CN105956198A - Nidus position and content-based mammary image retrieval system and method - Google Patents
Nidus position and content-based mammary image retrieval system and method Download PDFInfo
- Publication number
- CN105956198A CN105956198A CN201610445569.8A CN201610445569A CN105956198A CN 105956198 A CN105956198 A CN 105956198A CN 201610445569 A CN201610445569 A CN 201610445569A CN 105956198 A CN105956198 A CN 105956198A
- Authority
- CN
- China
- Prior art keywords
- image
- similarity
- lesion
- retrieved
- circle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000003902 lesion Effects 0.000 claims abstract description 185
- 238000005259 measurement Methods 0.000 claims abstract description 33
- 210000000481 breast Anatomy 0.000 claims abstract description 30
- 238000009607 mammography Methods 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 18
- 238000007781 pre-processing Methods 0.000 claims abstract description 16
- 239000013598 vector Substances 0.000 claims description 52
- 230000009466 transformation Effects 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 6
- 210000005075 mammary gland Anatomy 0.000 claims description 4
- 230000011218 segmentation Effects 0.000 claims description 4
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 abstract description 4
- 208000030270 breast disease Diseases 0.000 abstract description 2
- 238000003745 diagnosis Methods 0.000 description 6
- 206010006187 Breast cancer Diseases 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 238000001514 detection method Methods 0.000 description 2
- 238000013399 early diagnosis Methods 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000011524 similarity measure Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/583—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
Landscapes
- Engineering & Computer Science (AREA)
- Library & Information Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Image Processing (AREA)
Abstract
本发明提供一种基于病灶位置与内容的乳腺图像检索系统及方法,该系统包括图像预处理单元、图像病灶位置相似性度量单元、图像内容相似性度量单元和图像综合相似性度量器,该方法为获取乳腺钼靶x射线图像的待检索图像、历史图像集,选取标准图像,对待检索图像和历史图像集进行预处理,对预处理后的待检索图像和预处理后的历史图像集进行图像病灶位置相似性度量,对乳腺钼靶x线图像的预处理后的待检索图像和预处理后的历史图像集进行图像内容相似性度量,得出图像综合相似性图像序号,得到待检索图像检索结果。本发明增加了基于病灶位置相似性度量方法,有效地改善乳腺钼靶x线图像的检索性能,进一步辅助医生对乳腺疾病的诊断。
The present invention provides a breast image retrieval system and method based on lesion position and content. The system includes an image preprocessing unit, an image lesion position similarity measurement unit, an image content similarity measurement unit, and an image comprehensive similarity measurer. In order to obtain the image to be retrieved and the historical image set of mammography x-ray images, select the standard image, preprocess the image to be retrieved and the historical image set, and perform image processing on the preprocessed image to be retrieved and the preprocessed historical image set Similarity measurement of lesion position, the image content similarity measurement is performed on the preprocessed image to be retrieved and the preprocessed historical image set of mammography x-ray images, and the image sequence number of the comprehensive similarity of the image is obtained, and the image retrieval to be retrieved is obtained result. The invention adds a measurement method based on the similarity of the lesion position, effectively improves the retrieval performance of mammogram x-ray images, and further assists doctors in diagnosing breast diseases.
Description
技术领域technical field
本发明属于医学图像后处理技术领域,具体涉及一种基于病灶位置与内容的乳腺图像检索系统及方法。The invention belongs to the technical field of medical image post-processing, and in particular relates to a breast image retrieval system and method based on lesion location and content.
背景技术Background technique
目前,乳腺癌筛查是实现乳腺癌早诊早治的重要手段,可以降低30%的死亡率。乳腺钼靶X线影像是乳腺癌早期检测、诊断的重要依据,乳腺图像中病灶的不同表现,成为早期诊断乳腺癌的唯一标准,但其的诊断具有较大的难度,通过乳腺图像的检索可以有效地辅助医生诊断。At present, breast cancer screening is an important means to achieve early diagnosis and treatment of breast cancer, which can reduce the mortality rate by 30%. Mammography mammography is an important basis for early detection and diagnosis of breast cancer. The different manifestations of lesions in breast images have become the only standard for early diagnosis of breast cancer, but its diagnosis is relatively difficult. Retrieval of breast images can Effectively assist doctors in diagnosis.
基于内容的图像检索技术开始于90年代初期,发展到如今它在医学上的用途越来越广泛,其中在乳腺图像检索方面的意义极为重大,是根据乳腺图像的特点来进行检索的,将检索结果视为医学诊断的有用价值。发展至今,检索技术已经有了较为成熟的发展,却仍然在检索性能方面存在缺陷,主要表现在检索性能较低上,其主要原因在于图像含有的信息量以及相似性度量方式,即所提取出图像有用信息的含量和相似性检索的方法。因此,如何改善检索的性能,仍需要进一步讨论和研究。Content-based image retrieval technology started in the early 1990s, and now it is used more and more widely in medicine. Among them, it is of great significance in breast image retrieval, which is based on the characteristics of breast images. The results are considered useful for medical diagnosis. Up to now, the retrieval technology has developed relatively maturely, but there are still defects in the retrieval performance, which is mainly manifested in the low retrieval performance. The main reason is the amount of information contained in the image and the similarity measurement method, that is, the extracted The content of useful information in images and the method of similarity retrieval. Therefore, how to improve the retrieval performance still needs further discussion and research.
发明内容Contents of the invention
针对现有技术的不足,本发明提出一种基于病灶位置与内容的乳腺图像检索系统及方法。Aiming at the deficiencies of the prior art, the present invention proposes a breast image retrieval system and method based on lesion location and content.
本发明的技术方案是:一种基于病灶位置与内容的乳腺图像检索系统,包括图像预处理单元、图像病灶位置相似性度量单元、图像内容相似性度量单元和图像综合相似性度量器;The technical solution of the present invention is: a breast image retrieval system based on lesion position and content, including an image preprocessing unit, an image lesion position similarity measurement unit, an image content similarity measurement unit, and an image comprehensive similarity measurer;
所述图像预处理单元,用于获取乳腺钼靶X射线图像的待检索图像F0、历史图像集(F1,F2,…,Fn),选取标准图像FC,对待检索图像F0和历史图像集(F1,F2,…,Fn)进行预处理,得到预处理后的图像集(I0,I1,I2,…,In),其中,包括预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In);所述标准图像FC为形态正常、大小适中的乳腺钼靶X射线图像;The image preprocessing unit is used to obtain the image to be retrieved F 0 of the mammography X-ray image, the historical image set (F 1 , F 2 ,...,F n ), select the standard image F C , and the image to be retrieved F 0 Preprocess with the historical image set (F 1 ,F 2 ,…,F n ) to get the preprocessed image set (I 0 ,I 1 ,I 2 ,…, In ), including the preprocessed The image I 0 to be retrieved and the preprocessed historical image set (I 1 , I 2 ,...,In ); the standard image F C is a mammography X-ray image with normal shape and moderate size;
所述图像病灶位置相似性度量单元,用于对乳腺钼靶X线图像的预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In)进行图像病灶位置相似性度量,得到图像病灶位置相似性集合(S1,S2,…,Sn);The image lesion position similarity measurement unit is used to perform preprocessing on the preprocessed image to be retrieved I 0 and the preprocessed historical image set (I 1 , I 2 ,...,In ) of the mammogram X-ray image Measure the similarity of image lesion positions to obtain a set of image lesion position similarities (S 1 , S 2 ,...,S n );
所述图像内容相似性度量单元,用于对乳腺钼靶X线图像的预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In)进行图像内容相似性度量,得到图像内容相似性集合(E1,E2,…,En);The image content similarity measurement unit is used to image the preprocessed image to be retrieved I 0 and the preprocessed historical image set (I 1 , I 2 ,...,In ) of the mammogram X-ray image Content similarity measurement to obtain image content similarity set (E 1 ,E 2 ,…,E n );
所述图像综合相似性度量器,用于将图像病灶位置相似性集合(S1,S2,…,Sn)按照图像病灶位置相似性从大到小排序,并标记序号,将排序后的图像病灶位置相似性集合的序号分配A%的权重,将图像内容相似性集合(E1,E2,…,En)按照图像内容相似性从小到大排序,并标记序号,将排序后的图像内容相似性集合的序号分配(100-A)%的权重,综合图像病灶位置相似性图像序号和图像内容相似性图像序号得出图像综合相似性图像序号,得到待检索图像检索结果:即图像综合相似性图像序号越小,表示该图像与待检索图像越相似。The image comprehensive similarity measurer is used to sort the image lesion position similarity set (S 1 , S 2 ,...,S n ) according to the image lesion position similarity from large to small, and mark the serial number, and sort the The sequence number of the image lesion position similarity set is assigned the weight of A%, and the image content similarity set (E 1 , E 2 ,...,E n ) is sorted according to the image content similarity from small to large, and the sequence number is marked, and the sorted The serial number of the image content similarity set is assigned (100-A)% weight, and the image serial number of the image lesion position similarity and the image content similarity image serial number are integrated to obtain the image comprehensive similarity image serial number, and the retrieval result of the image to be retrieved is obtained: the image The smaller the serial number of the comprehensive similarity image, the more similar the image is to the image to be retrieved.
优选地,所述图像预处理单元包括:图像去噪器和图像增强器;Preferably, the image preprocessing unit includes: an image denoiser and an image intensifier;
所述图像去噪器,用于分别对待检索图像F0和历史图像集(F1,F2,…,Fn)进行降噪处理,得到降噪后的待检索图像P0和降噪后的历史图像集(P1,P2,…,Pn);The image denoiser is used to perform denoising processing on the image to be retrieved F 0 and the historical image set (F 1 , F 2 ,...,F n ) respectively, to obtain the denoised image to be retrieved P 0 and the denoised image The historical image set (P 1 ,P 2 ,…,P n );
所述图像增强器,用于分别对降噪后的待检索图像P0和降噪后的历史图像集(P1,P2,…,Pn)进行图像增强处理,得到预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In);The image intensifier is used to perform image enhancement processing on the noise-reduced image to be retrieved P 0 and the noise-reduced historical image set (P 1 , P 2 ,...,P n ), to obtain the pre-processed image to be retrieved Retrieve the image I 0 and the preprocessed historical image set (I 1 ,I 2 ,…, In );
优选地,所述图像病灶位置相似性度量单元包括:病灶位置中心点和半径确定器、待检索图像和图像库与标准图像配准器、图像病灶位置相似性确定器;Preferably, the image lesion position similarity measurement unit includes: a lesion position center point and radius determiner, an image to be retrieved and an image library and a standard image registration unit, and an image lesion position similarity determiner;
所述病灶位置中心点和半径确定器,用于确定预处理后的图像集(I0,I1,I2,…,In)的病灶位置中心点坐标集{(x0,y0),(x1,y1),(x2,y2)…,(xn,yn)}和病灶位置半径集(R0,R1,R2,…,Rn);The lesion position center point and radius determiner is used to determine the lesion position center point coordinate set {(x 0 , y 0 ) of the preprocessed image set (I 0 , I 1 , I 2 ,...,In ) ,(x 1 ,y 1 ),(x 2 ,y 2 )…,(x n ,y n )} and the lesion position radius set (R 0 ,R 1 ,R 2 ,…,R n );
优选地,所述确定预处理后的图像集(I0,I1,I2,…,In)的病灶位置中心点坐标集{(x0,y0),(x1,y1),(x2,y2)…,(xn,yn)}和病灶位置半径集(R0,R1,R2,…,Rn)的具体方法为:Preferably, the determination of the center point coordinate set {(x 0 ,y 0 ),( x 1 ,y 1 ) of the lesion position of the preprocessed image set (I 0 , I 1 , I 2 ,...,In ) ,(x 2 ,y 2 )…,(x n ,y n )} and the lesion location radius set (R 0 ,R 1 ,R 2 ,…,R n ) are as follows:
采用经典的大津法阈值分割算法对预处理后的图像集(I0,I1,I2,…,In)进行二值化处理,保留二值化处理后的图像中高亮区域,将高亮区域X轴方向最大值的一半作为病灶位置中心点横坐标,将高亮区域Y轴方向最大值的一半作为病灶位置中心点纵坐标,得到病灶位置中心点坐标集{(x0,y0),(x1,y1),(x2,y2)…,(xn,yn)},遍历高亮区域所有点,从第一个点开始,利用直角三角形勾股定理,求出点到中心点的距离,依次计算高亮区域中所有点与中心点的距离,将其最大值作为病灶位置半径,得到病灶位置半径集(R0,R1,R2,…,Rn)。The preprocessed image set (I 0 , I 1 , I 2 ,…,In ) is binarized using the classic Otsu method threshold segmentation algorithm, and the highlighted areas in the binarized image are retained, and the high Half of the maximum value in the X-axis direction of the bright area is taken as the abscissa of the center point of the lesion, and half of the maximum value in the Y-axis direction of the highlighted area is taken as the ordinate of the center point of the lesion, and the coordinate set of the center point of the lesion is obtained {(x 0 ,y 0 ),(x 1 ,y 1 ),(x 2 ,y 2 )…,(x n ,y n )}, traverse all the points in the highlighted area, start from the first point, use the right triangle Pythagorean theorem, find The distance from the point to the center point is calculated sequentially from all points in the highlighted area to the center point, and the maximum value is used as the radius of the lesion position to obtain the radius set of the lesion position (R 0 , R 1 , R 2 ,…,R n ).
所述待检索图像和图像库与标准图像配准器,用于利用基于CPD配准方法,将预处理后的图像集(I0,I1,I2,…,In)与标准图像FC进行匹配,得到转换后的病灶中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)},并将转换后的病灶中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}和病灶位置半径集(R0,R1,R2,…,Rn)显示在标准图像FC上,利用转换后的病灶中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}和病灶位置半径集(R0,R1,R2,…,Rn)确定病灶区域(Circle0,Circle1,Circle2,…,Circlen);The image to be retrieved and the image library and standard image registration device are used to combine the preprocessed image set (I 0 , I 1 , I 2 ,..., In ) with the standard image F C performs matching to obtain the transformed focal point coordinate set {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )}, and The transformed lesion center point coordinate set {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )} and the lesion position radius set ( R 0 , R 1 , R 2 ,…,R n ) are displayed on the standard image F C , using the transformed focal point coordinate set {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )} and the lesion position radius set (R 0 ,R 1 ,R 2 ,…,R n ) determine the lesion area (Circle 0 ,Circle 1 ,Circle 2 ,… , Circle n );
所述图像病灶位置相似性确定器,用于分别计算病灶区域(Circle0,Circle1,Circle2,…,Circlen)中待检索图像的病灶区域Circle0与历史图像的病灶区域(Circle1,Circle2,…,Circlen)的交集和并集,令得到图像病灶位置相似性集合(S1,S2,S3,…,Sn);The image lesion position similarity determiner is used to calculate the lesion area Circle 0 of the image to be retrieved and the lesion area of the historical image (Circle 1 , Circle n ) in the lesion area (Circle 0 , Circle 1 , Circle 2 ,..., Circle 2 ,…,Circle n ) intersection and union, let Obtain the image lesion position similarity set (S 1 , S 2 , S 3 ,...,S n );
优选地,所述图像内容相似性度量单元包括:图像特征直方图提取器和图像内容相似性确定器;Preferably, the image content similarity measurement unit includes: an image feature histogram extractor and an image content similarity determiner;
所述图像特征直方图提取器,用于提取预处理后的图像集(I0,I1,I2,…,In)的灰度特征、形状特征和纹理特征,构建其图像灰度直方图、基于边缘方向直方图、方向梯度直方图和局部二值模式直方图,得到灰度特征向量(α0,α1,α2,…,αn)、形状特征向量(β0,β1,β2,…,βn)和纹理特征向量(γ0,γ1,γ2,…,γn),合并灰度特征向量(α0,α1,α2,…,αn)、形状特征向量(β0,β1,β2,…,βn)和纹理特征向量(γ0,γ1,γ2,…,γn),得到综合直方图特征向量(ω0,ω1,ω2,…,ωn);The image feature histogram extractor is used to extract the grayscale features, shape features and texture features of the preprocessed image set (I 0 , I 1 , I 2 ,...,In ), and construct its image grayscale histogram Figure, based on the edge direction histogram, direction gradient histogram and local binary pattern histogram, the gray feature vector (α 0 ,α 1 ,α 2 ,…,α n ), the shape feature vector (β 0 ,β 1 ,β 2 ,…,β n ) and texture feature vectors (γ 0 ,γ 1 ,γ 2 ,…,γ n ), merged grayscale feature vectors (α 0 ,α 1 ,α 2 ,…,α n ), Shape eigenvectors (β 0 , β 1 , β 2 ,…,β n ) and texture eigenvectors (γ 0 , γ 1 ,γ 2 ,…,γ n ), get the integrated histogram feature vector (ω 0 ,ω 1 ,ω 2 ,…,ω n );
所述图像内容相似性确定器,用于采用EMD方法将待检索图像的综合直方图特征向量ω0和历史图像的综合直方图特征向量(ω1,ω2,…,ωn)进行相似性度量,得到图像内容相似性集合(E1,E2,…,En)。The image content similarity determiner is used to perform similarity between the integrated histogram feature vector ω 0 of the image to be retrieved and the integrated histogram feature vector (ω 1 , ω 2 ,...,ω n ) of the historical image by using the EMD method Measured to obtain the image content similarity set (E 1 , E 2 ,...,E n ).
采用基于病灶位置与内容的乳腺图像检索系统进行图像检索的方法,包括以下步骤:The image retrieval method using a mammary gland image retrieval system based on lesion position and content comprises the following steps:
步骤1:获取乳腺钼靶X射线图像的待检索图像F0、历史图像集(F1,F2,…,Fn),选取标准图像FC;Step 1: Obtain the image F 0 to be retrieved and the historical image set (F 1 , F 2 ,...,F n ) of mammography X-ray images, and select the standard image F C ;
步骤2:对待检索图像F0和历史图像集(F1,F2,…,Fn)进行预处理,得到预处理后的图像集(I0,I1,I2,…,In);Step 2: Preprocess the image to be retrieved F 0 and the historical image set (F 1 , F 2 ,...,F n ), and obtain the preprocessed image set (I 0 , I 1 , I 2 ,...,In ) ;
步骤2.1:分别对待检索图像F0和历史图像集(F1,F2,…,Fn)进行降噪处理,得到降噪后的待检索图像P0和降噪后的历史图像集(P1,P2,…,Pn);Step 2.1: Perform noise reduction processing on the image to be retrieved F 0 and the historical image set (F 1 , F 2 ,...,F n ) respectively, and obtain the image to be retrieved after noise reduction P 0 and the historical image set after noise reduction (P 1 ,P 2 ,...,P n );
步骤2.2:分别对降噪后的待检索图像P0和降噪后的历史图像集(P1,P2,…,Pn)进行图像增强处理,得到预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In);Step 2.2: Carry out image enhancement processing on the denoised image to be retrieved P 0 and the denoised historical image set (P 1 , P 2 ,...,P n ) to obtain the preprocessed image to be retrieved I 0 and Preprocessed historical image set (I 1 ,I 2 ,…, In );
步骤3:对乳腺钼靶X线图像的预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In)进行图像病灶位置相似性度量;Step 3: Carry out image lesion position similarity measurement on the preprocessed mammography image to be retrieved I 0 and the preprocessed historical image set (I 1 , I 2 ,...,In );
步骤3.1:确定预处理后的图像集(I0,I1,I2,…,In)的病灶位置中心点坐标集{(x0,y0),(x1,y1),(x2,y2)…,(xn,yn)}和病灶位置半径集(R0,R1,R2,…,Rn);Step 3.1: Determine the center point coordinate set {(x 0 ,y 0 ) , (x 1 , y 1 ) ,( x 2 ,y 2 )…,(x n ,y n )} and the radius set of the lesion position (R 0 ,R 1 ,R 2 ,…,R n );
步骤3.2:利用基于CPD配准方法,将预处理后的图像集(I0,I1,I2,…,In)与标准图像FC进行匹配,得到转换后的病灶中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)},并将转换后的病灶中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}和病灶位置半径集(R0,R1,R2,…,Rn)显示在标准图像FC上,利用转换后的病灶中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}和病灶位置半径集(R0,R1,R2,…,Rn)确定病灶区域(Circle0,Circle1,Circle2,…,Circlen);Step 3.2: Use the CPD-based registration method to match the preprocessed image set (I 0 , I 1 , I 2 ,...,In ) with the standard image F C to obtain the transformed lesion center point coordinate set { (X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )}, and the transformed focal point coordinate set {(X 0 , Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )} and lesion position radius set (R 0 ,R 1 ,R 2 ,…,R n ) Displayed on the standard image F C , using the transformed focal point coordinate set {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )} and the lesion location radius set (R 0 , R 1 , R 2 ,…,R n ) determine the lesion area (Circle 0 , Circle 1 , Circle 2 ,…,Circle n );
步骤3.3:分别计算病灶区域(Circle0,Circle1,Circle2,…,Circlen)中待检索图像的病灶区域Circle0与历史图像的病灶区域(Circle1,Circle2,…,Circlen)的交集和并集,令 得到图像病灶位置相似性集合(S1,S2,S3,…,Sn);Step 3.3: Calculate the difference between the lesion area Circle 0 of the image to be retrieved in the lesion area (Circle 0 , Circle 1 , Circle 2 ,...,Circle n ) and the lesion area of the historical image (Circle 1 , Circle 2 ,...,Circle n ) intersection and union, let Obtain the image lesion position similarity set (S 1 , S 2 , S 3 ,...,S n );
步骤4:对乳腺钼靶X线图像的预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In)进行图像内容相似性度量;Step 4: Perform image content similarity measurement on the preprocessed image to be retrieved I 0 and the preprocessed historical image set (I 1 , I 2 ,...,In ) of the mammography image;
步骤4.1:提取预处理后的图像集(I0,I1,I2,…,In)的灰度特征、形状特征和纹理特征,构建其图像灰度直方图、基于边缘方向直方图、方向梯度直方图和局部二值模式直方图,得到灰度特征向量(α0,α1,α2,…,αn)、形状特征向量(β0,β1,β2,…,βn)和纹理特征向量(γ0,γ1,γ2,…,γn);Step 4.1: Extract the grayscale features, shape features and texture features of the preprocessed image set (I 0 , I 1 , I 2 ,...,In ), and construct its image grayscale histogram, based on the edge direction histogram, Oriented gradient histogram and local binary pattern histogram to obtain gray feature vector (α 0 ,α 1 ,α 2 ,…,α n ), shape feature vector (β 0 ,β 1 ,β 2 ,…,β n ) and texture feature vectors (γ 0 ,γ 1 ,γ 2 ,…,γ n );
步骤4.2:合并灰度特征向量(α0,α1,α2,…,αn)、形状特征向量(β0,β1,β2,…,βn)和纹理特征向量(γ0,γ1,γ2,…,γn),得到综合直方图特征向量(ω0,ω1,ω2,…,ωn);Step 4.2: Combine gray feature vectors (α 0 ,α 1 ,α 2 ,…,α n ), shape feature vectors (β 0 ,β 1 ,β 2 ,…,β n ) and texture feature vectors (γ 0 , γ 1 ,γ 2 ,…,γ n ), get the integrated histogram feature vector (ω 0 ,ω 1 ,ω 2 ,…,ω n );
步骤4.3:采用EMD方法将待检索图像的综合直方图特征向量ω0和历史图像的综合直方图特征向量(ω1,ω2,…,ωn)进行相似性度量,得到图像内容相似性集合(E1,E2,…,En);Step 4.3: Use the EMD method to measure the similarity between the integrated histogram feature vector ω 0 of the image to be retrieved and the integrated histogram feature vector (ω 1 ,ω 2 ,…,ω n ) of the historical image, and obtain the image content similarity set (E 1 ,E 2 ,…,E n );
步骤5:将图像病灶位置相似性集合(S1,S2,…,Sn)按照图像病灶位置相似性从大到小排序,并标记序号,将排序后的图像病灶位置相似性集合的序号分配A%的权重,将图像内容相似性集合(E1,E2,…,En)按照图像内容相似性从小到大排序,并标记序号,将排序后的图像内容相似性集合的序号分配(100-A)%的权重,综合图像病灶位置相似性图像序号和图像内容相似性图像序号得出图像综合相似性图像序号,得到待检索图像检索结果:即图像综合相似性图像序号越小,表示该图像与待检索图像越相似。Step 5: Sort the image lesion position similarity set (S 1 , S 2 ,...,S n ) according to the image lesion position similarity from large to small, and mark the sequence number, and put the sequence number of the sorted image lesion position similarity set Assign the weight of A%, sort the image content similarity set (E 1 , E 2 ,...,E n ) according to the image content similarity from small to large, and mark the sequence number, assign the sequence number of the sorted image content similarity set (100-A)% weight, the integrated image lesion position similarity image serial number and image content similarity image serial number obtains the image comprehensive similarity image serial number, obtains the retrieval result of the image to be retrieved: the smaller the image comprehensive similarity image serial number, the smaller the image comprehensive similarity image serial number, Indicates that the image is more similar to the image to be retrieved.
优选地,所述步骤3.2包括以下步骤:Preferably, said step 3.2 includes the following steps:
步骤3.2.1:提取预处理后的图像集(I0,I1,I2,…,In)图像中的乳房轮廓和标准图像FC的乳房轮廓;Step 3.2.1: Extract the breast contour in the preprocessed image set (I 0 , I 1 , I 2 ,...,In ) and the breast contour of the standard image F C ;
步骤3.2.2:利用基于CPD的仿射变换,配准预处理后的图像集(I0,I1,I2,…,In)图像中的乳房轮廓和标准图像FC的乳房轮廓,得到配准变换矩阵(T0,T1,T2,…,Tn);Step 3.2.2: Using CPD-based affine transformation, register the breast contour in the preprocessed image set (I 0 , I 1 , I 2 ,...,In ) with the breast contour of the standard image F C , Get the registration transformation matrix (T 0 ,T 1 ,T 2 ,…,T n );
步骤3.2.3:通过配准变换矩阵(T0,T1,T2,…,Tn)对病灶位置中心点坐标集{(x0,y0),(x1,y1),(x2,y2)…,(xn,yn)}和病灶位置半径集(R0,R1,R2,…,Rn)进行转换,得到转换后的病灶位置中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)};Step 3.2.3: Use the registration transformation matrix (T 0 ,T 1 ,T 2 ,…,T n ) to coordinate the center point coordinate set of the lesion position {(x 0 ,y 0 ),(x 1 ,y 1 ),( x 2 ,y 2 )…,(x n ,y n )} and the radius set of the lesion position (R 0 ,R 1 ,R 2 ,…,R n ) are transformed to obtain the center point coordinate set of the lesion position { (X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )};
步骤3.2.4:将转换后的病灶位置中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}和病灶位置半径集(R0,R1,R2,…,Rn)显示在标准图像FC上,将转换后的病灶位置中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}和病灶位置半径集(R0,R1,R2,…,Rn)确定的圆(Circle0,Circle1,Circle2,…,Circlen)作为病灶区域。Step 3.2.4: Set the center point coordinates of the transformed lesion position {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )} and the lesion position radius set (R 0 , R 1 , R 2 ,…,R n ) are displayed on the standard image F C , and the transformed lesion position central point coordinate set {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n , Y n ) } and the circle ( Circle 0 , Circle 1 , Circle 2 ,...,Circle n ) as the lesion area.
本发明的有益效果:Beneficial effects of the present invention:
本发明提出一种基于病灶位置与内容的乳腺图像检索系统及方法,在传统的基于内容的图像检索方法的基础上,增加了基于病灶位置相似性度量方法,能够有效地改善乳腺钼靶X线图像的检索性能,从而能够更进一步辅助医生对乳腺疾病的诊断。The present invention proposes a breast image retrieval system and method based on lesion location and content. On the basis of the traditional content-based image retrieval method, a similarity measurement method based on lesion location is added, which can effectively improve mammography X-ray images. The image retrieval performance can further assist doctors in the diagnosis of breast diseases.
附图说明Description of drawings
图1为本发明具体实施方式中基于病灶位置与内容的乳腺图像检索系统的结构框图;Fig. 1 is the structural block diagram of the mammary gland image retrieval system based on lesion position and content in the specific embodiment of the present invention;
图2为本发明具体实施方式中基于病灶位置与内容的乳腺图像检索方法的流程图;Fig. 2 is the flow chart of the breast image retrieval method based on lesion position and content in the specific embodiment of the present invention;
图3为本发明具体实施方式中对乳腺钼靶X线图像的预处理后的待检索图像和预处理后的历史图像集进行图像病灶位置相似性度量的流程图;Fig. 3 is a flow chart of performing image lesion position similarity measurement on the image to be retrieved after the preprocessing of the mammography image and the historical image set after the preprocessing in the specific embodiment of the present invention;
图4为本发明具体实施方式中利用基于CPD配准方法确定病灶区域的流程图;Fig. 4 is a flow chart of determining a lesion area using a CPD-based registration method in a specific embodiment of the present invention;
图5为本发明具体实施方式中对乳腺钼靶X线图像的预处理后的待检索图像和预处理后的历史图像集进行图像内容相似性度量的流程图;5 is a flow chart of performing image content similarity measurement on mammogram images to be retrieved after preprocessing and historical image sets after preprocessing in a specific embodiment of the present invention;
图6为本发明具体实施方式中根据历史图像集得到待检索图像检索结果的图像处理过程流程图。Fig. 6 is a flow chart of the image processing process for obtaining the retrieval result of the image to be retrieved according to the historical image set in the specific embodiment of the present invention.
具体实施方式detailed description
下面结合附图对本发明具体实施方式加以详细的说明。The specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
一种基于病灶位置与内容的乳腺图像检索系统,如图1所示,包括图像预处理单元、图像病灶位置相似性度量单元、图像内容相似性度量单元和图像综合相似性度量器。A breast image retrieval system based on lesion position and content, as shown in Figure 1, includes an image preprocessing unit, an image lesion position similarity measurement unit, an image content similarity measurement unit, and an image comprehensive similarity measurer.
图像预处理单元,用于获取乳腺钼靶X射线图像的待检索图像F0、历史图像集(F1,F2,…,Fn),选取标准图像FC,对待检索图像F0和历史图像集(F1,F2,…,Fn)进行预处理,得到预处理后的图像集(I0,I1,I2,…,In),其中,包括预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In)。The image preprocessing unit is used to obtain the image to be retrieved F 0 and the historical image set (F 1 , F 2 ,...,F n ) of the mammography X-ray image, select the standard image F C , and the image to be retrieved F 0 and the historical image set The image set (F 1 , F 2 ,…,F n ) is preprocessed to obtain the preprocessed image set (I 0 ,I 1 ,I 2 ,…,In ), which includes the preprocessed image set to be retrieved Image I 0 and the preprocessed historical image set (I 1 , I 2 ,..., In ).
标准图像FC为形态正常、大小适中的乳腺钼靶X射线图像。The standard image F C is a mammography X-ray image with normal shape and moderate size.
图像预处理单元包括:图像去噪器和图像增强器。The image preprocessing unit includes: image denoiser and image enhancer.
图像去噪器,用于分别对待检索图像F0和历史图像集(F1,F2,…,Fn)进行降噪处理,得到降噪后的待检索图像P0和降噪后的历史图像集(P1,P2,…,Pn)。The image denoiser is used to perform denoising processing on the image to be retrieved F 0 and the historical image set (F 1 , F 2 ,...,F n ) respectively, to obtain the denoised image P 0 to be retrieved and the denoised history Image set (P 1 ,P 2 ,...,P n ).
图像增强器,用于分别对降噪后的待检索图像P0和降噪后的历史图像集(P1,P2,…,Pn)进行图像增强处理,得到预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In)。An image intensifier, which is used to perform image enhancement processing on the denoised image to be retrieved P 0 and the denoised historical image set (P 1 , P 2 ,...,P n ) to obtain the preprocessed image to be retrieved I 0 and the preprocessed historical image set (I 1 , I 2 ,…, In ).
图像病灶位置相似性度量单元,用于对乳腺钼靶X线图像的预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In)进行图像病灶位置相似性度量,得到图像病灶位置相似性集合(S1,S2,…,Sn)。The image lesion position similarity measurement unit is used to perform image lesion detection on the preprocessed image I 0 to be retrieved and the preprocessed historical image set (I 1 , I 2 ,...,In ) of the mammography image. The location similarity measurement is used to obtain the image lesion location similarity set (S 1 , S 2 ,...,S n ).
图像病灶位置相似性度量单元包括:病灶位置中心点和半径确定器、待检索图像和图像库与标准图像配准器、图像病灶位置相似性确定器。The image lesion position similarity measurement unit includes: a lesion position center point and radius determiner, an image to be retrieved and an image database and a standard image registration unit, and an image lesion position similarity determiner.
病灶位置中心点和半径确定器,用于确定预处理后的图像集(I0,I1,I2,…,In)的病灶位置中心点坐标集{(x0,y0),(x1,y1),(x2,y2)…,(xn,yn)}和病灶位置半径集(R0,R1,R2,…,Rn)。The center point and radius determiner of the lesion position is used to determine the coordinate set of the center point of the lesion position { ( x 0 ,y 0 ) , ( x 1 ,y 1 ),(x 2 ,y 2 )…,(x n ,y n )} and the radius set of the lesion position (R 0 ,R 1 ,R 2 ,…,R n ).
本实施方式中,确定预处理后的图像集(I0,I1,I2,…,In)的病灶位置中心点坐标集{(x0,y0),(x1,y1),(x2,y2)…,(xn,yn)}和病灶位置半径集(R0,R1,R2,…,Rn)的具体方法为:In this embodiment, the center point coordinate set {(x 0 , y 0 ), ( x 1 , y 1 ) of the lesion position of the preprocessed image set (I 0 , I 1 , I 2 ,...,In ) is determined ,(x 2 ,y 2 )…,(x n ,y n )} and the lesion location radius set (R 0 ,R 1 ,R 2 ,…,R n ) are as follows:
采用经典的大津法阈值分割算法对预处理后的图像集(I0,I1,I2,…,In)进行二值化处理,保留二值化处理后的图像中高亮区域,将高亮区域X轴方向最大值的一半作为病灶位置中心点横坐标,将高亮区域Y轴方向最大值的一半作为病灶位置中心点纵坐标,得到病灶位置中心点坐标集{(x0,y0),(x1,y1),(x2,y2)…,(xn,yn)},遍历高亮区域所有点,从第一个点开始,利用直角三角形勾股定理,求出点到中心点的距离,依次计算高亮区域中所有点与中心点的距离,将其最大值作为病灶位置半径,得到病灶位置半径集(R0,R1,R2,…,Rn)。The preprocessed image set (I 0 , I 1 , I 2 ,…,In ) is binarized using the classic Otsu method threshold segmentation algorithm, and the highlighted areas in the binarized image are retained, and the high Half of the maximum value in the X-axis direction of the bright area is taken as the abscissa of the center point of the lesion, and half of the maximum value in the Y-axis direction of the highlighted area is taken as the ordinate of the center point of the lesion, and the coordinate set of the center point of the lesion is obtained {(x 0 ,y 0 ),(x 1 ,y 1 ),(x 2 ,y 2 )…,(x n ,y n )}, traverse all the points in the highlighted area, start from the first point, use the right triangle Pythagorean theorem, find The distance from the point to the center point is calculated sequentially from all points in the highlighted area to the center point, and the maximum value is used as the radius of the lesion position to obtain the radius set of the lesion position (R 0 , R 1 , R 2 ,…,R n ).
待检索图像和图像库与标准图像配准器,用于利用基于CPD配准方法,将预处理后的图像集(I0,I1,I2,…,In)与标准图像FC进行区配,得到转换后的病灶中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)},并将转换后的病灶中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}和病灶位置半径集(R0,R1,R2,…,Rn)显示在标准图像FC上,利用转换后的病灶中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}和病灶位置半径集(R0,R1,R2,…,Rn)确定病灶区域(Circle0,Circle1,Circle2,…,Circlen)。The image to be retrieved and the image library and the standard image registration device are used to align the preprocessed image set (I 0 , I 1 , I 2 ,…, In ) with the standard image F C using the CPD-based registration method District matching, to obtain the transformed lesion center point coordinate set {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )}, and The transformed lesion center point coordinate set {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )} and the lesion position radius set (R 0 ,R 1 ,R 2 ,…,R n ) are displayed on the standard image F C , using the transformed lesion center point coordinate set {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )} and the lesion position radius set (R 0 ,R 1 ,R 2 ,…,R n ) determine the lesion area (Circle 0 ,Circle 1 ,Circle 2 ,…, Circle n ).
图像病灶位置相似性确定器,用于分别计算病灶区域(Circle0,Circle1,Circle2,…,Circlen)中待检索图像的病灶区域Circle0与历史图像的病灶区域(Circle1,Circle2,…,Circlen)的交集和并集,令得到图像病灶位置相似性集合(S1,S2,S3,…,Sn)。Image lesion position similarity determiner, used to calculate the lesion area Circle 0 of the image to be retrieved in the lesion area (Circle 0 , Circle 1 , Circle 2 ,...,Circle n ) and the lesion area (Circle 1 , Circle 2 ,…,Circle n ) intersection and union, let A similarity set of image lesion positions (S 1 , S 2 , S 3 ,...,S n ) is obtained.
图像内容相似性度量单元,用于对乳腺钼靶X线图像的预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In)进行图像内容相似性度量,得到图像内容相似性集合(E1,E2,…,En)。The image content similarity measurement unit is used to perform image content similarity on the preprocessed image to be retrieved I 0 and the preprocessed historical image set (I 1 , I 2 ,...,In ) of the mammography image Similarity measure to get image content similarity set (E 1 ,E 2 ,…,E n ).
图像内容相似性度量单元包括:图像特征直方图提取器和图像内容相似性确定器。The image content similarity measurement unit includes: an image feature histogram extractor and an image content similarity determiner.
图像特征直方图提取器,用于提取预处理后的图像集(I0,I1,I2,…,In)的灰度特征、形状特征和纹理特征,构建其图像灰度直方图、基于边缘方向直方图、方向梯度直方图和局部二值模式直方图,得到灰度特征向量(α0,α1,α2,…,αn)、形状特征向量(β0,β1,β2,…,βn)和纹理特征向量(γ0,γ1,γ2,…,γn),合并灰度特征向量(α0,α1,α2,…,αn)、形状特征向量(β0,β1,β2,…,βn)和纹理特征向量(γ0,γ1,γ2,…,γn),得到综合直方图特征向量(ω0,ω1,ω2,…,ωn)。The image feature histogram extractor is used to extract the grayscale features, shape features and texture features of the preprocessed image set (I 0 , I 1 , I 2 ,...,In ), and construct its image grayscale histogram, Based on the edge orientation histogram, orientation gradient histogram and local binary pattern histogram, the gray feature vector (α 0 ,α 1 ,α 2 ,…,α n ), shape feature vector (β 0 ,β 1 ,β 2 ,…,β n ) and texture feature vectors (γ 0 ,γ 1 ,γ 2 ,…,γ n ), combined gray feature vectors (α 0 ,α 1 ,α 2 ,…,α n ), shape features vector (β 0 ,β 1 ,β 2 ,…,β n ) and texture feature vector (γ 0 ,γ 1 ,γ 2 ,…,γ n ), to obtain the integrated histogram feature vector (ω 0 ,ω 1 ,ω 2 ,…,ω n ).
图像内容相似性确定器,用于采用EMD方法将待检索图像的综合直方图特征向量ω0和历史图像的综合直方图特征向量(ω1,ω2,…,ωn)进行相似性度量,得到图像内容相似性集合(E1,E2,…,En)。The image content similarity determiner is used to measure the similarity between the integrated histogram feature vector ω 0 of the image to be retrieved and the integrated histogram feature vector (ω 1 , ω 2 ,…,ω n ) of the historical image by using the EMD method, Obtain the image content similarity set (E 1 , E 2 ,...,E n ).
图像综合相似性度量器,用于将图像病灶位置相似性集合(S1,S2,…,Sn)按照图像病灶位置相似性从大到小排序,并标记序号,将排序后的图像病灶位置相似性集合的序号分配A%的权重,将图像内容相似性集合(E1,E2,…,En)按照图像内容相似性从小到大排序,并标记序号,将排序后的图像内容相似性集合的序号分配(100-A)%的权重,综合图像病灶位置相似性图像序号和图像内容相似性图像序号得出图像综合相似性图像序号,得到待检索图像检索结果:即图像综合相似性图像序号越小,表示该图像与待检索图像越相似。The image comprehensive similarity measurer is used to sort the image lesion position similarity set (S 1 , S 2 ,...,S n ) according to the image lesion position similarity from large to small, and mark the serial number, and sort the image lesion The sequence number of the position similarity set is assigned a weight of A%, and the image content similarity set (E 1 , E 2 ,…,E n ) is sorted according to the image content similarity from small to large, and the sequence number is marked, and the sorted image content The serial number of the similarity set is assigned (100-A)% weight, and the image serial number of the image lesion position similarity and the image content similarity image serial number are combined to obtain the image comprehensive similarity image serial number, and the retrieval result of the image to be retrieved is obtained: that is, the image comprehensive similarity The smaller the serial number of the image, the more similar the image is to the image to be retrieved.
采用基于病灶位置与内容的乳腺图像检索系统进行图像检索的方法,如图2所示,包括以下步骤:A method for image retrieval using a breast image retrieval system based on lesion position and content, as shown in Figure 2, includes the following steps:
步骤1:获取乳腺钼靶X射线图像的待检索图像F0、历史图像集(F1,F2,…,Fn),选取标准图像FC,标准图像FC为形态正常、大小适中的乳腺钼靶X射线图像。Step 1: Obtain the image F 0 to be retrieved and the historical image set (F 1 , F 2 ,…,F n ) of mammography X-ray images, and select the standard image F C , which is normal in shape and moderate in size Mammography X-ray image.
步骤2:对待检索图像F0和历史图像集(F1,F2,…,Fn)进行预处理,得到预处理后的图像集(I0,I1,I2,…,In),其中,包括预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In)。Step 2: Preprocess the image to be retrieved F 0 and the historical image set (F 1 , F 2 ,...,F n ), and obtain the preprocessed image set (I 0 , I 1 , I 2 ,...,In ) , including the preprocessed image to be retrieved I 0 and the preprocessed historical image set (I 1 , I 2 ,..., In ).
步骤2.1:分别对待检索图像F0和历史图像集(F1,F2,…,Fn)进行降噪处理,得到降噪后的待检索图像P0和降噪后的历史图像集(P1,P2,…,Pn)。Step 2.1: Perform noise reduction processing on the image to be retrieved F 0 and the historical image set (F 1 , F 2 ,...,F n ) respectively, and obtain the image to be retrieved after noise reduction P 0 and the historical image set after noise reduction (P 1 ,P 2 ,...,P n ).
本实施方式中,采用空间域的变换方法选用中值滤波器进行滤波,实现对待检索图像F0和历史图像集(F1,F2,…,Fn)的降噪处理,减少对待检索图像F0和历史图像集(F1,F2,…,Fn)中的噪声。In this embodiment, the spatial domain transformation method is used to select the median filter for filtering, so as to realize the noise reduction processing of the image to be retrieved F 0 and the historical image set (F 1 , F 2 ,...,F n ), and reduce the number of images to be retrieved. Noise in F 0 and the historical image set (F 1 ,F 2 ,…,F n ).
步骤2.2:分别对降噪后的待检索图像P0和降噪后的历史图像集(P1,P2,…,Pn)进行图像增强处理,得到预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In)。Step 2.2: Carry out image enhancement processing on the denoised image to be retrieved P 0 and the denoised historical image set (P 1 , P 2 ,...,P n ) to obtain the preprocessed image to be retrieved I 0 and Preprocessed historical image set (I 1 ,I 2 ,…, In ).
本实施方式中,采用对比度增强的方法对降噪后的待检索图像P0和降噪后的历史图像集(P1,P2,…,Pn)进行图像增强处理。强调乳腺钼靶X射线图像整体或局部特性,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,增大疑似病灶与周围组织的对比度。In this embodiment, image enhancement processing is performed on the noise-reduced image to be retrieved P 0 and the noise-reduced historical image set (P 1 , P 2 , . . . , P n ) by using a contrast enhancement method. Emphasize the overall or local characteristics of mammography X-ray images, expand the difference between different object features in the image, suppress uninteresting features, and increase the contrast between suspected lesions and surrounding tissues.
步骤3:对乳腺钼靶X线图像的预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In)进行图像病灶位置相似性度量,如图3所示。Step 3: Carry out image lesion position similarity measurement on the preprocessed image I 0 to be retrieved and the preprocessed historical image set (I 1 , I 2 ,...,In ) of the mammography image, as shown in the figure 3.
步骤3.1:确定预处理后的图像集(I0,I1,I2,…,In)的病灶位置中心点坐标集{(x0,y0),(x1,y1),(x2,y2)…,(xn,yn)}和病灶位置半径集(R0,R1,R2,…,Rn)。Step 3.1: Determine the center point coordinate set {(x 0 ,y 0 ) , (x 1 , y 1 ) ,( x 2 ,y 2 )…,(x n ,y n )} and the radius set of the lesion position (R 0 ,R 1 ,R 2 ,…,R n ).
本实施方式中,采用经典的大津法阈值分割算法对预处理后的图像集(I0,I1,I2,…,In)进行二值化处理,保留二值化处理后的图像中高亮区域,将高亮区域X轴方向最大值的一半作为病灶位置中心点横坐标,将高亮区域Y轴方向最大值的一半作为病灶位置中心点纵坐标,得到病灶位置中心点坐标集{(x0,y0),(x1,y1),(x2,y2)…,(xn,yn)},遍历高亮区域所有点,从第一个点开始,利用直角三角形勾股定理,求出点到中心点的距离,依次计算高亮区域中所有点与中心点的距离,将其最大值作为病灶位置半径,得到病灶位置半径集(R0,R1,R2,…,Rn)。In this embodiment, the classic Otsu method threshold segmentation algorithm is used to perform binarization processing on the preprocessed image set (I 0 , I 1 , I 2 ,...,In ), and retain the high In the bright area, half of the maximum value in the X-axis direction of the highlighted area is taken as the abscissa of the center point of the lesion, and half of the maximum value in the Y-axis direction of the highlighted area is taken as the ordinate of the center point of the lesion, and the coordinate set of the center point of the lesion is obtained {( x 0 ,y 0 ),(x 1 ,y 1 ),(x 2 ,y 2 )…,(x n ,y n )}, traverse all points in the highlighted area, start from the first point, use right triangle Pythagorean theorem, find the distance from the point to the center point, calculate the distance between all the points in the highlighted area and the center point in turn, take the maximum value as the radius of the lesion position, and obtain the radius set of the lesion position (R 0 , R 1 , R 2 ,...,R n ).
步骤3.2:利用基于CPD配准方法,将预处理后的图像集(I0,I1,I2,…,In)与标准图像FC进行区配,得到转换后的病灶中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)},并将转换后的病灶中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}和病灶位置半径集(R0,R1,R2,…,Rn)显示在标准图像FC上,利用转换后的病灶中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}和病灶位置半径集(R0,R1,R2,…,Rn)确定病灶区域(Circle0,Circle1,Circle2,…,Circlen),如图4所示。Step 3.2: Use the CPD-based registration method to align the preprocessed image set (I 0 , I 1 , I 2 ,…, In ) with the standard image F C to obtain the transformed lesion center point coordinate set {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )}, and the transformed focal point coordinate set {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )} and the lesion position radius set (R 0 ,R 1 ,R 2 ,…,R n ) is displayed on the standard image F C , using the transformed focal point coordinate set {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )} and the lesion location radius set (R 0 , R 1 , R 2 ,...,R n ) determine the lesion area (Circle 0 , Circle 1 , Circle 2 ,...,Circle n ), as shown in Figure 4.
本实施方式中,利用基于CPD(Coherence Point Drift)配准方法,可将不同大小的乳腺轮廓进行标准化,减小病灶位置相似性计算误差。In this embodiment, the CPD (Coherence Point Drift)-based registration method can be used to standardize breast contours of different sizes and reduce the error in calculating the similarity of lesion positions.
步骤3.2.1:提取预处理后的图像集(I0,I1,I2,…,In)图像中的乳房轮廓和标准图像FC的乳房轮廓。Step 3.2.1: Extract the breast contour in the preprocessed image set (I 0 , I 1 , I 2 ,...,In ) and the breast contour of the standard image F C .
步骤3.2.2:利用基于CPD(Coherence Point Drift)的仿射变换,配准预处理后的图像集(I0,I1,I2,…,In)图像中的乳房轮廓和标准图像FC的乳房轮廓,得到配准变换矩阵(T0,T1,T2,…,Tn)。Step 3.2.2: Using CPD (Coherence Point Drift)-based affine transformation, register the breast contour in the preprocessed image set (I 0 , I 1 , I 2 ,…,In ) with the standard image F The breast contour of C , and the registration transformation matrix (T 0 , T 1 , T 2 ,...,T n ) is obtained.
步骤3.2.3:通过配准变换矩阵(T0,T1,T2,…,Tn)对病灶位置中心点坐标集{(x0,y0),(x1,y1),(x2,y2)…,(xn,yn)}和病灶位置半径集(R0,R1,R2,…,Rn)进行转换,得到转换后的病灶位置中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}。Step 3.2.3: Use the registration transformation matrix (T 0 ,T 1 ,T 2 ,…,T n ) to coordinate the center point coordinate set of the lesion position {(x 0 ,y 0 ),(x 1 ,y 1 ),( x 2 ,y 2 )…,(x n ,y n )} and the radius set of the lesion position (R 0 ,R 1 ,R 2 ,…,R n ) are transformed to obtain the center point coordinate set of the lesion position { (X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )}.
步骤3.2.4:将转换后的病灶位置中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}和病灶位置半径集(R0,R1,R2,…,Rn)显示在标准图像FC上,将转换后的病灶位置中心点坐标集{(X0,Y0),(X1,Y1),(X2,Y2),…,(Xn,Yn)}和病灶位置半径集(R0,R1,R2,…,Rn)确定的圆(Circle0,Circle1,Circle2,…,Circlen)作为病灶区域。Step 3.2.4: Set the center point coordinates of the transformed lesion position {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n ,Y n )} and the lesion position radius set (R 0 , R 1 , R 2 ,…,R n ) are displayed on the standard image F C , and the transformed lesion position central point coordinate set {(X 0 ,Y 0 ),(X 1 ,Y 1 ),(X 2 ,Y 2 ),…,(X n , Y n ) } and the circle ( Circle 0 , Circle 1 , Circle 2 ,...,Circle n ) as the lesion area.
步骤3.3:分别计算病灶区域(Circle0,Circle1,Circle2,…,Circlen)中待检索图像的病灶区域Circle0与历史图像的病灶区域(Circle1,Circle2,…,Circlen)的交集和并集,令 得到图像病灶位置相似性集合(S1,S2,S3,…,Sn)。Step 3.3: Calculate the difference between the lesion area Circle 0 of the image to be retrieved in the lesion area (Circle 0 , Circle 1 , Circle 2 ,...,Circle n ) and the lesion area of the historical image (Circle 1 , Circle 2 ,...,Circle n ) intersection and union, let A similarity set of image lesion positions (S 1 , S 2 , S 3 ,...,S n ) is obtained.
本实施方式中, 病灶位置相似性比值越大越相似。In this embodiment, The larger the similarity ratio of the lesion position, the more similar it is.
步骤4:对乳腺钼靶X线图像的预处理后的待检索图像I0和预处理后的历史图像集(I1,I2,…,In)进行图像内容相似性度量,如图5所示。Step 4: Perform image content similarity measurement on the preprocessed image I 0 to be retrieved and the preprocessed historical image set (I 1 , I 2 ,...,In ) of mammography images, as shown in Figure 5 shown.
步骤4.1:提取预处理后的图像集(I0,I1,I2,…,In)的灰度特征、形状特征和纹理特征,构建图像灰度直方图、基于边缘方向直方图(Edge Direction Histogram,EDH)、方向梯度直方图(Histogram of oriented gradients,HOG)和局部二值模式直方图(LocalBinary Pattern,LBP),得到灰度特征向量(α0,α1,α2,…,αn)、形状特征向量(β0,β1,β2,…,βn)和纹理特征向量(γ0,γ1,γ2,…,γn)。Step 4.1: Extract the grayscale features, shape features and texture features of the preprocessed image set (I 0 , I 1 , I 2 ,...,In ), construct the image grayscale histogram, and construct the image grayscale histogram based on the edge direction histogram (Edge Direction Histogram, EDH), histogram of oriented gradients (HOG) and local binary pattern histogram (LocalBinary Pattern, LBP), to obtain the gray feature vector (α 0 ,α 1 ,α 2 ,…,α n ), shape feature vectors (β 0 ,β 1 ,β 2 ,…,β n ) and texture feature vectors (γ 0 ,γ 1 ,γ 2 ,…,γ n ).
步骤4.2:合并灰度特征向量(α0,α1,α2,…,αn)、形状特征向量(β0,β1,β2,…,βn)和纹理特征向量(γ0,γ1,γ2,…,γn)得到综合直方图特征向量(ω0,ω1,ω2,…,ωn)。Step 4.2: Combine gray feature vectors (α 0 ,α 1 ,α 2 ,…,α n ), shape feature vectors (β 0 ,β 1 ,β 2 ,…,β n ) and texture feature vectors (γ 0 , γ 1 ,γ 2 ,…,γ n ) to get the integrated histogram feature vector (ω 0 ,ω 1 ,ω 2 ,…,ω n ).
步骤4.3:采用EMD(Earth Mover's Distance)方法将待检索图像的综合直方图特征向量ω0和历史图像的综合直方图特征向量(ω1,ω2,…,ωn)进行相似性度量,得到图像内容相似性集合(E1,E2,…,En)。Step 4.3: Use the EMD (Earth Mover's Distance) method to measure the similarity between the integrated histogram feature vector ω 0 of the image to be retrieved and the integrated histogram feature vector (ω 1 ,ω 2 ,…,ω n ) of the historical image, and obtain Image content similarity set (E 1 , E 2 ,...,E n ).
本实施方式中,(E1,E2,…,En)=(0.0223,0.0668,0.2641,0.3103,0.3179,…,0.6624)。数值越小,特征直方图越相似,即得出乳腺钼靶X线图像内容相似性。In this embodiment, (E 1 , E 2 , . . . , E n )=(0.0223, 0.0668, 0.2641, 0.3103, 0.3179, . . . , 0.6624). The smaller the value, the more similar the feature histograms, that is, the content similarity of mammography images.
步骤5:将图像病灶位置相似性集合(S1,S2,…,Sn)按照图像病灶位置相似性从大到小排序,并标记序号,将排序后的图像病灶位置相似性集合的序号分配40%的权重,将图像内容相似性集合(E1,E2,…,En)按照图像内容相似性从小到大排序,并标记序号,将排序后的图像内容相似性集合的序号分配60%的权重,综合图像病灶位置相似性图像序号和图像内容相似性图像序号得出图像综合相似性图像序号,得到待检索图像检索结果:即图像综合相似性图像序号越小,表示该图像与待检索图像越相似。Step 5: Sort the image lesion position similarity set (S 1 , S 2 ,...,S n ) according to the image lesion position similarity from large to small, and mark the sequence number, and put the sequence number of the sorted image lesion position similarity set Assign a weight of 40%, sort the image content similarity set (E 1 , E 2 ,...,E n ) in ascending order of image content similarity, and mark the sequence number, assign the sequence number of the sorted image content similarity set With a weight of 60%, the image serial number of the similarity of the image lesion position and the image content similarity are combined to obtain the image serial number of the image comprehensive similarity, and the retrieval result of the image to be retrieved is obtained: that is, the smaller the serial number of the image comprehensive similarity, it means that the image is similar to that of the image. The images to be retrieved are more similar.
本实施方式中,在传统的基于内容的图像检索方法的基础上,增加了基于病灶位置相似性度量方法,能够有效地改善乳腺钼靶X线图像的检索性能,从而能够更进一步辅助医生对乳腺疾病的诊断,根据历史图像集得到待检索图像检索结果的图像处理过程如图6所示。In this embodiment, on the basis of the traditional content-based image retrieval method, a lesion position-based similarity measurement method is added, which can effectively improve the retrieval performance of mammography X-ray images, thereby further assisting doctors in mammography. For disease diagnosis, the image processing process of obtaining the image retrieval results to be retrieved based on the historical image set is shown in Figure 6.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610445569.8A CN105956198B (en) | 2016-06-20 | 2016-06-20 | A breast image retrieval system and method based on lesion location and content |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610445569.8A CN105956198B (en) | 2016-06-20 | 2016-06-20 | A breast image retrieval system and method based on lesion location and content |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105956198A true CN105956198A (en) | 2016-09-21 |
CN105956198B CN105956198B (en) | 2019-04-26 |
Family
ID=56907041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610445569.8A Active CN105956198B (en) | 2016-06-20 | 2016-06-20 | A breast image retrieval system and method based on lesion location and content |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105956198B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106846317A (en) * | 2017-02-27 | 2017-06-13 | 北京连心医疗科技有限公司 | A kind of feature based extracts the method for retrieving medicine image with Similarity matching |
CN107341265A (en) * | 2017-07-20 | 2017-11-10 | 东北大学 | A kind of galactophore image searching system and method for merging depth characteristic |
CN107392204A (en) * | 2017-07-20 | 2017-11-24 | 东北大学 | A kind of galactophore image microcalcifications automatic checkout system and method |
CN107833631A (en) * | 2017-11-20 | 2018-03-23 | 新乡医学院 | A kind of medical image computer-aided analysis method |
CN108537893A (en) * | 2017-03-02 | 2018-09-14 | 南京同仁医院有限公司 | A kind of three-dimensional visualization model generation method of thyroid gland space occupying lesion |
CN110837572A (en) * | 2019-11-15 | 2020-02-25 | 北京推想科技有限公司 | Image retrieval method and device, readable storage medium and electronic equipment |
CN111091906A (en) * | 2019-10-31 | 2020-05-01 | 中电药明数据科技(成都)有限公司 | Auxiliary medical diagnosis method and system based on real world data |
CN111583320A (en) * | 2020-03-17 | 2020-08-25 | 哈尔滨医科大学 | Breast cancer ultrasonic image typing method and system fusing deep convolutional network and image omics characteristics and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101147159A (en) * | 2005-02-21 | 2008-03-19 | 三菱电机株式会社 | Fast method of object detection by statistical template matching |
CN101564323A (en) * | 2009-04-20 | 2009-10-28 | 华中科技大学 | Auxiliary equipment for diagnosing galactophore nidus based on galactophore X-ray photograph |
CN102306173A (en) * | 2011-08-25 | 2012-01-04 | 重庆理工大学 | Image similarity comparison method |
US20120283574A1 (en) * | 2011-05-06 | 2012-11-08 | Park Sun Young | Diagnosis Support System Providing Guidance to a User by Automated Retrieval of Similar Cancer Images with User Feedback |
CN104915961A (en) * | 2015-06-08 | 2015-09-16 | 北京交通大学 | Lump image region display method and system based on mammary X-ray image |
-
2016
- 2016-06-20 CN CN201610445569.8A patent/CN105956198B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101147159A (en) * | 2005-02-21 | 2008-03-19 | 三菱电机株式会社 | Fast method of object detection by statistical template matching |
CN101564323A (en) * | 2009-04-20 | 2009-10-28 | 华中科技大学 | Auxiliary equipment for diagnosing galactophore nidus based on galactophore X-ray photograph |
US20120283574A1 (en) * | 2011-05-06 | 2012-11-08 | Park Sun Young | Diagnosis Support System Providing Guidance to a User by Automated Retrieval of Similar Cancer Images with User Feedback |
CN102306173A (en) * | 2011-08-25 | 2012-01-04 | 重庆理工大学 | Image similarity comparison method |
CN104915961A (en) * | 2015-06-08 | 2015-09-16 | 北京交通大学 | Lump image region display method and system based on mammary X-ray image |
Non-Patent Citations (1)
Title |
---|
邢春: ""基于多特征融合图像检索系统设计与实现"", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106846317A (en) * | 2017-02-27 | 2017-06-13 | 北京连心医疗科技有限公司 | A kind of feature based extracts the method for retrieving medicine image with Similarity matching |
CN106846317B (en) * | 2017-02-27 | 2021-09-17 | 北京连心医疗科技有限公司 | Medical image retrieval method based on feature extraction and similarity matching |
CN108537893A (en) * | 2017-03-02 | 2018-09-14 | 南京同仁医院有限公司 | A kind of three-dimensional visualization model generation method of thyroid gland space occupying lesion |
CN107341265A (en) * | 2017-07-20 | 2017-11-10 | 东北大学 | A kind of galactophore image searching system and method for merging depth characteristic |
CN107392204A (en) * | 2017-07-20 | 2017-11-24 | 东北大学 | A kind of galactophore image microcalcifications automatic checkout system and method |
CN107341265B (en) * | 2017-07-20 | 2020-08-14 | 东北大学 | Mammary gland image retrieval system and method fusing depth features |
CN107833631A (en) * | 2017-11-20 | 2018-03-23 | 新乡医学院 | A kind of medical image computer-aided analysis method |
CN111091906A (en) * | 2019-10-31 | 2020-05-01 | 中电药明数据科技(成都)有限公司 | Auxiliary medical diagnosis method and system based on real world data |
CN111091906B (en) * | 2019-10-31 | 2023-06-20 | 中电药明数据科技(成都)有限公司 | Auxiliary medical diagnosis method and system based on real world data |
CN110837572A (en) * | 2019-11-15 | 2020-02-25 | 北京推想科技有限公司 | Image retrieval method and device, readable storage medium and electronic equipment |
CN111583320A (en) * | 2020-03-17 | 2020-08-25 | 哈尔滨医科大学 | Breast cancer ultrasonic image typing method and system fusing deep convolutional network and image omics characteristics and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN105956198B (en) | 2019-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105956198A (en) | Nidus position and content-based mammary image retrieval system and method | |
EP3432784B1 (en) | Deep-learning-based cancer classification using a hierarchical classification framework | |
CN109300113B (en) | Pulmonary nodule auxiliary detection system and method based on improved convex hull method | |
CN104091346A (en) | Full-automatic CT image coronary artery calcification score calculating method | |
CN106780451A (en) | X-ray, ultrasound, infrared image fusion breast lump image detecting method | |
CN104933701B (en) | The mammary glandular cell dividing method of adhesion model is removed with double strategies based on multiple dimensioned growth | |
Mughal et al. | Adaptive hysteresis thresholding segmentation technique for localizing the breast masses in the curve stitching domain | |
CN107358267A (en) | A kind of breast ultrasound image multivariate classification system and method based on cross-correlation feature | |
CN104299242A (en) | Fluorescence angiography fundus image extraction method based on NGC-ACM | |
CN111832563A (en) | An intelligent breast tumor identification method based on ultrasound images | |
CN106651874A (en) | Brain tumor post-operation spatial domain partitioning method based on multimode MRI data | |
CN110706218A (en) | Breast tumor positioning analysis method based on dynamic enhanced magnetic resonance imaging | |
CN108695000A (en) | Thyroid gland Diffuse Diseases intelligent diagnosing method based on ultrasonoscopy and system | |
CN116363181A (en) | A Feature-Based Algorithm for Liver Registration of CT and Ultrasound Images | |
Mastouri et al. | A morphological operation-based approach for Sub-pleural lung nodule detection from CT images | |
CN109816665B (en) | A method and device for fast segmentation of optical coherence tomography images | |
CN108230341B (en) | Eyeground image blood vessel segmentation method based on layered matting algorithm | |
Wang et al. | Deep learning for breast region and pectoral muscle segmentation in digital mammography | |
CN107886506A (en) | A kind of ultrasonic thyroid nodule automatic positioning method | |
CN107463964A (en) | A kind of tumor of breast sorting technique based on features of ultrasound pattern correlation, device | |
Liu et al. | Segmentation of mass in mammograms by a novel integrated active contour method | |
Huidrom et al. | Automated lung segmentation on computed tomography image for the diagnosis of lung cancer | |
CN110136095A (en) | System and method for automatic extraction of lesion area in liver three-dimensional CT image | |
Shaziya et al. | Comprehensive review of automatic lung segmentation techniques on pulmonary CT images | |
CN114757894A (en) | A system for analyzing bone tumor lesions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared |