CN105957085A - 三维医学影像数据处理方法及装置 - Google Patents

三维医学影像数据处理方法及装置 Download PDF

Info

Publication number
CN105957085A
CN105957085A CN201610300185.7A CN201610300185A CN105957085A CN 105957085 A CN105957085 A CN 105957085A CN 201610300185 A CN201610300185 A CN 201610300185A CN 105957085 A CN105957085 A CN 105957085A
Authority
CN
China
Prior art keywords
image data
medical image
cpu
group
grouped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610300185.7A
Other languages
English (en)
Inventor
余绍德
陈昳丽
朱艳春
李荣茂
付楠
谢耀钦
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201610300185.7A priority Critical patent/CN105957085A/zh
Priority to PCT/CN2016/091706 priority patent/WO2017193477A1/zh
Publication of CN105957085A publication Critical patent/CN105957085A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30061Lung
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30068Mammography; Breast

Abstract

本发明公开了一种三维医学影像数据处理方法及装置,其中该方法由包含多个CPU的图像处理装置执行,该方法包括:图像处理装置根据所包含的CPU数量对三维医学影像数据进行分组,其中每一CPU对应一组三维医学影像数据;图像处理装置在各CPU上运行二维图像处理算法;最终将处理好的结果存储到相应的三维数据内。采用本发明可以实时和高效地对三维医学影像进行处理。

Description

三维医学影像数据处理方法及装置
技术领域
本发明涉及医学图像处理技术领域,尤其涉及三维医学影像数据处理方法及装置。
背景技术
医学图像处理,包括但不限于插值、去噪、分割以及分析,与临床诊断息息相关。它旨在增强图像质量,或将感兴趣区域,或将潜在疾病区域分离出来,便于为医生提供更优质的第一手材料,以进行更专注的分析、判断和识别,从而提高临床诊断精度。受限于图像处理算法的复杂度和加速策略的缺失,目前很多图像处理算法流程还无法满足三维医学影像的实时性分析需求。
三维医学影像是对人体组织器官的数字化。随着软硬件的不断升级,被扫描的器官会更加清晰,产生的数据量也就更加庞大。比如一个大脑的磁共振数据,若分辨率为[256,256,256],灰度值以8字节进行存储,则其数据量达到120兆字节左右,导致很多图像处理流程无法满足临床的实时性要求。根据加速类型的不同,常见的加速策略主要分硬件加速、软件加速和并行加速。
硬件加速是利用硬件模块来替代软件算法以充分利用硬件所固有的快速特性。其缺陷在于,(1)开启硬件加速可能会带来负面效果;(2)需要为特定任务设计特定的硬件或元件,如芯片或处理器,增加额外软硬件设计、时间消耗或额外经费支出。
软件加速是针对算法的内在性质,如多层循环、参数优化等,设计相应的算法流程,避免在软件实现中重复运行,以降低时间消耗。其缺陷在于,(1)加速比有限,比如很多算法的多层循环无法避免;(2)需要深入到算法核心,从而进行算法重新设计和代码重构,增加时间消耗,而且不具有可推广性。
并行加速是充分利用机器的硬件属性,现有的并行加速一般通过直接购买图形处理器(Graphics Processing Unit,GPU)来增强机器的并行处理能力。并行加速会充分考虑算法和数据的可分解性以及硬件平台的固有属性,一般比独立的硬件加速或软件加速的效率要高。然而,目前基于GPU的并行加速,需要对算法进行重新设计和改写,也需要额外购买GPU硬件设备。
总之,现有的图像处理算法流程无法实时和高效地对三维医学影像进行处理。
发明内容
本发明实施例提供一种三维医学影像数据处理方法,用以实时和高效地对三维医学影像进行处理,该方法由包含多个CPU的图像处理装置执行,该方法包括:
图像处理装置根据所包含的CPU数量对三维医学影像数据进行分组,其中每一CPU对应一组三维医学影像数据;
图像处理装置在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理。
一个实施例中,图像处理装置根据所包含的CPU数量对三维医学影像数据进行分组,包括采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组,其中:
连续性分组模式为:第1个CPU处理第个图像,第i个CPU处理第个图像,以此类推;
跳跃式分组模式为:第1个CPU处理第个图像,第i个CPU处理第个图像,以此类推;
其中,三维医学影像数据大小为[m,n,l],图像处理装置所包含的CPU数量为c,每组图像个数为<·>表示向上取整操作。
一个实施例中,图像处理装置根据所包含的CPU数量对三维医学影像数据进行分组,包括根据三维医学影像数据所涉及的生物结构,选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组。
一个实施例中,所述根据三维医学影像数据所涉及的生物结构,选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组,包括:
若三维医学影像数据所涉及的生物结构为大脑或肺部,则选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组;
若三维医学影像数据所涉及的生物结构为乳房,则选择采用跳跃式分组模式对三维医学影像数据进行分组。
一个实施例中,图像处理装置在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理之前,还包括:对各组三维医学影像数据进行初始化处理;所述初始化处理包括人工交互和/或不完全标注。
一个实施例中,图像处理装置在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理之后,还包括:
对处理结果进行评价,若处理结果达到目标状态则存储处理结果;若处理结果未达到目标状态则在重新进行初始化处理后重新运行二维图像处理算法,或进行图像编辑操作。
本发明实施例还提供一种三维医学影像数据处理装置,用以实时和高效地对三维医学影像进行处理,该装置包含多个CPU,该装置包括:
分组处理模块,用于根据该装置所包含的CPU数量对三维医学影像数据进行分组,其中每一CPU对应一组三维医学影像数据;
算法运行模块,用于在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理。
一个实施例中,所述分组处理模块具体用于:
采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组,其中:
连续性分组模式为:第1个CPU处理第个图像,第i个CPU处理第个图像,以此类推;
跳跃式分组模式为:第1个CPU处理第个图像,第i个CPU处理第个图像,以此类推;
其中,三维医学影像数据大小为[m,n,l],图像处理装置所包含的CPU数量为c,每组图像个数为<·>表示向上取整操作。
一个实施例中,所述分组处理模块具体用于:
根据三维医学影像数据所涉及的生物结构,选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组。
一个实施例中,所述分组处理模块具体用于:
在三维医学影像数据所涉及的生物结构为大脑或肺部时,选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组;
在三维医学影像数据所涉及的生物结构为乳房时,选择采用跳跃式分组模式对三维医学影像数据进行分组。
一个实施例中,该装置还包括:
初始化处理模块,用于在所述算法运行模块在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理之前,对各组三维医学影像数据进行初始化处理;所述初始化处理包括人工交互和/或不完全标注。
一个实施例中,该装置还包括:
后处理模块,用于在所述算法运行模块在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理之后,对处理结果进行评价,若处理结果达到目标状态则存储处理结果;若处理结果未达到目标状态则在重新进行初始化处理后重新运行二维图像处理算法,或进行图像编辑操作。
相对于硬件加速,本发明实施例不会有负面效果,不需要为任务设计特殊的硬件;相对于软件加速,本发明实施例在选定二维图像处理算法后,能够大幅度提高运算速度;相对于基于GPU的并行加速,本发明实施例不需要对算法进行重新设计和改写,更不需要购买任何的硬件设备。总之,本发明实施例具有广泛的应用前景,不需要额外经费和时间支出,不需要对算法进行大幅度改写或流程设计。它能够在普通的多核CPU机器上,大幅度降低运行时间消耗,能够在现有的机器(硬件)和二维图像处理算法(软件)基础上,实时和高效地对三维医学影像进行处理。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本发明实施例中三维医学影像数据处理方法的示意图;
图2为本发明实施例中利用二维图像分割算法对三维医学影像数据进行处理的示意图;
图3为本发明实施例中三维医学影像数据的分割精度示例图;
图4为本发明实施例中三维医学影像数据处理装置的示意图;
图5为本发明实施例中三维医学影像数据处理装置的具体实例图;
图6为本发明实施例中三维医学影像数据处理装置的另一具体实例图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
为了在现有的机器(硬件)和二维图像处理算法(软件)基础上,实时和高效地对三维医学影像进行处理,本发明实施例提供了一种三维医学影像数据处理方法。该方法属于并行加速范畴,主要特点有:(1)该方法需要布置在多CPU的机器上。多CPU可以增强机器的并行处理能力。在许多情况下,计算速度随CPU数量呈线性提高。(2)该方法针对三维医学影像数据进行处理,数据量越大,加速比越明显。(3)该方法可以引入任意的二维图像处理算法,不局限于图像分割、图像插值、图像去噪等。
本发明实施例的三维医学影像数据处理方法由包含多个CPU的图像处理装置执行,如图1所示,该方法可以包括:
步骤101、图像处理装置根据所包含的CPU数量对三维医学影像数据进行分组,其中每一CPU对应一组三维医学影像数据;
步骤102、图像处理装置在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理。
如上所述,本发明实施例的三维医学影像数据处理方法针对三维医学影像数据,前提要求是执行该方法的图像处理装置有多个中央处理器(Central Processing Unit,CPU)。这个要求在实际生活或工作中非常容易满足,因此本发明实施例具有很大的应用范围。为避免不必要的技术纠纷,本发明实施例特别指出:本发明实施例可以集成在任何医学设备和个人电脑上,即上述图像处理装置可以是能够实现其功能的医学设备、计算机、个人电脑、机器等装置;本发明实施例可以利用现有的二维图像处理算法,来实时高效的处理三维医学影像数据。
具体实施时,包含多个CPU的图像处理装置先根据所包含的CPU数量对三维医学影像数据进行分组,其中每一CPU对应一组三维医学影像数据;也就是说,后续图像处理装置在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理时,每一CPU处理对应组的三维医学影像数据。实施时对三维医学影像数据进行分组可以有多种方式,例如可以采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组,此处的连续性分组模式或跳跃式分组模式仅为举例,具体实施时本领域技术人员也可以根据实际需要采用其它的分组模式。
具体的,连续性分组模式可以是:第1个CPU处理第个图像,第i个CPU处理第个图像,以此类推;
跳跃式分组模式可以是:第1个CPU处理第个图像,第i个CPU处理第个图像,以此类推;
其中,三维医学影像数据大小为[m,n,l],图像处理装置所包含的CPU数量为c,每组图像个数为<·>表示向上取整操作。
具体实施时,可以根据三维医学影像数据所涉及的生物结构,选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组。根据生物结构的不同,可以采用不同的分组模式。例如,若三维医学影像数据所涉及的生物结构为大脑或肺部,由于数据采集的起始位置和结束位置的大小变化不大,则可以选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组;若三维医学影像数据所涉及的生物结构为乳房,由于其胸部和乳头大小差异非常明显,则可以选择采用跳跃式分组模式对三维医学影像数据进行分组,这样更能够提高运行效率。
此外,实施例中,图像处理装置在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理之前,还可以包括:对各组三维医学影像数据进行初始化处理;其中的初始化处理可以包括人工交互和/或不完全标注等。
实施例中,图像处理装置在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理之后,还可以包括:对处理结果进行评价,若处理结果达到目标状态则存储处理结果;若处理结果未达到目标状态则在重新进行初始化处理后重新运行二维图像处理算法,或进行图像编辑操作。此处的达到目标状态是指达到目标图像效果,该效果可以由一些图像参数来表征,可以预先设定一些指标,通过比较图像参数来确定处理结果是否达到目标状态。
下面仅以个人电脑以及某二维图像分割算法来验证本发明实施例在一种三维医学影像数据上分割的加速比以及实时性,从而探讨本发明实施例的可行性、有效性和优越性。图2为本例中利用二维图像分割算法对三维医学影像数据进行处理的示意图。如图2所示,处理过程可以包括:
1)读入三维医学影像数据,根据机器CPU的个数进行分组;
2)根据算法需要,进行一定的初始化工作,如人工交互、不完全标注等,然后在各CPU(CPU_1,……,CPU_i,……,CPU_n)运行二维图像分割算法;
3)将分割结果进行显示;若分割结果不理想,则进行后处理操作,如重新人工标记和算法运行,或者是图像编辑操作;若分割结果可行,则写入体数据,并保存。
本例中经过32组临床医学影像数据(三维乳房影像,分辨率为[512,512],平均断层图像个数为18)进行二维图像分割算法的试验。与手动分割时间,以及没有引入本发明实施例方法的分割时间进行对比,可以发现本发明实施例方法在准确分割三维医学影像的同时,能够大幅度提升时间效率。机器的CPU越多,加速比越高,越能减少时间消耗。
本例中软件实现为Visual Studio 2010,采用OpenMP进行加速实现。实验机器为8核Cores(TM),主频3.7GHz,内存8G。
每个断层图像的平均消耗时间(TC)公式如下:
其中tc为每个断层图像分割所需要的时间;n为断层图像个数。
图像分割准确率参数(Dice)计算公式如下:
D i c e = 2 &times; | G &cap; S | | G | + | S | ,
其中|·|用来统计三维数据内的点个数,G为手动分割的金标准,而S为分割结果。
表1比较了手动分割时间,没有引入本发明实施例方法的分割运行时间,以及引入本发明实施例的分割运行时间。通过分析发现,本发明实施例方法能在0.78秒内对单张分辨率为[512,512]的图像进行分割,仅占手动分割时间的1.8%,是未引入本发明实施例方法的15.9%,大幅度提升了分割速度,能够满足实时性要求。
表1 三维数据手动分割和加速后的平均时间消耗
手动分割 未引入本发明实施例方法 引入本发明实施例方法
时间消耗(秒) 43.83 4.92 0.78
图3展示了本例中32组数据的分割精度。整体上来看,平均精度达到90%。其中28例结果超过80%。由于分割结果的精度与所选用的分割算法相关,而与本发明实施例提出的加速算法无关,此处略去对分割算法的评论。
基于同一发明构思,本发明实施例中还提供了一种三维医学影像数据处理装置,如下面的实施例所述。由于该装置解决问题的原理与三维医学影像数据处理方法相似,因此该装置的实施可以参见三维医学影像数据处理方法的实施,重复之处不再赘述。
图4为本发明实施例中三维医学影像数据处理装置的示意图,该装置包含多个CPU,如图4所示,该装置可以包括:
分组处理模块401,用于根据该装置所包含的CPU数量对三维医学影像数据进行分组,其中每一CPU对应一组三维医学影像数据;
算法运行模块402,用于在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理。
具体实施时,分组处理模块401具体可以用于:
采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组,其中:
连续性分组模式为:第1个CPU处理第个图像,第i个CPU处理第个图像,以此类推;
跳跃式分组模式为:第1个CPU处理第个图像,第i个CPU处理第个图像,以此类推;
其中,三维医学影像数据大小为[m,n,l],图像处理装置所包含的CPU数量为c,每组图像个数为<·>表示向上取整操作。
具体实施时,分组处理模块401具体可以用于:
根据三维医学影像数据所涉及的生物结构,选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组。
具体实施时,分组处理模块401具体可以用于:
在三维医学影像数据所涉及的生物结构为大脑或肺部时,选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组;
在三维医学影像数据所涉及的生物结构为乳房时,选择采用跳跃式分组模式对三维医学影像数据进行分组。
图5为本发明实施例中三维医学影像数据处理装置的具体实例图,如图5所示,图4所示装置还可以包括:
初始化处理模块501,用于在算法运行模块402在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理之前,对各组三维医学影像数据进行初始化处理;所述初始化处理包括人工交互和/或不完全标注。
图6为本发明实施例中三维医学影像数据处理装置的另一具体实例图,如图6所示,图4所示装置还可以包括:
后处理模块601,用于在算法运行模块501在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理之后,对处理结果进行评价,若处理结果达到目标状态则存储处理结果;若处理结果未达到目标状态则在重新进行初始化处理后重新运行二维图像处理算法,或进行图像编辑操作。实施例中图4所示装置还可以同进包括初始化处理模块501和后处理模块601。
综上所述,相对于硬件加速,本发明实施例不会有负面效果,不需要为任务设计特殊的硬件;相对于软件加速,本发明实施例在选定二维图像处理算法后,能够大幅度提高运算速度;相对于基于GPU的并行加速,本发明实施例不需要对算法进行重新设计和改写,更不需要购买任何的硬件设备。总之,本发明实施例具有广泛的应用前景,不需要额外经费和时间支出,不需要对算法进行大幅度改写或流程设计。它能够在普通的多核CPU机器上,大幅度降低运行时间消耗,能够在现有的机器(硬件)和二维图像处理算法(软件)基础上,实时和高效地对三维医学影像进行处理。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

1.一种三维医学影像数据处理方法,其特征在于,该方法由包含多个CPU的图像处理装置执行,该方法包括:
图像处理装置根据所包含的CPU数量对三维医学影像数据进行分组,其中每一CPU对应一组三维医学影像数据;
图像处理装置在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理。
2.如权利要求1所述的方法,其特征在于,图像处理装置根据所包含的CPU数量对三维医学影像数据进行分组,包括采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组,其中:
连续性分组模式为:第1个CPU处理第个图像,第i个CPU处理第个图像,以此类推;
跳跃式分组模式为:第1个CPU处理第个图像,第i个CPU处理第个图像,以此类推;
其中,三维医学影像数据大小为[m,n,l],图像处理装置所包含的CPU数量为c,每组图像个数为<·>表示向上取整操作。
3.如权利要求2所述的方法,其特征在于,图像处理装置根据所包含的CPU数量对三维医学影像数据进行分组,包括根据三维医学影像数据所涉及的生物结构,选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组。
4.如权利要求3所述的方法,其特征在于,所述根据三维医学影像数据所涉及的生物结构,选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组,包括:
若三维医学影像数据所涉及的生物结构为大脑或肺部,则选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组;
若三维医学影像数据所涉及的生物结构为乳房,则选择采用跳跃式分组模式对三维医学影像数据进行分组。
5.如权利要求1所述的方法,其特征在于,图像处理装置在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理之前,还包括:对各组三维医学影像数据进行初始化处理;所述初始化处理包括人工交互和/或不完全标注。
6.如权利要求1所述的方法,其特征在于,图像处理装置在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理之后,还包括:
对处理结果进行评价,若处理结果达到目标状态则存储处理结果;若处理结果未达到目标状态则在重新进行初始化处理后重新运行二维图像处理算法,或进行图像编辑操作。
7.一种三维医学影像数据处理装置,其特征在于,该装置包含多个CPU,该装置包括:
分组处理模块,用于根据该装置所包含的CPU数量对三维医学影像数据进行分组,其中每一CPU对应一组三维医学影像数据;
算法运行模块,用于在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理。
8.如权利要求7所述的装置,其特征在于,所述分组处理模块具体用于:
采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组,其中:
连续性分组模式为:第1个CPU处理第个图像,第i个CPU处理第个图像,以此类推;
跳跃式分组模式为:第1个CPU处理第个图像,第i个CPU处理第个图像,以此类推;
其中,三维医学影像数据大小为[m,n,l],图像处理装置所包含的CPU数量为c,每组图像个数为<·>表示向上取整操作。
9.如权利要求8所述的装置,其特征在于,所述分组处理模块具体用于:
根据三维医学影像数据所涉及的生物结构,选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组。
10.如权利要求8所述的装置,其特征在于,所述分组处理模块具体用于:
在三维医学影像数据所涉及的生物结构为大脑或肺部时,选择采用连续性分组模式或跳跃式分组模式对三维医学影像数据进行分组;
在三维医学影像数据所涉及的生物结构为乳房时,选择采用跳跃式分组模式对三维医学影像数据进行分组。
11.如权利要求7所述的装置,其特征在于,该装置还包括:
初始化处理模块,用于在所述算法运行模块在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理之前,对各组三维医学影像数据进行初始化处理;所述初始化处理包括人工交互和/或不完全标注。
12.如权利要求7所述的装置,其特征在于,该装置还包括:
后处理模块,用于在所述算法运行模块在各CPU上运行二维图像处理算法,对各组三维医学影像数据进行处理之后,对处理结果进行评价,若处理结果达到目标状态则存储处理结果;若处理结果未达到目标状态则在重新进行初始化处理后重新运行二维图像处理算法,或进行图像编辑操作。
CN201610300185.7A 2016-05-09 2016-05-09 三维医学影像数据处理方法及装置 Pending CN105957085A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610300185.7A CN105957085A (zh) 2016-05-09 2016-05-09 三维医学影像数据处理方法及装置
PCT/CN2016/091706 WO2017193477A1 (zh) 2016-05-09 2016-07-26 三维医学影像数据处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610300185.7A CN105957085A (zh) 2016-05-09 2016-05-09 三维医学影像数据处理方法及装置

Publications (1)

Publication Number Publication Date
CN105957085A true CN105957085A (zh) 2016-09-21

Family

ID=56914560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610300185.7A Pending CN105957085A (zh) 2016-05-09 2016-05-09 三维医学影像数据处理方法及装置

Country Status (2)

Country Link
CN (1) CN105957085A (zh)
WO (1) WO2017193477A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172275A (zh) * 2016-12-05 2018-06-15 北京东软医疗设备有限公司 一种医学影像处理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1877591A (zh) * 2005-06-10 2006-12-13 西门子公司 对磁共振图像的测量数据采集和图像再现的改善
CN101145093A (zh) * 2006-09-11 2008-03-19 北京大学 一种并行光栅图像处理方法及系统
CN103916668A (zh) * 2013-01-04 2014-07-09 云联(北京)信息技术有限公司 一种图像处理方法及系统
CN105389853A (zh) * 2015-11-02 2016-03-09 北京航空航天大学 一种基于多gpu的人脑变形仿真方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060251337A1 (en) * 2003-08-07 2006-11-09 Redert Peter A Image object processing
US7154500B2 (en) * 2004-04-20 2006-12-26 The Chinese University Of Hong Kong Block-based fragment filtration with feasible multi-GPU acceleration for real-time volume rendering on conventional personal computer
US20060177122A1 (en) * 2005-02-07 2006-08-10 Sony Computer Entertainment Inc. Method and apparatus for particle manipulation using graphics processing
JP2008076231A (ja) * 2006-09-21 2008-04-03 Bridgestone Corp タイヤ外観検査装置
JP2008146587A (ja) * 2006-12-13 2008-06-26 Sony Corp 表示装置、表示プログラム、表示方法、画像提供装置、画像提供プログラム、画像提供方法及び記録媒体
CN101849224B (zh) * 2007-10-20 2016-04-27 思杰系统有限公司 用于远程处理三维图像数据的方法和系统
CN101271582B (zh) * 2008-04-10 2010-06-16 清华大学 基于多视角二维图像并结合sift算法的三维重建方法
CN102538709A (zh) * 2012-01-09 2012-07-04 黑龙江科技学院 一种基于结构光的三维测量系统中利用gpu并行计算的方法
US9245358B2 (en) * 2014-05-30 2016-01-26 Apple Inc. Systems and methods for generating refined, high fidelity normal maps for 2D and 3D textures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1877591A (zh) * 2005-06-10 2006-12-13 西门子公司 对磁共振图像的测量数据采集和图像再现的改善
CN101145093A (zh) * 2006-09-11 2008-03-19 北京大学 一种并行光栅图像处理方法及系统
CN103916668A (zh) * 2013-01-04 2014-07-09 云联(北京)信息技术有限公司 一种图像处理方法及系统
CN105389853A (zh) * 2015-11-02 2016-03-09 北京航空航天大学 一种基于多gpu的人脑变形仿真方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
李明 等: "视频编码的并行处理", 《计算机工程与应用》 *
蔡妍艳 等: "基于SMP的高速高精度贴片机并行图像处理", 《计算机测量与控制》 *
陈银山 等: "AR系统中并行技术的应用研究", 《上海大学学报(自然科学版)》 *
黄丽娟 等: "《杭州电子科技大学学报》", 31 December 2015 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172275A (zh) * 2016-12-05 2018-06-15 北京东软医疗设备有限公司 一种医学影像处理方法及装置
CN108172275B (zh) * 2016-12-05 2022-02-11 北京东软医疗设备有限公司 一种医学影像处理方法及装置

Also Published As

Publication number Publication date
WO2017193477A1 (zh) 2017-11-16

Similar Documents

Publication Publication Date Title
AlZu’bi et al. Parallel implementation for 3d medical volume fuzzy segmentation
Wang et al. A broadly applicable 3-D neuron tracing method based on open-curve snake
Fluck et al. A survey of medical image registration on graphics hardware
Friese et al. YaDiV—an open platform for 3D visualization and 3D segmentation of medical data
Huang et al. Visualizing industrial CT volume data for nondestructive testing applications
DE102021113690A1 (de) Videosynthese unter verwendung von einem oder mehreren neuralen netzwerken
CN103345772B (zh) 基于空域信息的两维传递函数的体数据识别方法
CN109447120A (zh) 一种图像自动分割的方法、装置及计算机可读存储介质
Ali et al. Multi-stream convolutional autoencoder and 2D generative adversarial network for glioma classification
Narayanaswamy et al. Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation
CN108805876B (zh) 使用生物力学模型的磁共振和超声图像的可形变配准的方法和系统
CN105957085A (zh) 三维医学影像数据处理方法及装置
CN104239874B (zh) 一种器官血管识别方法及装置
Weber et al. A very fast census-based stereo matching implementation on a graphics processing unit
CN103678888A (zh) 一种基于欧拉流体模拟算法的心脏血液流动示意显示方法
CN109345545A (zh) 一种分割图像生成的方法、装置及计算机可读存储介质
Hachaj et al. Real time area-based stereo matching algorithm for multimedia video devices
Ruikar et al. A systematic review of 3D imaging in biomedical applications
Larsson et al. Does an ensemble of GANs lead to better performance when training segmentation networks with synthetic images?
DE112021007132T5 (de) Berechnung der bewegung von pixeln zwischen bildern
Mittmann et al. Diffusion tensor fiber tracking on graphics processing units
Bajaj et al. Multi-component heart reconstruction from volumetric imaging
CN111612762A (zh) Mri脑肿瘤图像生成方法及系统
Lopez et al. Robust image-based 3-d modeling of root architecture
Bohak et al. Fast segmentation, conversion and rendering of volumetric data using gpu

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160921