其特征在于:包括裂解催化剂、裂解反应腔、甲醇水进液管、合成催化剂负载、进水管以及设置在裂解反应腔和合成催化剂负载之间的温度补偿装置,所述温度补偿装置为双金属片,所述双金属片包括上下设置的第一金属片和第二金属片,所述第一金属片的膨胀系数小于第二金属片的膨胀系数。
2.根据权利要求1所述的一种带温度补偿的甲醇重整制氢装置,其特征在于:所述第一金属片为钢片,所述第二金属片为铜片。
3.根据权利要求1所述的一种带温度补偿的甲醇重整制氢装置,其特征在于:所述裂解催化剂为柱状。
4.根据权利要求1所述的一种带温度补偿的甲醇重整制氢装置,其特征在于:所述合成催化剂负载上涂覆有催化剂涂层。
5.根据权利要求1所述的一种带温度补偿的甲醇重整制氢装置,其特征在于:所述裂解反应腔、合成催化剂负载上均设置有多个温度及压力传感器。
CN201610532580.8A 2016-07-07 2016-07-07 一种带温度补偿的甲醇重整制氢装置 Active CN105958092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610532580.8A CN105958092B (zh) 2016-07-07 2016-07-07 一种带温度补偿的甲醇重整制氢装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610532580.8A CN105958092B (zh) 2016-07-07 2016-07-07 一种带温度补偿的甲醇重整制氢装置

Publications (2)

Publication Number Publication Date
CN105958092A true CN105958092A (zh) 2016-09-21
CN105958092B CN105958092B (zh) 2018-09-07

Family

ID=56900561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610532580.8A Active CN105958092B (zh) 2016-07-07 2016-07-07 一种带温度补偿的甲醇重整制氢装置

Country Status (1)

Country Link
CN (1) CN105958092B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450391A (zh) * 2016-11-28 2017-02-22 苏州氢洁电源科技有限公司 一种新型甲醇重整制氢用的催化剂排布方式
CN107238242A (zh) * 2017-07-19 2017-10-10 吉艾(天津)石油工程技术服务有限公司 用于测井仪器的新型吸热体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101082303A (zh) * 2007-07-03 2007-12-05 李钢坤 内置节温器的废热机载随行制氢装置
CN101400602A (zh) * 2006-03-27 2009-04-01 丰田自动车株式会社 重整装置
CN204643832U (zh) * 2014-11-28 2015-09-16 江苏中赢绿色能源科技有限公司 一种小型甲醇催化制氢装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400602A (zh) * 2006-03-27 2009-04-01 丰田自动车株式会社 重整装置
CN101082303A (zh) * 2007-07-03 2007-12-05 李钢坤 内置节温器的废热机载随行制氢装置
CN204643832U (zh) * 2014-11-28 2015-09-16 江苏中赢绿色能源科技有限公司 一种小型甲醇催化制氢装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450391A (zh) * 2016-11-28 2017-02-22 苏州氢洁电源科技有限公司 一种新型甲醇重整制氢用的催化剂排布方式
CN107238242A (zh) * 2017-07-19 2017-10-10 吉艾(天津)石油工程技术服务有限公司 用于测井仪器的新型吸热体

Also Published As

Publication number Publication date
CN105958092B (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
Ke et al. Porous copper fiber sintered felts with surface microchannels for methanol steam reforming microreactor for hydrogen production
JP2016513754A5 (zh)
CN100420517C (zh) 甲醇水蒸汽重整制氢用铜基催化剂的还原方法
Liu et al. Optimal design and fabrication of surface microchannels on copper foam catalyst support in a methanol steam reforming microreactor
KR101266673B1 (ko) 수증기 개질방식에 의한 수소발생장치
Hedayati et al. Exergetic study of catalytic steam reforming of bio-ethanol over Pd–Rh/CeO2 with hydrogen purification in a membrane reactor
CN105958092A (zh) 一种带温度补偿的甲醇重整制氢装置
EP2050494A3 (en) Microtubular honeycomb carbon material obtained by heat-treating cellulose fiber, production method thereof, microtubular reactor module comprising the microtubular honeycomb carbon material and method for producing the microtubular reactor module
Yan et al. Properties of methane autothermal reforming to generate hydrogen in membrane reactor based on thermodynamic equilibrium model
Kyriakides et al. Modelling and simulation of a membrane reactor for the low temperature methane steam reforming
Li et al. Preparing a novel gradient porous metal fiber sintered felt with better manufacturability for hydrogen production via methanol steam reforming
Cherif et al. Design and multiobjective optimization of membrane steam methane reformer: A computational fluid dynamic analysis
Pan et al. Oriented linear cutting fiber sintered felt as an innovative catalyst support for methanol steam reforming
MX2018012775A (es) Proceso y planta para produccion de gas de sintesis por medio de reformado con vapor catalitico de gas de alimentacion hidrocarbonado.
Xuan et al. Integrating chemical kinetics with CFD modeling for autothermal reforming of biogas
Mehri et al. Performance assessment of a spiral methanol to hydrogen fuel processor for fuel cell applications
Hu et al. Investigation of methanol steam reforming reformer heated by catalyst combustion for kW-scale fuel cell
Wang et al. Integrated system design of a small-scale power-to-methane demonstrator
US9815042B1 (en) Cascading pressure reactor and method for solar-thermochemical reactions
US9289741B2 (en) Suspended-slurry reactor
Li et al. Numerical analysis and experimental study of hydrogen production from dimethyl ether steam reforming
CN106410244A (zh) 一种分段式甲醇重整制氢燃料电池系统
CN110386589B (zh) 一种高通量甲醇水重整制氢微通道反应器
Mejía-Botero et al. Effect of preheat temperature, pressure, and residence time on methanation performance
CN211393843U (zh) 微通道重整制氢与催化放热反应器及制氢系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant