CN105956558A - 一种基于三轴加速度传感器人体动作识别方法 - Google Patents

一种基于三轴加速度传感器人体动作识别方法 Download PDF

Info

Publication number
CN105956558A
CN105956558A CN201610290443.8A CN201610290443A CN105956558A CN 105956558 A CN105956558 A CN 105956558A CN 201610290443 A CN201610290443 A CN 201610290443A CN 105956558 A CN105956558 A CN 105956558A
Authority
CN
China
Prior art keywords
layer
signal
acceleration signal
axis acceleration
overbar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610290443.8A
Other languages
English (en)
Other versions
CN105956558B (zh
Inventor
陶大鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN UNION VISION INNOVATION TECHNOLOGY Co.,Ltd.
YUNNAN UNITED VISUAL TECHNOLOGY Co.,Ltd.
Original Assignee
陶大鹏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陶大鹏 filed Critical 陶大鹏
Priority to CN201610290443.8A priority Critical patent/CN105956558B/zh
Publication of CN105956558A publication Critical patent/CN105956558A/zh
Application granted granted Critical
Publication of CN105956558B publication Critical patent/CN105956558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Psychiatry (AREA)
  • Social Psychology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Complex Calculations (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种基于三轴加速度传感器人体动作识别方法,本发明包括以下步骤:1)获取人体所佩戴移动设备输出的三轴加速度信号;2)对原始信号滤除噪声提取动作分类特征;3)采用多个分类器进行分类,并将输出结果的平均值作为最终输出结果。本发明的有益效果为,提升了人体动作识别的准确率,使人体动作分类正确率更高。

Description

一种基于三轴加速度传感器人体动作识别方法
技术领域
本发明属于人体动作识别方法技术领域,尤其是属于基于三轴加速度传感器技术和多列双向长短期记忆人工神经网络技术的人体动作识别方法技术领域。
背景技术
随着手机、平板等电子设备的普及,其中内含的带有加速度传感器的移动设备也在人们生活中普及。带有加速度传感器的移动设备可以很方便地捕获人体的动作,通过捕获人体的动作,从而提升了用户体验感,并为附带有该系统的设备提供了很好的发展机会。因此,基于移动设备的人体动作识别系统受到了研究人员越来越多的关注,特别是多媒体大数据领域的关注。
提取特征和分类在模式识别领域是很重要的两个步骤。提取特征分对于时域特征的提取和对于频域特征的提取两种。
对于时域特征的提取,提取特征(人体加速度特征)一般只考虑了一维的情况,对时间轴上的原始信号直接进行特征提取,研究者用均值作为特征,通常会用一个窗函数来过滤随机峰值和噪声,这种方法的计算复杂度和对硬件的要求比较低;有用最大最小值,方差和标准差的方法来做人体动作识别的问题,这种方法对于步行和跑步等差别较大的动作的识别有不错效果,但对于原地踏步、快速走、上下楼梯等动作的识别不是很理想。对于频域特征的提取,大多数的研究者依赖快速傅里叶变换,离散傅里叶变换,离散余弦变换分解时域信号到频域上,频域上要得到比较好的区分信号,需要进行较长的采样时间,这样会很大程度上影响实时性。
目前,上述两种提取特征的方法,人体动作识别的效果并不理想。
特征提取后,就是对所提的特征进行分类,现有的分类器如,k近邻分类器(k-NN),支持向量机(SVM),多层感知机(MLP),k均值(k-means),都是不错的分类器,但这些传统的分类器,并不是最优的选择。
发明内容
本发明正是为了克服上述现有技术的缺陷,提供了一种采用了双向长短期记忆人工神经网络(BLSTM)的分类器,其对特征有很好的分类,能达到理想的效果。
本发明采用如下技术方案实现。
一种基于三轴加速度传感器人体动作识别方法,本发明包括以下步骤:1)获取人体所佩戴移动设备输出的三轴加速度信号;2)对原始信号滤除噪声提取动作分类特征;3)采用多个分类器进行分类,并将输出结果的平均值作为最终输出结果。
本发明步骤1),以三轴加速度信号的合加速度峰值为中心,截取一小段信号作为待识别的人体动作样本。
本发明三轴加速度信号的峰值通过以下方式获得:
一个采样窗口获取的人体动作三轴加速度信号,可以表示为一个包含M=1000个样本点的矩阵B=[B1,B2,…,BM],每一个样本点Bi是一个3维向量:
Bi=(bxi,byi,bzi)T (1)
bxi,byi,bzi分别表示第i个样本的x,y,z,3个轴上的信号,因此每个样本点合加速度构成矩阵B′=[||B1||,||B2||,…,||BM||],这里
因此,合加速度信号的峰值可以有以下的方式计算:
D=L(B′,w1)-L(B′,w2) (2)
L表示均值滤波器,w1和w2(w1>w2)是均值滤波器的窗口大小,取差值D的局部极大值就是加速度信号的峰值。
本发明样本截取方式,其信号的长度定义为250个采样点;
本发明步骤2),提取的特征是:原始加速度信号特征,加速度信号的范数特征,两方向加速度信号特征作为人体动作识别的特征。
本发明步骤3)采用双向长短期记忆人工神经网络(BLSTM)分类器进行分类。
本发明步骤3)采用三个双向长短期记忆人工神经网络(BLSTM)分类器构成多列双方向的长短期记忆人工神经网络(MBLSTM),其输出结果为前端的三个BLSTM输出的平均值。
本发明步骤2),对原始信号滤除噪声提取动作分类特征过程如下:
在人体动作识别发明中,三轴加速度传感器的一个采样窗口的输出表示为一个包含N=250个样本点的矩阵A=[A1,A2,…,AN],每一个样本点Ai是一个3维向量:
Ai=(axi,ayi,azi)T (3)
axi,ayi,azi分别表示第i个样本的x,y,z3个轴上的信号;A作为原始加速度信号特征。
每个样本点合加速度构成矩阵A′=[||A1||,||A2||,…,||AN||],这里A′就是加速度信号的范数特征。
加速度信号的均值可以有以下的方式计算:
A x ‾ = Σ i = 1 N a x i N - - - ( 4 )
A y ‾ = Σ i = 1 N a y i N - - - ( 5 )
A z ‾ = Σ i = 1 N a z i N - - - ( 6 )
分别表示x,y,z三轴上人体动作信号的均值。
接下来,考虑到加速度信号能被分解到水平和竖直2个方法上,由于在一段时间内,水平方向上的加速度信号的均值很小,所以竖直方向上的单位向量eV表示为:
e V = ( A x ‾ , A y ‾ , A z ‾ ) | | ( A x ‾ , A y ‾ , A z ‾ ) | | - - - ( 7 )
所以第i个样本垂直方向上的信号Vi可以用下式估计:
Vi=Ai·eV (8)
第i个样本水平方向上的信号的范数Hi为:
Hi=||Ai-Vi|| (9)
V=[V1,V2,…,VN]和H=[H1,H2,…,HN]就是两方向特征;即得到原始加速度信号特征,加速度信号的范数特征,两方向加速度信号特征。
一种双向长短期记忆人工神经网络(BLSTM)分类器,该分类器设置为5层,且上一个层的输出作为下一个层输入;该分类器包括一个输入层、一个前向传播层、一个双向长短期记忆人工神经网络(BLSTM)层、一个汇总层、一个softmax层依序连接组成。
本发明分离器的工作过程如下:1)输入层:输入的序列被分割成大小为3的块,然后每个块被扫描成一个向量作为第1个隐藏层的输入;2)第2个隐藏层是前向传播层,第1个隐藏层的输出作为第2隐藏层的输入;3)双向长短期记忆人工神经网络(BLSTM)层是第3个隐藏层包含了若干个双向长短期记忆人工神经网络(BLSTM)单元,第2个隐藏层的输出作为第3隐藏层的输入;4)第4个隐藏层是汇总层,每隔一段时间会汇总第3层所有的输出;5)softmax层:汇总层的输出作为最后一层:softmax层的输入,最后一层有C路输出,代表人体动作的 类别数。
本发明的有益效果为,本发明从多个方向提取、结合了不同的加速度信号特征,使得提取的特征有更强的判别能力,提升了人体动作识别的准确率;确立采用多个双向长短期记忆人工神经网络(BLSTM)分类器对不同特征进行分类,并对分类结果求平均,使人体动作分类正确率更高。本发明通过优化了的特征提取方法和分类器的结构,最终达到人体动作的高效识别,具有突出的进步和显著效果。
下面结合附图和具体实施方式对本发明作进一步解释。
附图说明
图1为本发明的原理结构示意图。
具体实施方式
一种基于三轴加速度传感器人体动作识别方法,本发明包括以下步骤:1)获取人体所佩戴移动设备输出的三轴加速度信号;2)对原始信号滤除噪声提取动作分类特征;3)采用多个分类器进行分类,并将输出结果的平均值作为最终输出结果。
本发明步骤1),以三轴加速度信号的合加速度峰值为中心,截取一小段信号作为待识别的人体动作样本。
本发明三轴加速度信号的峰值通过以下方式获得:
一个采样窗口获取的人体动作三轴加速度信号,可以表示为一个包含M=1000个样本点的矩阵B=[B1,B2,…,BM],每一个样本点Bi是一个3维向量:
Bi=(bxi,byi,bzi)T (1)
bxi,byi,bzi分别表示第i个样本的x,y,z,3个轴上的信号,因此每个样本点合加速度构成矩阵B′=[||B1||,||B2||,…,||BM||],这里
因此,合加速度信号的峰值可以有以下的方式计算:
D=L(B′,w1)-L(B′,w2) (2)
L表示均值滤波器,w1和w2(w1>w2)是均值滤波器的窗口大小,取差值D的局部极大值就是加速度信号的峰值。
本发明样本截取方式,其信号的长度定义为250个采样点;
本发明步骤2),提取的特征是:原始加速度信号特征,加速度信号的范数特征,两方向加速度信号特征作为人体动作识别的特征。
本发明步骤3)采用双向长短期记忆人工神经网络(BLSTM)分类器进行分类。
本发明步骤3)采用三个双向长短期记忆人工神经网络(BLSTM)分类器构成多列双方向的长短期记忆人工神经网络(MBLSTM),其输出结果为前端的三个BLSTM输出的平均值。
本发明步骤2),对原始信号滤除噪声提取动作分类特征过程如下:
在人体动作识别发明中,三轴加速度传感器的一个采样窗口的输出表示为一个包含N=250个样本点的矩阵A=[A1,A2,…,AN],每一个样本点Ai是一个3维向量:
Ai=(axi,ayi,azi)T (3)
axi,ayi,azi分别表示第i个样本的x,y,z3个轴上的信号;A作为原始加速度信号特征。
每个样本点合加速度构成矩阵A′=[||A1||,||A2||,…,||AN||],这里A′就是加速度信号的范数特征。
加速度信号的均值可以有以下的方式计算:
A x ‾ = Σ i = 1 N a x i N - - - ( 4 )
A y ‾ = Σ i = 1 N a y i N - - - ( 5 )
A z ‾ = Σ i = 1 N a z i N - - - ( 6 )
分别表示x,y,z三轴上人体动作信号的均值。
接下来,考虑到加速度信号能被分解到水平和竖直2个方法上,由于在一段时间内,水平方向上的加速度信号的均值很小,所以竖直方向上的单位向量eV表示为:
e V = ( A x ‾ , A y ‾ , A z ‾ ) | | ( A x ‾ , A y ‾ , A z ‾ ) | | - - - ( 7 )
所以第i个样本垂直方向上的信号Vi可以用下式估计:
Vi=Ai·eV (8)
第i个样本水平方向上的信号的范数Hi为:
Hi=||Ai-Vi|| (9)
V=[V1,V2,…,VN]和H=[H1,H2,…,HN]就是两方向特征;即得到原始加速度信号特征,加速度信号的范数特征,两方向加速度信号特征。
一种双向长短期记忆人工神经网络(BLSTM)分类器,该分类器设置为5层,且上一个层的输出作为下一个层输入;该分类器包括一个输入层、一个前向传播层、一个双向长短期记忆人工神经网络(BLSTM)层、一个汇总层、一个softmax层依序连接组成。
本发明分离器的工作过程如下:1)输入层:输入的序列被分割成大小为3的块,然后每个块被扫描成一个向量作为第1个隐藏层的输入;2)第2个隐藏层是前向传播层,第1个隐藏层的输出作为第2隐藏层的输入;3)双向长短期记忆人工神经网络(BLSTM)层是第3个隐藏层包含了若干个双向长短期记忆人工神经网络(BLSTM)单元,第2个隐藏层的输出作为第3隐藏层的输入;4)第4个隐藏层是汇总层,每隔一段时间会汇总第3层所有的输出;5)softmax层:汇总层的输出作为最后一层:softmax层的输入,最后一层有C路输出,代表人体动作的类别数。
实施例:实验选100个人,用智能手机收集了人体动作的三轴加速度信号,包括跳,慢跑,正常走,原地踏步,快速走,上楼梯,下楼梯7种人体动作。用包含250点的窗,将峰值点置于窗的中心截取信号,得到的每个人体动作信号的数量如表1:
表1 样本统计
实验中,分别对比了两方向加速度信号特征VH,加速度信号的特征A和加速度信号均值的范数特征A′;实验中,随机选择所有人中的50,60,70,80个作为训练集,表中记为ptr,随机选择所有人中的20个作为测试集,选择训练集中的5分之1作为验证集。每个实验重复10次,都用双向长短期记忆人工神经网络(BLSTM)来进行分类,对以上三种特征的错误率,如表2,表3,表4所示:
为了说明本方法的有效性,选择了k近邻分类器(k-NN),支持向量机(SVM),集成流型排序保留(EMR),双向的长短期记忆人工神经网络(BLSTM)来进行对比,这里都用两方向特征来作为输入的特征。随机选择所有人中的40和80个作为训练集,剩下的作为测试集,选择训练集中的5分之1作为验证集。每个试验重复5次,算出平均错误率。对比结果如表5所示。
表2 加速度信号特征A对应的实验结果
表3 加速度信号范数特征A′对应的实验结果
表4 两方向加速度信号特征V H对应的实验结果
表5 5种分类算法的平均错误率
通过表2,表3,表4的实验结果,从合计错误率来看,在用相同分类器的条件下,两方向加速度信号特征V H得到的错误率要比加速度信号的均值特征Ai和加速度信号均值的范数特征A′错误率要低,这说明了两方向加速度信号特征V H比其他2种特征更有区分能力。
通过表5的实验结果,在输入相同特征的情况下,多列双向长短期记忆人工神经网络(MBLSTM)分类器的平均错误率要远低于其他4中分类器的错误率,说明MBLSTM分类器分类能力优于其他4种分类器。

Claims (9)

1.一种基于三轴加速度传感器人体动作识别方法,其特征在于,包括以下步骤:1)获取人体所佩戴移动设备输出的三轴加速度信号;2)对原始信号滤除噪声提取动作分类特征;3)采用多个分类器进行分类,并将输出结果的平均值作为最终输出结果。
2.根据权利要求1所述的一种基于三轴加速度传感器人体动作识别方法,其特征在于,步骤1)的实现方法,以三轴加速度信号的合加速度峰值为中心,截取一小段信号作为待识别的人体动作样本。
3.根据权利要求1或2所述的一种基于三轴加速度传感器人体动作识别方法,其特征在于,步骤2),提取的特征是:原始加速度信号特征,加速度信号的范数特征,两方向加速度信号特征作为人体动作识别的特征。
4.根据权利要求1或3所述的一种基于三轴加速度传感器人体动作识别方法,其特征在于,所述的步骤2),对原始信号滤除噪声提取动作分类特征过程如下:
在人体动作识别发明中,三轴加速度传感器的一个采样窗口的输出表示为一个包含N个样本点的矩阵A=[A1,A2,…,AN],每一个样本点Ai是一个3维向量:
Ai=(axi,ayi,azi)T (3)
axi,ayi,azi分别表示第i个样本的x,y,z3个轴上的信号;A作为原始加速度信号特征;
每个样本点合加速度构成矩阵A′=[||A1||,||A2||,…,||AN||],这里A′就是加速度信号的范数特征;
加速度信号的均值可以有以下的方式计算:
A x ‾ = Σ i = 1 N a x i N - - - ( 4 )
A y ‾ = Σ i = 1 N a y i N - - - ( 5 )
A z ‾ = Σ i = 1 N a z i N - - - ( 6 )
分别表示x,y,z三轴上人体动作信号的均值;
接下来,考虑到加速度信号能被分解到水平和竖直2个方法上,由于在一段时间内,水平方向上的加速度信号的均值很小,所以竖直方向上的单位向量eV表示为:
e V = ( A x ‾ , A y ‾ , A z ‾ ) | | ( A x ‾ , A y ‾ , A z ‾ ) | | - - - ( 7 )
所以第i个样本垂直方向上的信号Vi可以用下式估计:
Vi=Ai·eV (8)
第i个样本水平方向上的信号的范数Hi为:
Hi=||Ai-Vi|| (9)
V=[V1,V2,…,VN]和H=[H1,H2,…,HN]就是两方向特征;即得到原始加速度信号特征,加速度信号的范数特征,两方向加速度信号特征。
5.根据权利要求1所述的一种基于三轴加速度传感器人体动作识别方法,其特征在于,步骤3)采用双向长短期记忆人工神经网络(BLSTM)分类器进行分类。
6.根据权利要求1或5所述的一种基于三轴加速度传感器人体动作识别方法,其特征在于,步骤3)采用三个双向长短期记忆人工神经网络(BLSTM)分类器构成多列双方向的长短期记忆人工神经网络(MBLSTM),其输出结果为前端的三个BLSTM输出的平均值。
7.根据权利要求2所述的一种基于三轴加速度传感器人体动作识别方法,其特征在于,所述的三轴加速度信号的合加速度峰值通过以下方式获得:
一个采样窗口获取的人体动作三轴加速度信号,可以表示为一个包含M个样本点的矩阵B=[B1,B2,…,BM],每一个样本点Bi是一个3维向量:
Bi=(bxi,byi,bzi)T (1)
bxi,byi,bzi分别表示第i个样本的x,y,z,3个轴上的信号,因此每个样本点合加速度构成矩阵B′=[||B1||,||B2||,…,||BM||],这里
因此,合加速度信号的峰值可以有以下的方式计算:
D=L(B′,w1)-L(B′,w2) (2)
L表示均值滤波器,w1和w2(w1>w2)是均值滤波器的窗口大小,取差值D的局部极大值就是加速度信号的峰值。
8.一种双向长短期记忆人工神经网络分类器,其特征在于,该分类器设置为5层,且上一个层的输出作为下一个层输入;该分类器包括一个输入层、一个前向传播层、一个双向长短期记忆人工神经网络层、一个汇总层、一个softmax层依序连接组成。
9.根据权利要求8所述的一种双向长短期记忆人工神经网络分类器,其特征在于,该分离器的工作过程如下:1)输入层:输入的序列被分割成大小为3的块,然后每个块被扫描成一个向量作为第1个隐藏层的输入;2)第2个隐藏层是前向传播层,第1个隐藏层的输出作为第2隐藏层的输入;3)双向长短期记忆人工神经网络层是第3个隐藏层包含了若干个双向长短期记忆人工神经网络单元,第2个隐藏层的输出作为第3隐藏层的输入;4)第4个隐藏层是汇总层,每隔一段时间会汇总第3层所有的输出;5)softmax层:汇总层的输出作为最后一层:softmax层的输入,最后一层有C路输出,代表人体动作的类别数。
CN201610290443.8A 2016-04-26 2016-04-26 一种基于三轴加速度传感器人体动作识别方法 Active CN105956558B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610290443.8A CN105956558B (zh) 2016-04-26 2016-04-26 一种基于三轴加速度传感器人体动作识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610290443.8A CN105956558B (zh) 2016-04-26 2016-04-26 一种基于三轴加速度传感器人体动作识别方法

Publications (2)

Publication Number Publication Date
CN105956558A true CN105956558A (zh) 2016-09-21
CN105956558B CN105956558B (zh) 2019-07-23

Family

ID=56913562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610290443.8A Active CN105956558B (zh) 2016-04-26 2016-04-26 一种基于三轴加速度传感器人体动作识别方法

Country Status (1)

Country Link
CN (1) CN105956558B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106383888A (zh) * 2016-09-22 2017-02-08 深圳市唯特视科技有限公司 一种利用图片检索定位导航的方法
CN106534579A (zh) * 2016-12-12 2017-03-22 北京羲和科技有限公司 基于深度学习的手机姿态判断方法及装置
CN107092861A (zh) * 2017-03-15 2017-08-25 华南理工大学 基于压力与加速度传感器的下肢动作识别方法
CN108433728A (zh) * 2018-03-06 2018-08-24 大连理工大学 一种基于智能手机和ann识别施工人员跌落险兆事故的方法
CN108564100A (zh) * 2017-12-12 2018-09-21 惠州Tcl移动通信有限公司 移动终端及其生成动作分类模型的方法、存储装置
CN108630230A (zh) * 2018-05-14 2018-10-09 哈尔滨工业大学 一种基于动作语音数据联合识别的校园霸凌检测方法
CN108960016A (zh) * 2017-05-25 2018-12-07 富士通株式会社 检测特定动作的方法和设备
CN109833031A (zh) * 2019-03-12 2019-06-04 西安交通大学 一种基于lstm利用多生理信号的自动睡眠分期方法
CN110361000A (zh) * 2019-07-18 2019-10-22 哈尔滨工业大学 一种适用于运动分析的动作事件窗截取方法
CN110664412A (zh) * 2019-09-19 2020-01-10 天津师范大学 一种面向可穿戴传感器的人类活动识别方法
CN112434669A (zh) * 2020-12-14 2021-03-02 武汉纺织大学 一种多信息融合的人体行为检测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110150271A1 (en) * 2009-12-18 2011-06-23 Microsoft Corporation Motion detection using depth images
CN103500342A (zh) * 2013-09-18 2014-01-08 华南理工大学 一种基于加速度计的人体行为识别方法
CN104217214A (zh) * 2014-08-21 2014-12-17 广东顺德中山大学卡内基梅隆大学国际联合研究院 基于可配置卷积神经网络的rgb-d人物行为识别方法
CN104268514A (zh) * 2014-09-17 2015-01-07 西安交通大学 一种基于多特征融合的手势检测方法
CN105184325A (zh) * 2015-09-23 2015-12-23 歌尔声学股份有限公司 一种人体动作识别方法和移动智能终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110150271A1 (en) * 2009-12-18 2011-06-23 Microsoft Corporation Motion detection using depth images
CN103500342A (zh) * 2013-09-18 2014-01-08 华南理工大学 一种基于加速度计的人体行为识别方法
CN104217214A (zh) * 2014-08-21 2014-12-17 广东顺德中山大学卡内基梅隆大学国际联合研究院 基于可配置卷积神经网络的rgb-d人物行为识别方法
CN104268514A (zh) * 2014-09-17 2015-01-07 西安交通大学 一种基于多特征融合的手势检测方法
CN105184325A (zh) * 2015-09-23 2015-12-23 歌尔声学股份有限公司 一种人体动作识别方法和移动智能终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAN CIREŞAN等: "Multi-column Deep Neural Networks for Image Classification", 《COMPUTER VISION AND PATTERN RECOGNITION》 *
ZHENYU HE等: "Weightlessness Feature - A Novel Feature for Single Tri-axial Accelerometer", 《2008 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106383888A (zh) * 2016-09-22 2017-02-08 深圳市唯特视科技有限公司 一种利用图片检索定位导航的方法
CN106534579A (zh) * 2016-12-12 2017-03-22 北京羲和科技有限公司 基于深度学习的手机姿态判断方法及装置
CN107092861A (zh) * 2017-03-15 2017-08-25 华南理工大学 基于压力与加速度传感器的下肢动作识别方法
CN107092861B (zh) * 2017-03-15 2020-11-27 华南理工大学 基于压力与加速度传感器的下肢动作识别方法
CN108960016A (zh) * 2017-05-25 2018-12-07 富士通株式会社 检测特定动作的方法和设备
CN108564100A (zh) * 2017-12-12 2018-09-21 惠州Tcl移动通信有限公司 移动终端及其生成动作分类模型的方法、存储装置
CN108433728A (zh) * 2018-03-06 2018-08-24 大连理工大学 一种基于智能手机和ann识别施工人员跌落险兆事故的方法
CN108630230A (zh) * 2018-05-14 2018-10-09 哈尔滨工业大学 一种基于动作语音数据联合识别的校园霸凌检测方法
CN109833031A (zh) * 2019-03-12 2019-06-04 西安交通大学 一种基于lstm利用多生理信号的自动睡眠分期方法
CN109833031B (zh) * 2019-03-12 2020-08-14 西安交通大学 一种基于lstm利用多生理信号的自动睡眠分期方法
CN110361000A (zh) * 2019-07-18 2019-10-22 哈尔滨工业大学 一种适用于运动分析的动作事件窗截取方法
CN110664412A (zh) * 2019-09-19 2020-01-10 天津师范大学 一种面向可穿戴传感器的人类活动识别方法
CN112434669A (zh) * 2020-12-14 2021-03-02 武汉纺织大学 一种多信息融合的人体行为检测方法及系统
CN112434669B (zh) * 2020-12-14 2023-09-26 武汉纺织大学 一种多信息融合的人体行为检测方法及系统

Also Published As

Publication number Publication date
CN105956558B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN105956558A (zh) 一种基于三轴加速度传感器人体动作识别方法
CN103971124A (zh) 一种基于相位同步的多类别运动想象脑电信号分类方法
CN108961272B (zh) 一种基于深度卷积对抗生成网络的皮肤病图像的生成方法
CN105044590B (zh) 一种单测量节点模拟电路故障诊断方法
CN106097393B (zh) 一种基于多尺度与自适应更新的目标跟踪方法
CN101493943B (zh) 一种粒子滤波跟踪方法和跟踪装置
CN106682697A (zh) 一种基于卷积神经网络的端到端物体检测方法
CN107657279A (zh) 一种基于少量样本的遥感目标检测方法
CN104063719A (zh) 基于深度卷积网络的行人检测方法及装置
CN108169745A (zh) 一种基于卷积神经网络的钻孔雷达目标识别方法
CN106570477A (zh) 基于深度学习的车型识别模型构建方法及车型识别方法
CN106203283A (zh) 基于三维卷积深度神经网络和深度视频的动作识别方法
CN105678222A (zh) 一种基于移动设备的人体行为识别方法
CN108244744A (zh) 一种运动状态识别的方法、鞋底及鞋
CN103400123A (zh) 基于三轴加速度传感器及神经网络的步态类型鉴别方法
CN100507509C (zh) 基于主成分分析和支持向量机的油气水多相流流型识别方法
CN103092971B (zh) 一种用于脑机接口中的分类方法
CN105404886A (zh) 特征模型生成方法和特征模型生成装置
CN103279957A (zh) 一种基于多尺度特征融合的遥感图像感兴趣区域提取方法
CN109050535A (zh) 一种基于车辆姿态的快速地形工况辨识方法
CN103345842A (zh) 一种道路车辆分型系统及方法
CN106127161A (zh) 基于级联多层检测器的快速目标检测方法
CN103699874A (zh) 基于surf流和lle稀疏表示的人群异常行为识别方法
CN107301409A (zh) 基于Wrapper特征选择Bagging学习处理心电图的系统及方法
CN108717548A (zh) 一种面向传感器动态增加的行为识别模型更新方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190625

Address after: 650500 Shilin Street, Chenggong District, Kunming City, Yunnan Province, 9 buildings 302

Applicant after: Shenzhen joint vision Creative Technology Limited

Address before: 650504 School of Information, Chenggong Campus, Yunnan University, Kunming City, Yunnan Province

Applicant before: Tao Dapeng

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210107

Address after: 518000 6-4108, 4 / F, building 1, Nanyou fourth industrial zone, No. 1124 Nanshan Avenue, Nanguang community, Nanshan street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: SHENZHEN UNION VISION INNOVATION TECHNOLOGY Co.,Ltd.

Patentee after: YUNNAN UNITED VISUAL TECHNOLOGY Co.,Ltd.

Address before: 650500 Shilin Street, Chenggong District, Kunming City, Yunnan Province, 9 buildings 302

Patentee before: SHENZHEN UNION VISION INNOVATION TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right